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Asymmetric Boundary Layer on a 
Nonisothermally Heated Cone 
The development of a three-dimensional boundary layer along a heated cone is analyzed. 
The surface of the cone is heated under the condition of constant wall heat flux. The per­
turbation solution is obtained for the flow close to the leading edge where the buoyancy 
force can be treated as a higher-order effect. A finite-difference solution is obtained for 
the flow far downstream from the leading edge where buoyancy is one of the cominant 
forces. The numerical results clearly describe the boundary-layer development along 
heated cones of different cone angles as well as the heat transfer rate. Boundary-layer sta­
bility is briefly discussed in terms of the boundary-layer shape factor. 

Introduction 
Axisymmetric forced-convection laminar boundary layers exist for 

both external flows (over a swimming body) and internal flows (pipe 
flow), and are important for various engineering applications. Ex­
tensive studies have been conducted also due to their fundamental 
importance in laminar flow theory [1]; in particular, heating seems 
to be an effective way to stabilize the water boundary layer and to 
delay the growth of Tollmien-Schlichting instability waves [2]. 

The effects of buoyancy-induced secondary flow, which destroys 
the axisymmetry of the laminar boundary layer over an axisymmetric 
body (or in a circular pipe), has rarely been studied due to the complex 
three-dimensional flow. Some perturbation solutions have been ob­
tained for both external flow (longitudinal cylinders or cones) [3, 4] 
and internal flow (pipe flow) [1]. Although the perturbation solutions 
are valid only in a narrow region close to the leading edge of an axi­
symmetric body (or the entrance of a pipe), the results indicate that 
the classical heat-transfer correlation and the flow velocity distri­
butions, which do not consider the asymmetric secondary-flow effect, 
can be in error. 

The buoyancy effect on the development of the boundary layer 
predicted by the perturbation method is always symmetric or an­
tisymmetric with respect to 4> = 90° [5]. This kind of simple three-
dimensional flow exists only in the narrow region close to the leading 
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edge of an axisymmetric body (or the entrance of pipe). A solution 
valid downstream of this region, where the secondary flow cannot be 
treated as a higher-order effect, is needed for practical applica­
tions. 

A recent finite-difference solution of cylinder flow reveals that the 
three-dimensional boundary layer develops downstream in a way 
quite different than predicted by the perturbation solution. In this 
paper the three-dimensional boundary layer along a cone, whose 
surface is heated under the condition of constant wall heat flux, is 
considered. A perturbation analysis is performed to determine the 
relevant coordinate scales as well as the magnitude of the velocity 
scales. A finite-difference method is then used to solve the three-
dimensional boundary-layer flow. The physical model considered is 
a semi-infinite cone which is aligned with its axis parallel to a uniform 
free stream and normal to the direction of gravity. This closely models 
the front part of an axisymmetric body with a sharp nose tip (see Pig. 
1). The free stream is assumed to have a velocity u„ and temperature 
r „ . Since the change in the fluid density is usually small compared 
with the fluid density, the Boussinesq approximation is adopted to 
simplify the analysis. 

The perturbation solution indicates that the buoyancy-effect am­
plifies downstream for cones whose half angle, a, is less than 70°; for 
the cone whose angle is larger than 70°, the buoyancy effect on the 
development of the axial velocity decreases downstream. This suggests 
that the perturbation solution is valid uniformly for the flow over 
cones of a > 70°. In this paper, we concentrate on the boundary-layer 
flow which experiences an increasing bouyancy effect downstream. 
Two cone angles, a = 10° and 30°, are selected to demonstrate the 
difference of the flow development due to the interaction of the axial 
pressure gradient and the buoyancy forces. 

The numerical results show that the perturbation solution is valid 
only when x < 0.1 (/t2/3-6" for a cone angle is smaller than 70°. The 

Journal of Applied Mechanics SEPTEMBER 1980, VOL. 47 / 467 

Copyright © 1980 by ASME
Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



n /—Boundary Layer 

Streamline 
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Fig. 1 Physical model and coordinates 

physical meanings of /, e, and n are explained in equations (2) and (3). 
The development of the boundary layer is influenced by two com­
ponents of the buoyancy force. One is parallel to the cone surface along 
the axial direction. This force acts as a favorable body force along the 
upper half of the cone and as an unfavorable body force along the 
lower part. Since its magnitude is proportional to sin a it is important 
for the flow past a cone of moderate cone angle, say a - 30°. The other 
component of the buoyancy force is perpendicular to the free stream. 
This force drives the secondary flow and is important for small-angle 
cone flow, say a = 10°. Due to the competition of these two compo­
nents of the buoyancy force, the boundary-layer development along 
a heated cone is quite different for cones of different angles. Moreover, 
the heat transfer characteristics of the three-dimensional boundary 
layer differ considerably from those of a two-dimensional forced-
convection boundary layer. 

A n a l y s i s 
The flow past a heated cone can be described by the Boussinesq 

approximation of the Navier-Stokes equations. In the coordinates 
shown in Pig. 1, the governing equations are as follows: 

1 
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d(ru) b(rw) du' 

———| ——| 
dx dy d(j>, 
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Inviscid flow past a heated cone behaves identically to that past an 
unheated cone since no heat is transferred outside the thermal 
boundary layer. The fluid temperature outside the thermal boundary 

is uniform and equals the free-stream temperature. The flow is axi-
symmetric with respect to the cone axis, see Fig. 1. The solution of the 
inviscid flow (see [6]) along the cone surface, which is required to 
evaluate the pressure gradient of the boundary-layer equations, is 

u = u„ xn, (2) 

where u . is the undisturbed free-stream velocity; and n, (the value 
of which can be found from [6]) is related to the cone angle. 

Ups t ream Solution. Equations (1) are simplified for the 
boundary layer by introducing the following dimensionless vari­
ables: 

xi =x/l, y i = y ( R e 1 / 2 ) A 

r = r/l = xi sin a + yi /Re1 / 2 cos a (coordinates) 

(velocities Ui = u/u„, v\ = v/u„, < 

Wl = w(Re1/2)/u„ 

0i = f e ( R e 1 / 2 ) / V ) ( T - T „ ) 

Re = (uJ)/v 

Gr = (pgl* qu,)/(kv2) 

Pi =p/p«um
2 

Pr = Vn/a; 

K = k/pm cp; 

e =Gr /Re 6 / 2 

(temperature) 

(Reynolds No.) 

(GrashofNo.) 

(pressure) 

(Prandtl No.) 

(thermal diffusivity) 

(3) 

The wall heat flux, qw, is assumed constant in this work. / is taken to 
be the distance from the cone apex to the location where the inviscid 
velocity along the cone surface reaches u^,. The normal coordinate, 
y, is scaled to reflect that the thickness of the boundary layer is pro­
portional to 1/Re1/2. 

In terms of the dimensionless variables defined in equations (3), 
equations (1) become 

1 d(xiu{) 

x\ dx\ 

dwi 1 du 
• + 1 + 

dyi xi sin a d0 
i = 0 

dui dui dui 
U l VWX h -

dxi dyi xi sin a d0 

dv\ dv\ V\ dvi 
u i 1- Wi 1 

dxi dyi xi sin a d0 

. X i . 
xi 

*£! 
d»i 

UlVl 

Xl 

- 1 

— edi cos (j> sin a + 
d2m 

dyi2 

dPi 

dyi 

xi sin a d0 

•• Od/Re1/2) 

dPi „ . d2ui 
H edi sin (j> H 

dyx
2 

d0i d0! 
Ui h Wi h 

d»i dyi xi sin a d<£ 

vi d6i 1 d20i 

~ Pr dyi2 

(4a) 

(46) 

(4c) 

(4d) 

(4e) 

0 (5) 

after neglecting smaller-order terms. 
Equation (Ad) states that the variation of the pressure across the 

thin boundary layer is a higher-order effect. Therefore, the pressure 
gradients in equations (46) and (4c) can be evaluated from equation 
(2). They are 

= — nxi2n~1 and : 

dxi d0 
e represents the ratio of the buoyancy force to the viscous force 

inside the boundary layer. Its value depends on the fluid properties, 
the flow speed, and the heat transfer rate; it is usually quite small for 
the practical problems in which we are interested. In this paper, we 
will restrict attention to the case where t is small. From equations (46) 
and (4c), one can conclude that the buoyancy, the driving force to 
cause the asymmetric flow, can be treated as a perturbation quantity 
if e is small. The advantage of this is quite obvious. The zeroth-order 
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solution of equations (4), without considering the buoyancy effect, 
is simply the axisymmetric cone flow for forced convection; and a 
similarity solution exists for such a flow. Since the perturbation 
equations of higher orders are linear, their solutions should be ex­
pressible in terms of a similarity variable. This is true for the problem 
studied here. 

The velocities and temperature can be expressed in terms of the 
stream functions and the temperature functions as 

m = xi" / o '+e* i ' ( 3 - 6 n > / 2 I ! 

sin a 
- JY + . . . 

+ e^i[(3~5")/2l 

X l [ ( n - l ) / 2 ] 1 - r a 
•Vfo-

n + 3 
-h 

'- nFi' + (2n - 3) F x - F2) 

Oi = \ / - ^ - * i [ ( 1 - B ) / 2 ' 
V n + 3 

fl0 + «x 1 Ka-s») /«lG^* + . 

(6a) 

(66) 

(6c) 

(6d) 

where the functions /p, Fi, F2, do, and G depend on r\ only; and r\ = 
y\ y/[(n + 3)/2] * i n _ 1 is the similarity variable. The ordinary dif­
ferential equations which govern the functions /o, F\, F2, 6Q, and G 
can be obtained by substituting equations (5) and (6) into equations 
(4), and then separating the terms of equal order in e. They are 

W" + /o /o" + [2n/(n + 3)] (1 - /0 '2) = 0 

do" + Prlf080'+ [in - l)/(n + 3)] fQ'0o] = 0, 

(7a) 

(76) 

and 

Fi"+foFt' 
(4-

n + 3 

2n)f'F' + e 
to * i + 

•An 

n + 3 
h" Fi 

In + 3 . „ 
+ /o * 2 = —\ sin2 a r{ 

F2"> + h Ft" - ^ /o' F 2 ' = \ / ^ ? « o , 
re + 3 V 2 

(8a) 

(86) 

1/Pr G" + /o G' + 
6n 

n + 3 
4 / o ' G = i - ^ F ! ' 0 o 

• (3 - 2n) F1d0'- F20o' (8c) 

The associated boundary conditions are 

/o(0) = /o'(0) = Fi(0) = Fi'(0) = F2(0) = F2 '(0) = 0 

(no-slip condition); (9a) 

0o'(O) = - 1 , G(0) = 0 (constant wall heat flux); (96) 

U (<*>) - 1, *Y (<=°) = F2' («) = 0o(») = G(») -* 0 
(match with the inviscid solution). (9c) 

The term /o in equation (7a) simply describes the flow past an un-
heated cone, as given by Mangier, do in equation (76), is the forced-
convection temperature distribution with the constant wall heat flux 
condition. Fy from equation (8a) represents the change of the axial 
boundary layer due to the buoyancy force as well as to the secondary 
flow, F2 from equation (86). G, from equation (8c), represents the 
temperature redistribution due to the free convection. The values of 
the functions fo, F\, F2, do, and G can be obtained in a straightforward 
manner by numerically integrating equations (7) and (8) with the 
boundary conditions given by equations (9). However, equations (6) 
reveal that the perturbation solution is valid only when ex1K

3-5«><'2J 
< 1. In other words, the originally small asymmetric flow grows 
downstream and cannot be treated as a perturbed quantity when x\ 
> £[2/(5n-3)] w ; th n < o.6. The restriction of n < 0.6 corresponds to 
cones whose half angle is approximately smaller than 70°. For n > 0.6 
(cone whose half angle is larger than 70°) the flow far away from the 
apex will eventually approach the axisymmetric flow since the in­

fluence of the buoyancy force is overwhelmed by the favorable pres­
sure gradient along the cone surface. 

In this paper, we consider only small-angle cones, i.e., n < 0.6. Here, 
the buoyancy force becomes one of the dominant forces when * is not 
small. Also, the perturbation solution (6) can be applied only in the 
region close to the cone apex. In the following, we will construct a 
solution which is not only valid for small x (approximately 0(0) but 
which can also be applied farther downstream. Therefore, we do not 
present the upstream solutipns (6) in this paper. 

Downst ream Solutions. The downstream dimensionless vari­
ables can readily be found from equations (6). They are 

x 2 •• 
/ e l -2/ (3-5; i ) ] ' V2=\ 

y(Re)1 /2 

c [ (n - l ) / (8 -6n) ] ' 
(coordinates); 

u 2 •• 
u „ e [ ( - 2 i » ) / ( 3 - 6 n ) ] ' 

w ( R e ) 1 / 2 

U2 = 

w2 = 

P2=-

u „ e [ ( n - l ) / ( 3 - 6 n ) ] ' 

P 

W„ f [ ( - 2 n ) / ( 3 - 5 n ) l ' 

(velocities); 

Po>U 2 e[(-4n)/(3-5r>)] ' 
(pressure); 

(10a) 

(106) 

(10c) 

fe(Re)1-'2 

kwi K"-i)/<3-6«)l 
(T - T„) ; (temperature) (lOd) 

From now on, all the variables are defined in the downstream coor­
dinates. 

In terms of the dimensionless variables in equations (10), equations 
(1), after neglecting the smaller-order terms, become 

1 dv2 1 d(x2u2) dw2 1 1 
x2 dx2 dy2 x2 sin a 50 

•0 

du2 du2 v2 £>u2 
u2 + w2 1- ; 

dx2 dy2 X2Sin a 50 
HE 

x2 

• nx2* • 62 cos 4> s i n a + 
d2u2 

dy2
2 

Z>v2 du2 
u2 V w2 V 

dx2 dy2 

v2 5l>2 . " 2 ^ 2 a . , d2l>2 
— : — — 7 + '= 02 81110+-—;, 
x\ sin a 50 x% oy-if-

dd2^ i)d2^ y2 dd2 

u2 — +w2 — + : — 
0*2 oy2 x2 sm a 50 

Pr 5y2
2 

(Ha) 

(116) 

(He) 

(Hd) 

The only difference between equations (4) and (11) is that the 
buoyancy forces in equations (11) are 0(1). This indicates that the 
buoyancy forces are as important as the other forces; and the inter­
action of the axial boundary layer flow and the secondary flow be­
comes a dominant effect. 

The upstream solutions (6) can be rewritten in the downstream 
coordinates. They are 

u2 = x" / o , + ; c [ (3-5n) /2] i ? 1 /£2 . S < 
• + . . . 

sin a 

u2 = x^-3n^F2'sm4> + .. 

w2
 : Ap-xlC 

V n + 3 
l>/2] 

1 -n 

1-n 
Vfo'-

re + 3 , 

2 2 

ij Fi' + (2re - 3) Fi - F 2 

/ 0 + jc2[(3-5n)/2] 

,[(l-n)/2] : X [ ( 3 - 5 n ) / 2 ] G £ ^ + , 

(12a) 

(126) 

(12c) 

(12d) 

where 

In + 3 , In+3 T 
V = y2\/ —— xin~Y=y\\]—— xin x (12e) 

Comparison of equations (4) and (11) shows that the solution of 
equations (4) is included in the solution of equations (11). Equations 
(12) provide another check to insure that the solution of equations 
(11) is uniformly valid from the cone apex to the downstream region 
as long as the transverse curvature can be neglected. 
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N u m e r i c a l C o m p u t a t i o n 
Equations (11) represent a three-dimensional boundary layer in­

fluenced by buoyancy forces. The sixth term of equation (116) is the 
component of the buoyancy force which is parallel to the cone surface. 
This force behaves as a favorable body force along the upper half of 
the cone, and as an unfavorable body force along the lower half of the 
cone. It can stabilize the flow along the upper half of the cone and 
destabilize the flow along the lower half. The magnitude of this force 
is proportional to sin a. For a small-angle cone, its effect is weak; 
however, for a large-angle cone, it has a significant effect on the de­
velopment of the boundary layer, and can trigger boundary-layer 
separation at a sufficient distance downstream from the cone apex. 

Another component of the buoyancy force, the fifth term of equa­
tion ( l ie) , is along the circumferential direction and is the driving 
force for secondary flows. This force seems to have a stronger influence 
on the development of the boundary layer for cones of small-angle. 

An analytical solution of equations (11) is unlikely to be found; and 
a finite-difference method is used here. Parabolic coordinates are 
probably most convenient for solving equations (11) numerically (see 
Smith and Clutter, [7] Dwyer, [8]). Also, from equations (12), one can 
see the ^-dependence of the boundary-layer development. Another 
transformation will be introduced in order to reduce the variation of 
the boundary-layer growth downstream and to reduce the possibility 
of numerical instability caused by the fast developing boundary 
layer. 

The velocities are transformed as follows: 

Us, = X2~
nU2 

V3 = X2~
nV2 

w3 = y/[(n + 3)/2]x2^-n^w2, (13) 

T h e n , equat ions (11) in t he parabol ic coordinates (x2,77, 0) become 

x2 1" (1 + n) u3 H T; 1 1 = 0 
dx2 2 in) dr] sin a d 0 

X2 «3 + (nu 3
2 - U32) + \W3 + T)U3 

dx2 \ 2 

(14a) 

i>u3 v3 du3 

X 1 = n - X21 2 

dr\ sin a d 0 

X 0 cos 0 sin a + 

X2U3 1- (1 + n)u3v3 + \w3 + 
dX2 

n - l \ —H 

n + 3 d2 u3 

2 dT)2 

dus v3 dv3 . n + 3 d 2u 3 

X 1- = * 2 " sin 0 + -

d0 
X2U3- + 

OX2 

dT) sin a d 0 

I n - l 

d7)2 

(146) 

(14c) 

\ d0 v3 d0 1 n + 3 d20 , ^ 
r\u3 — + — = (14d) 

/ bi) sin a d<j> Pr 2 dT)2 

Boundary Conditions. The local boundary conditions that are 
required to solve equations (14) are 

At 71 = 0, u3 = y3 = w3 (no-slip condition); {15a) 

d0 

dr; 

u3 —>-l, v and 0 -* 0 

(matching with the free stream) (15c) 

Along the symmetry line, 0 = 0°, the conditions are 

—1 (constant wall heat flux); (156) 

As 7) 

du3 = dw3 = ^B__ 

d0 d0 d0 
(16) 

Values of the dependent variables are required along <j> = 0° to start 
the numerical computation at each X2-station. The equations that 
govern the flow along the symmetry line can be obtained by taking 
the limit of equations (14) according to equation (16); this gives 

d " 3
 A. it -L \ J_

 n ~ 1 d " 3 -1- d W s
 J. 

X2 ^ (1 + n) U3A 7) 1 h 
dX2 2 dT; dr\ 

*2"3 1- (nu3
2-

dx2 

1 &v3 
•0 

v3
2) + \w3 + 

n • 
•y\u3 

d /do3' 
X2U3 

dx2\d</> 
d ldv3 

X — —-
dr] \d(j> 

ij , 1 M 
I sin a \ d(j> 1 

+ (l + n)u 3 

% — X2 

+ {w3 + 

i>v3 

sin a d<j> 

du3 

dTj 

n + 3 d2u3 
' sin a + 

X2U3 
d8 / 

+ ' 
i>x2 \ 

d0 
= xl-2ng + 

dT)2 

W 3 | 

n + 3 d 2 ldv3) 

w3 + • 
- 1 \dd 

77U3 ' 
2 jdrj 

2 d772\d0/ 

n + 3 d20 

(17a) 

(176) 

(17c) 

(17d) 
2Pr d?)2 

Equations (16) hold at <j> = 0, and can be solved with the conditions 
given by equations (15) first at any particular ^-s ta t ion. Then this 
solution can be used as the initial condition to start the computation 
of equations (14) in the azimuthal direction. 

The upstream conditions, equations (12), can be applied at a small 
X2 (say, x2 < 0.1) as the initial conditions of equations (14). But since 
the upstream solutions, equations (12), are included in the down­
stream solution of equations (14), it is more convenient to start 
computation at the cone apex (x2 — 0). The velocity profiles and the 
temperature distribution at x2 — 0 can be obtained by solving the 
limiting forms of equation (14) as x2 —*• 0. They are 

1 du3 n — 1 d u 3 dw3 
(l + n)u3 + 7 ;—- + i + 

2 dT) dT) sin a d(j> 
= 0 

(nu.32 - u3
2) + — 

v3 du3 

sin a d<t> 

n - l 
W3 + T]U3 

i>U3 

d?) 

••n + 
n + 3d2u3 

2 dri2 

(1 + n ) u3v3 + 
u3 &v3 

sin a d(/> 
+ \w3 + -

- 1 \dv3 

us i>6 
+ \ws + -

- 1 \ d 0 

_n + 3d2u3 

2 dT)2 

n + 3 d20 

(18a) 

(186) 

(18c) 

(18d) 
sin a 50 \ 2 ' "/ d?) 2Pr d?)2 

The value of v3 which satisfies equations (15) and (18c) is zero. This 
indicates that the flow at the cone apex is axisymmetric. In fact, the 
solution of equations (18) is simply a forced-convection cone flow with 
the uniform wall heat flux which is represented by the functions of 
/o and0 in equations (12). In other words, /o describes the boundary 
layer along an unheated cone. Equations (14), (16), and (17) are 
discretized by the following difference approximation. First-order 
derivatives in the X2 and 0-directions are approximated by forward 
differences; and in the ^-direction both first and second-order de­
rivatives are replaced by central differences. The scheme is fully im­
plicit; and Picard iteration is used to solve the resulting nonlinear 
algebraic equations. 

The numerical experiments show that the convergence to two to 
three significant digits can be achieved by taking ATJ = 0.05, A0 = 
7r/16, and A%2 = 0.1, for Z27— 0.2. However, near the cone apex, a finer 
X2-grid is required. For x2 ^ 0.2, A*2 = 0.005 is used; for x2 5:0.2, Ax2 
is gradually increased to 0.1. The details of the numerical technique 
can be found in Yao, et al. (8). 

R e s u l t s and D i s c u s s i o n 
Buoyancy forces influence boundary-layer development along a 

heated cone, and this influence is cumulative. Near the cone apex 
there is little effect on the boundary layer due to buoyancy; and the 
flow is nearly axisymmetric. But further downstream buoyancy effects 
begin to accumulate, and the flow becomes asymmetric. 

The upstream solution, equations (6), indicates that asymmetry 
of the axial velocity develops downstream proportional to x 2<

3-6n)/2) 

and the-secondary velocity increases as xgp/zd-")]. This shows that 
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Fig. 3 Displacement thickness 

u 3 -" " 3 ^ 

Fig. 2 Axial velocity, o3 at x = 1.0, Pr = 1 

the buoyancy effect on the axial velocity increases downstream when 
n is smaller than 0.6. 

A comparison of the first two terms of equation (6a) shows that the 
initial small buoyancy forces become a dominant effect at x C~L I/ 
e[2/(3-5n)] w h e n n < 0.6. This suggests that the upstream solution is 
only valid for small x 2 when n < 0.6. 

The buoyancy forces affect the boundary-layer development in two 
ways. First is the effect of the component of the buoyancy force par­
allel to the cone surface. This force directly affects the development 
of the axial boundary layer and seems important for a large-angle cone 
since its magnitude depends on sin a. a = 30° is selected to demon­
strate its effect. 

The component of the buoyancy force normal to the free stream 
drives the secondary boundary-layer flow. The axial boundary layer 
develops asymmetrically to accommodate the development of the 
secondary boundary layer, i.e., in order to satisfy mass conservation. 
This effect seems important for a small-angle cone, a = 10° is chosen 
to illuminate the details of this case. 

The axial velocity profile at x-i = 0 for a = 10° is plotted in Fig. 2. 
Since the flow is buoyancy free at the cone apex, the axial velocity is 
axisymmetric. Downstream from the cone apex, e.g., xi = 1 (see Fig. 
2), the asymmetry of the axial velocity has developed. The data show 
that for Pr = 1, the downstream velocity profile becomes fuller around 
most of the cone, except in a small region close to the top, where the 
profile actually is less full. This results from the secondary flow 
sucking the fluid, and driving it circumferentially toward the top. The 
boundary layer is thinned on the bottom of the cone (0 = 0°); and this 
causes a fuller axial velocity profile. The fluid is then accumulated 
on the top of the cone, causing thickening of the boundary layer, and 
a less full axial velocity profile. The flow development for Pr = 10 is 
similar to that for Pr = 1, but smaller in magnitude for any prescribed 
a;-distance. Therefore, the results of Pr = 10 are now shown in Fig. 
2. 

The displacement thickness for a three-dimensional boundary layer 
is not easy to be defined. For a cone flow, the maximum azimuthal 
velocity is about 20 pejcent of the maximum axial velocity. The dis­
placement thickness, 81, is approximately evaluated by ignoring the 
azimuthal velocity and is estimated as 

Si = * X «"• -1/3-6/1 X R e " 0 5 X x2
i-n/2 X 8, 

where 

81= j"°(l-U3)dr, 

(19a) 

(196) 

The values of 81 are given in Fig. 3 for Pr = 1, and 10. For an unheated 
cone flow, 5i is constant and its value depends on the cone angle. For 
the flow past a heated cone, 81 varies along the cone surface due to the 
contribution of the buoyancy forces. The variation of 81 provides an 
information of the thickness distribution of the three-dimensional 
boundary layer. Fig. 3 clearly indicates that the boundary layer is 
thickened on the top of the cone and thinned over the remainder of 
the cone surface. For Pr = 10, the boundary layer develops at a slower 
rate that for Pr = 1. The influence of the buoyancy forces still exists, 
but it takes a greater distance to reveal itself. The surprising result 
for Pr = 1 is that the boundary layer reaches it thickest point at x = 
1.18; then its thickness starts to decrease downstream. This may be 
due to the thinning of the boundary layer over the rest of the cone, 
which pulls the boundary layer on the top of the cone thin as the fluid 
flows further downstream. Also, this may be partially due to the fa­
vorable axial pressure gradient. No flow separation is found for a = 
10°. The computation is stopped at xi = 2 which is too short a distance 
to observe a similar development for Pr = 10. 

For a large-angle cone, say a = 30°, the boundary layer develops 
in a quite different way. The axial velocity profiles, shown in Fig. 2, 
become fuller around most of the cone than at the x 2 = 0, except along 
the bottom of the cone, where they are less full. This indicates that 
the component of the axial buoyancy force parallel to the cone surface, 
functions as a favorable body force along the upper half of the cone 
and as an unfavorable body force along the lower part of the cone. For 
a large-angle cone, the buoyancy force along the axial direction has 
a stronger influence on the development of the axial boundary layer 
than does the the developing secondary boundary-layer flow. 
Therefore, the axial velocities develop in an opposite way for a 
large-angle cone from that for a small-angle cone. As would be ex­
pected, the displacement thickness of the boundary-layer for a = 30° 
also develops in a way opposite that for a = 10°. The boundary layer 
is thinned along the upper surface of the cone and is thickened along 
the lower surface of the cone. 

The numerical scheme fails to converge at x% = 1.67 on the bottom 
of the cone (<f> = 0°). The reason for this failure is not known with 
certainty, but may simply indicate that there is no solution (or pos­
sibly many solutions) to the governing equations from this point on. 
Five iterations, or fewer are required at most stations in order to ob­
tain a converged solution; however, at xi = 1.67 and <f> = 0°, conver­
gence is not achieved, even for 50 iterations. Although the uncon-
verged results behave smoothly and seem to indicate a reverse flow, 
we do not believe they represent the physical solution. Since the 
boundary layer does grow thick along 0 = 0° when the buoyancy force 
acts unfavorably on the boundary layer, the failure of the numerical 
solution may indicate flow separation. But it is well known that the 
boundary-layer equations cannot describe separated flow; hence, the 
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Fig. 4 Azlmuthal velocity, v3, at x2 = 1 and 0 = 90° 

0.0 0.5 I.O I.5 2.0 

Fig. 5 Axial shear stress distribution 

numerical results become meaningless at the point of separation, and 
beyond. 

, Equation (126) shows that the circumferential velocity varies with 
' sin 0. v2 equals zero at 0 = 0°, reaches its maximum value at 0 = 90°, 
and then decreases to zero at 0 = 180°. In the region close to the cone 
apex, v2 is symmetric with respect to 0 = 90°. Further downstream, 
the maximum v2 does not occur at 0 = 90°. This explains why the 
boundary layer is thinned over most of the cone surface. Typical v 
profiles are given in Fig. 4. The magnitude of i>3 is larger for a large-
angle cone than for a small-angle cone. Also, its magnitude varies 
inversely with the Prandtl number. For Pr = 10, the difference in v 
between the 0 = 10° and 30° cases is too small to be shown on the scale 
of Fig. 4. 

The axial shear stress, rxy, normalized by its value at x2 = 0, is given 
in Fig. 5 for Pr = 1. The distribution of the shear stress for Pr = 10 is 
similar to that for Pr = 1, but smaller in magnitude as would be ex­
pected from the earlier discussion. Therefore, it is not shown in Fig. 
5. 

For a = 10°, the axial shear stress increases along the bottom of the 
cone and decreases along the top of the cone. According to the up­
stream solution (6), the variation of rxy along the 0-direction is pro­
portional to cos 0, and is antisymmetric with respect to 0 = 90°. Nu­
merical results indicate that the antisymmetry of rxy with respect to 

Fig. 6(a) Fig.6(fc) 

Fig. 6(a) Shear stress ratio at x2 = 1; (b) shear stress ratio at x2 = 2 

0 = 90° holds only for small x2. Instead, the value of rxy along 0 = 0° 
becomes larger than that along 0 = 90° at x2 = 0.52. A careful com­
parison of rxy along 0 = 0°, 90°, and 180° indicates that the an­
tisymmetry of rxy with respect to 0 = 90° starts to deviate fairly close 
to the cone apex. This implies that the upstream solution can, at most, 
be applied for x2 < 0.1. 

The axial shear stress along a = 180° drops for x2 < 1.18 and then 
starts to increase at a fast fate. This is due to the thinning boundary 
layer downstream of*2 = 1.18. 

The behavior of the axial shear stress for a = 30° is much simpler 
than that for a = 10°. The shear stress increases downstream along 
0 = 180° due to the favorable buoyancy force. The upstream solution 
predicts that rxy along 0 = 90° is not affected by the buoyancy force. 
The numerical solution, however, shows its value increases slightly 
downstream. Txy decreases drastically downstream along 0 = 0° due 
to the unfavorable buoyancy force; its value reaches zero at x = 1.67. 
This suggests that the local boundary layer may separate from the wall 
at this point, as conjectured in the foregoing. 

The circumferential variation of rxy is shown in Fig. 6 for x2 = 1 and 
2. For a = 30°, the minimum rxy always occurs along the bottom of 
the cone. Its value monotonically increases and reaches its maximum 
at the top of the cone. For a = 10°, the maximum rxy does not nec­
essarily occur at a fixed 0. For Pr = 1, at x2 = 1, the maximum rxy is 
at 0 ~ 100°; at x2 = 2, the maximum rxy occurs at 0 = 180°. Evidently, 
the changing patterns of the axial shear stress distribution are due 
to the competition of the requirement of mass conservation due to the 
developing secondary boundary layer, the axial component of the 
buoyancy force, and the axial pressure gradient. 

If the flow does separate along the bottom of the cone with a = 30° 
and Pr = 1, the shear stress shown at x2 = 2 in Fig. 6 may be used to 
determine the size of the separated flow region. However, the sepa­
ration of the boundary layer hinted at by the numerical results reveals 
need for further study. 

Typical temperature distributions at x2 = 1 for cone angles a = 10° 
and 30° are shown in Fig. 7. For a - 10°, the hottest point occurs along 
the cone top; the coldest point is along the cone bottom. For a = 30°, 
the temperature distribution is the other way around. The circum­
ferential changes in temperature at x2 = 1 for Pr = 1 are too small to 
be shown on the scale of Fig. 7. But an asymmetric temperature dis­
tribution does develop downstream, and can be clearly shown as in 
Fig. 8. It is interesting to note that the degree of asymmetry of the wall 
temperature for a = 30° is smaller than that of a = 10°. Another in­
teresting result is that the temperature along the bottom of the 30° 
cone develops smoothly. No drastic rising of the temperature at x2 

= 1.67 which one may expect because of the flow separation. We do 
not know how to explain this phenomenon; however, we guess that 
a circulating flow may be developed in the neighborhood of x2 = 1.67 
due to the three-dimensional flow separation. The circulating flow 
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Fig. 7 Temperature distribution at x2 = 1 
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Fig. 8 Surface temperature 

acts as a good agency to transfer heat between the cone surface and 
the free stream. It should be noted that the solution broke down at 
X2 = 1.67. 

The circumferential variation of the wall temperature is given in 
Fig. 9 for X2 = 1 and X2 = 2, respectively. For a = 10°, the temperature 
is fairly constant for 0 < 90°, but monotonically increases over the 
upper surface of the cone. The circumferential temperature variation 
for a = 30° is relatively small compared with that for a = 10°. At x% 
= 2 for Pr = 1 and a - 30°, the wall temperature does show a rising 
tendency around from 0 = 40° to 0 = 0°. Since the numerical solution 
is not valid between 0 = 0° and 40°, no definite conclusion can be 
made at the present time. 

The axial velocity profile is substantially distorted by free con­
vection, and, as a result, the buoyancy forces will have a strong effect 
on the boundary-layer stability. The detail structure of the bound­
ary-layer transition is beyond the scope of this paper; instead, the 
shape factor, H, the ratio of the displacement thickness to the mo­
mentum thickness, is plotted in Figs. 10 and 11 to show the relative 
importance of the buoyancy forces on the boundary-layer transi­
tion. 

The momentum thickness is approximately estimated as 

62 = l x cn-i/3-6n x Re-o.5 x X2i-n/2 x 52, (20a) 

where 

>.= fUzd-U3)dV (206) 

The axial variation of H is given in Fig. 10. For a = 10° and Pr = 
1, H decreases along the bottom of the cone and then gradually in­
creases. At x<i = 0.9, the value of if becomes larger than its value at 
X2 = 0. In other words, the buoyancy forces stabilize the boundary 
layer along the bottom of the cone up to X2 = 0.9. Downstream from 
DC 2 = 0.9, the buoyancy forces destabilize the boundary layer. Along 
the top of the cone, the layer is less stable up to a: 2 — 0.67, then the 
buoyancy forces stabilize the boundary layer further downstream. 
Along 0 = 90°, the buoyancy forces always stabilize the boundary 
layer. For Pr = 10, the variations of if are smaller to those of Pr = 1 
for %2 < 0.4; therefore, they are not shown in Fig. 10. 

For a = 30°, the buoyancy forces always stabilize the boundary 
layer along the top of the cone and destabilize it along the bottom. The 
value of H is monotonically decreasing from the bottom of the cone 
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to the top. For a = 10°, the minimum H does not always occur at ei­
ther the top or the bottom of the cone. For Pr = 1, the most stable flow 
is at <j> = 130°; for Pr = 10, the minimum H occurs about <t> = 90°. 

We can conclude from Fig. 11 that a flow transition study without 
considering buoyancy effects can be. quite misleading. Further, the 
circumferential variation of H depends on the cone angle as well as 
the heating rate. This creates further doubts about the reliability of 
predictions of flow transition on a heated axisymmetric body based 
on two-dimensional flow geometry. 
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The Null Dynamical Effect,, and 
Some Frequency Spectra, of 
Resonant Inertial Pressure 
Waves in a Rapidly Rotating, 
Right Circular, Sectored Cylinder 
It is shown that inertial waves in the form of standing asymmetrical pressure waves can 
exist in an incompressible liquid in a rotating sectored cylinder in a rigid body {e.g., a top 
or a missile) executing a small amplitude gyroscopic motion about its center of mass. 
Some of the frequency spectra of these waves are presented along with the result that sec­
toring the cylinder into any number of equal sectors results in eliminating the destabiliz­
ing effect of these waves (i.e., the amplitude growth of the motion of the rigid container) 
when there is a "Stewartsoh" resonance between the frequency of one of the inertial 
modes and the frequency of the nutational component of the motion of the container. Ex­
perimental results are in reasonable agreement with the theory. 

1 Introduction 
There are a number of excellent analyses of the problem of fluid 

motion in a closed, rapidly rotating container undergoing a forced 
motion (see Greenspan [1] and his very extensive bibliography). In 
most of these, however, the problem considered is: Given the forced 
motion of the container, find the motion of the fluid. The extension 
of these problems wherein one, having found the motion of the fluid, 
then attempts to determine the effect of that motion on the motion 
of the container, does not seem to have such an extensive bibliography. 
In fact, when the problem is further specialized to that of determining 
the response of the container to the resonant inertial oscillations 
(Greenspan [1], Kelvin [2], and Bjerkness [3]) generated in the fluid 
by the container motion, this author is aware only of the work by 
Greenhill [4], Hough [5], and Stewartson [6]. Each of the latter con­
siders the oscillating fluid dynamic torque exerted on a rapidly 
spinning, gyrating container, the motion of which induced the oscil­
lations of,the contained incompressive fluid. They show that, if the 
frequency of the inertial oscillations is equal, or nearly so, to the fre­
quency of the nutational component of the gyroscopic motion of the 
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container, the amplitude of motion of the container may grow. None 
of the authors attempts a physical explanation of this particular 
amplitude growth phenomenon; it is now, however, reasonably clear 
that it is due to the fact that an inertial oscillation in the container 
cavity can have associated with it an asymmetrical pressure distri­
bution. When a state of resonance exists between the frequency of the 
nutational component of the gyroscopic motion of the container and 
the frequency of the inertial oscillation, the asymmetrical pressure 
distribution in the liquid has wavelike properties and moves around 
inside the container cavity, "keeping step" with the appropriate phase 
of the nutational motion of the container. This effectively enables any 
destabilizing effect of this pressure distribution to persist, thereby 
effecting an amplitude growth of the motion of the container. Fig. 1 
is an attempt to illustrate this for standing inertial pressure waves in 
a gyrating cylindrical container. This figures shows several instan­
taneous angular positions of a top or missile spinning with angular 
speed £2 and performing the first half of a (greatly exaggerated in 
amplitude) purely nutational motion (the processional component 
of the motion is assumed to be zero since we are ignoring the effect 
of external torques) with frequency £2/8 about its center of mass. 
Shown is the liquid filled cylinder (inside the top or missile) in which 
the pressure distribution, at the walls of the cylinder, is taken to be 
A cos 6 cos (fit/8) sin |(2; + l)irz/2c| + p£22a2/2, and is sketched in 
with arrows at the top and bottom planes of the cylinder. An arrow 
falling outside the cylinder represents a pressure in excess of p£22a2/2, 
and vice versa. We have assumed that the frequency of the relevant 
inertial mode is also £2/8, and that the time interval between successive 
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path traced out 
by the center of the 
top of the cylindri­
cal cavity as the 
container nutates 

^ E ^ 
Fig. 1 Inertial pressure wave distribution (at the top and bottom of the vertical 
wall) for a liquid filled cylinder executing a coning motion about its center of 
mass 

angular positions of the container is the period of the angular speed 
ft. Observe that the pressure distribution at the top of the cylinder 
is equal and opposite to that at the bottom, and that the observed 
tendency of the resultant "couple" to overturn the cylinder persists 
throughout the nutation cycle (except when the pressure becomes 
merely pft2a2/2, where the tips of the arrows fall on the circle) only 
because of resonance, i.e., the assumed equality of the frequency of 
the inertial mode and the nutational frequency of the container. It 
is the persistence, throughout most of the nutation cycle, of this 
overturning effect that physically explains the destabilizing effect of 
the resonant inertial oscillations. 

One method of correcting or preventing this amplitude growth (or 
dynamic instability) depicted in Fig. 1 would seem to be to effect a 
decoupling or a detuning of the oscillations of the liquid and its con­
tainer. The obvious way to do this would be to alter the frequency of 
the resonant inertial mode of the spinning liquid. If the amount of the 
liquid and the cavity size are fixed, an internal alteration of the cavity 
geometry would seem to be an effective way to alter any of the inertial 
mode frequencies. One such alteration would be the compartmenta-
tion of the cavity by radial barriers, separated by an angle fi and ex­
tending the length of the cavity, resulting in a cylindrical cavity having 
a cut pie shaped end view cross section (Fig. 2). Scott [7] showed that 
time-dependent, asymmetrical pressure waves like those in Fig. 1 can 
exist in such a configuration. In addition to markedly expanding the 
table in [7], here it is shown that the dynamical effect of these waves 
on the motion of the container is markedly different from the situation 
for the cavity with no barriers, i.e., the Stewartson problem. 

2 Analysis 
The Fluid Dynamical Equations and the Boundary Conditions. 

The intent of the analysis is to make a comparison with the results 
of the problem studied by Stewartson [6]. Hence, we follow, somewhat 
closely, his analysis. So, assume that the container of Fig. 2, and the 
XYZ-axes shown there, are initially rotating uniformly about the 
Z^axis with angular speed Q. Let the liquid in the container have the 
same angular velocity. Then, the absolute velocity of the liquid at 
some point R is 

Fig. 2 A barriered cavity, with angle /? between the barriers 

Now, imagine the container is perturbed so that it has angular velocity 
components wx, u y, and 0 about the X YZ- axes. Then, that point in 
the liquid formerly having the absolute velocity (1) now has the ab­
solute velocity 

q + v = q + f l X R (2) 

v = n XR (1) 

where q, the fluid velocity perturbation generated by the angular 
velocity perturbation (ox, uiy, 0), is the velocity with respect to the 
rotating XYZ-axes. We have, then, for the Euler equation in the ro­
tating XYZ frame: 

(d/dt)(q + ftXR) + fiX(q + fiXR) 

+ q • V(q + ft X R) = -VP (3) 

If we take ft as constant and use the fact that q-V(fi X R) = ft X q and 
ft X (0 X R) = — VQ2r2/2, where r is the cylindrical radial coordinate, 
then (3) can be written: 

dq/dt + 2ft X q + q • Vq = - V ( P - pQ2r2/2)/p = - V p ' (4) 

In this equation, we have neglected the gravitational body force be­
cause either the missile is assumed to be freely falling, or else, for the 
top, we have assumed ft2a2 » gc, where c is the half height of the 
cylinder. 

Consistent with our assumption that q is a perturbation, we neglect 
the q-Vq term in (4), giving us a linear equation. Following Greenspan 
[1], we can eliminate q from this linear equation, getting: 
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d2V2p'/di2 + (2Q)2d2p'/dz2 = 0, (5) TV 

a "wavy" equation for the pressure. 
To arrive at the eigenfrequencies and boundary conditions for this 

equation, we let p ' 
(5) is now 

= peiht, q = Qeixt, cox' = «xe'XJ, and coy' = coyei: 

and (4) becomes 

V2p + (2fi/;A)2d2p/dz2 = 0 

j'XQ + 2fi,XQ = - V p 

(6) 

(7) 

Equations (6) and (7) are, in our notation, Greenspan's [1] equations 
2.7.3 and 2.7.1. Solving equation (7) for Q, one gets 

Q = |(2ft/iA)k XVp-Vp- (2QAA)k(2fiA'A)k 

• Vpj/[iAjl + (2fiAA)2|] (8) 

which, in our notation, is Greenspan's 2.7.2. 
The boundary conditions for (6) now follow from the fact that Q in 

(8) is the velocity amplitude of the liquid with respect to the rotating 
XYZ- axes of Fig. 3. Hence, if R/, is a position vector (of some point 
on the boundary of the container) in the rotating XYZ-frame, the, 
since (cox' + coyj) X Rf, would then be the velocity of that point with 
respect to these same axes, it follows that the inviscid boundary 
condition is 

Q • n = (coxl + <oyJ) X Rb • (9) 

n is the unit outward normal to the container surface. Hence, from (8) 
and (9), the boundary conditions for equation (6) are 

[dp/dz]z=±c = —i\r(o>x sin 8 — coy cos 8) (10) 

[dp/dr + (2Q/i\r)bp/d8]r-a 

= - iAz[ l + (2fiAX)2](coycos0-coxsin0) ( n ) 

[(2QA'A)dp/dr - dp/rd8]o=oAWP,~ 

= - tXz[ l + (2QAX)2](cox cos 6 +coy sin 0) (12) 

where /? is the angle between successive barriers. 
We can markedly simplify this set of boundary conditions by 

making (11) and (12) homogeneous. Hence, l e tp = $ + i\zr(wx sin 
8 - toy cos 0) - 2zrQ(a>x cos 0 + coy sin 8). This yields, for (10)-(12), 
and (6): 

[d# /dz ] 2 = i -2i\r(o>x sin 8 — coy cos 8) 

+ 2flr(cox cos 6 + coy sin 8) 

[d$/dr + (2U/iXr)d<P/dd]r=a = 

[(2£2A'A)d*/dr - d*/rd0]o=o,ft2ft3ft 

V 2 * + (2QA'X)2d2$/dz2 = 0 

. = 0 

(13) 

(14) 

(15) 

(16) 

Equation.(16) and boundary conditions (13)-(15) now appear to be 
a rather straightforward Sturm-Liouville-type boundary-value 
problem, amenable to the usual separation of variable process. We 
now show, however, that such is not the case. 

The Nonexistence of Separation of Variable Solutions of the 
Governing Equations. We now demonstrate that equation (6) has 
no separation of variables solutions that define an inertial wave and 
which also satisfy boundary conditions (14) and (15). We show this 
by setting $ = f{r)g(8)h(z). Then, from (14) we have 

f'(a)g(8) - (2ili/\a)f(a)g'(8) = 0 

hence 

g(S) ~ Ce-i\al)f'(.a)/mfi,a) 

From (15), at d = (3, we have 

(2ai/\)g(0)f'(r)+f(r)g'(P)/r = O 

Hence, using (18), we have 

f'(r) - a(X/2Q)2f'{a)f(r)/rf(a) = 0 

(17) 

(18) 

(19) 

(20) 

i n e r t i a l axis • 

Fig. 3 The rotating coordinate system 

At r = a, this yields 

f'(a) - a(\/2Q)2f'(a)f{a)/af(a) = 0 (21) 

Hence, A = 2fl. However, Greenspan [1] shows that, for containers 
of finite volume, inertial wave frequencies are upper bounded by 20. 
Hence, inertial wave solutions of the form f(r)g(8)h(z) don't exist, 
i.e., such a representation is incompatible with the foregoing boundary 
conditions. The physical reason for this can be extracted from an 
observation made by Taylor [8]: the structure of any wave in a rotating 
fluid is a function of whether the wave is prograde'or retrograde 
(Coriolis coupling of the radial and circumferential particle velocity 
components effects this circumstance). Hence, this different structure 
(of a prograde and a retrograde wave) precludes their addition in an 
attempt to get zero circumferential particle velocity all along a radial 
barrier, as boundary condition (15) stipulates; but this is exactly what 
one does in attempting to satisfy this boundary condition. Proudman 
[9] very painfully discovered this in his long and unsuccessful effort 
to solve the similar boundary-value problem of determining the tidal 
wave frequencies in a rotating, semicircular sea. It is interesting to 
note Proudman's observation that for a nonrotating sea, the problem 
is almost trivial. 

Attempts to obviate the aforementioned mathematical difficulty 
associated with the physical processes at the radial barriers in this 
three-dimensional problem via the use of integral transform tech­
niques (Laplace, Hankel, Fourier, and Mellin), conformal mapping, 
stream function expansion techniques, Greens functions, similarity 
solutions, Galerkin methods, or Wiener-Hopf techniques all fail for 
one or more reasons to generate functions that satisfy all of the 
boundary conditions. Even the Rayleigh-Bitz technique is of no avail 
for the author can't even conjure up a function that satisfies all of the 
boundary conditions. Hence, the author was forced to "rescue from 
the archives" the Null function method of Goldsbrough [10]. This is 
a technique Goldsbrough devised to solve a similar boundary-value 
problem (with similar difficulties with the boundary conditions) for 
waves in a sea (on the rotating earth) bounded by meridians of lon­
gitude and parallels of latitude. Basically, Goldsbrough's Null function 
method is somewhat akin to that of Galerkin, for it constructs a so­
lution of the governing partial differential equation. However, 
Goldsbrough's approach uses the orthogonal functions generated by 
solving another problem, namely that of determining the tidal wave 
frequencies in a sea on the rotating earth bounded by parallels of la-
titide only. His final solution is in terms of a "Fourier series" of these 
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orthogonal functions, and the heart of the method is the procedure 
for effecting the requisite form of the nonseparation of variable 
Fourier representation. For all of the gory details, one can consult the 
original work; briefly, however, the following is the gist of the Golds-
brough Null function technique as applied to this problem. Consider 
the expression 

* = Ja(ry/a)(A cos ad + B sin aB) cosh (kz/a)J[\ - (2fi/X)2] 

which is a solution for the Stewartson problem, and where a, y, and 
k are separation constants, and where A and B are constants. We 
extract from this expression cos ad and sin ad and expand them in 
Fourier series in the interval 0 < d < /3. We then subtract these ex­
pressions from the functions they represent, and then multiply each 
term by the appropriate expansion of unity (i.e., 1 = 2jAjJa(ryj/a)) 
in a Fourier-Bessel series based on the orthogonality of the J„'s. One 
then appends an appropriate expression for the z-dependence. Fi­
nally, noting the effect of each operator in equation (16) on each 
function that appears in the foregoing construction (which is the Null 
function since it is identically zero in 0 < 0 < /3), one modifies this 
function so that it is no longer identically zero (and hence is no longer 
the Null function) but does become the Null function when substi­
tuted into (16). Hence, this modified function is the solution, and the 
process of generating it generates an infinity of constants that can be 
adjusted to make this function satisfy the difficult boundary condition 
(15). 

This author will be the first to agree that this is a "brute force" 
technique, and that there ought to be a better method of attack. The 
author was unable to find one. Even the very elegant modal analysis 
of Greenspan [1] becomes cumbersome when one is finally forced to 
write out, explicitly, the functional form of the modes. And if these 
forms are separable, one is ultimately forced to the same tedious and 
involved algebra as in the Goldsbrough approach. The author presents 
the Goldsbrough approach for the additional reason that it seems to 
have been overlooked in the literature, and because it can effect the 
solution of difficult boundary-value problems in other areas. 

Before carrying out the analysis, we find it appropriate to remark 
that there is some independent evidence for the validity of this 
technique. For example, the problem of determining the tidal wave 
frequencies of water in a rotating, square basin has boundary condi­
tion difficulties similar to this problem. Taylor [8], leaning heavily 
on its two-dimensionality, solved the problem. Jeffreys [11], from his 
analysis of tidal wave frequencies in an elliptical basin, argues that 
several of Taylor's conclusions are incorrect. Goldsbrough [12], using 
his Null function technique, confirms Heffrey's criticisms. Grace [13], 
Corkan and Doodson [14], and Rao [15], all working with stream 
function expansions, confirm Goldsbrough. One great advantage of 
the Goldsbrough approach is that it is not limited to two dimensions 
as is the stream function expansion approach. 

The Goldsbrough Solution and the Frequency Equation. We 
follow the aforementioned recipe and begin construction of G, the 
Goldsbrough Null function for the region 0 < 0 < (i, by expanding the 
trigonometric functions that appear in the Stewartson problem in a 
Fourier series in that interval and then subtracting the series from 
the function, thus 

G = cos (2m7T0//?) - (4Ar) £ (2k - 1) sin \(2k - I)ir0/j8|/[(2fe 
*=i 

- I)2 - (2m)2] + sin (2rrnr6/P) - [-(4/TT)] £ 2m cos \(2k 

- l)7T0//3j/[(2fc - l ) 2 - (2m)2] 4- cos |(2m - 1)TT0/;8) 

- (4/TT) £ 2k sin (2kir8/P)/[(2k)2 - (2m - l)2] 

+ sin |(2m - l)ir0//?) - [-(4/TT)] £ (2m - 1) 

X cos (2kwd/^)/[(2k)2 - (2m - l)2] (22) 

This expression, in which m is an integer, is identically zero in the 

interval 0 < 0 < /? because the 2 terms are the Fourier expansions of 
the non-2 terms in that interval. The angle between the barriers, £j, 
is such that ra/3 = 27r, where n is the number of barriers. 

Following Goldsbrough, we now judiciously modify expression (22) 
so that it is nonzero, involves the orthogonal Bessel functions ap­
pearing in the Stewartson solution, and is a solution of equation (16). 
To effect this, it is convenient to take advantage of the fact that 
boundary condition (14) is independent of whether or not there are 
barriers. So, in terms of 

J„(yr/a)[A cos ad + B sin ad\ cosh (kz/a)y/[l - (2ft/X)2], 

a representative solution for the Stewartson nonbarriered cavity, 
boundary condition (14) is 

\(d/dr)Ja(yr/a)[A cos a6 + B sin a6] 

+ (2Q/i\r)Ja(ry/a)[-A sin ad + B cos ad]}r= 0 (14a) 

Equating to zero the coefficients of cos ad and sin ad, and then in­
sisting that A and B be nonzero, one gets 

| [dJ„ ( r 7 / a ) /d r ] 2 - [(2fi«/rX)J„(r7/o)]2l r = a = 0 (23) 

where a = 2mir/(3, (2m - l)/ir//?, 2 W / 3 , or (2k - l)Ar//3, Ja(yr/a) 
is the first kind Bessel function of order a, and 7 is a separation 
constant. We now use the fact that the orthogonality of the Bessel 
functions implied by this relationship allows one to write 

1 = £ A„Ja(ry„°M (24) 

where y„" is the z>th zero of equation (23), and where 

A„"= C" rja(ry„<*/a)dr I C" rJ„(ryv
a/a)dr (25) 

Hence, we write (22) as 

G = 1 . cos (2mir0/f3) - 1 • (4/TT) £ (2k - 1) sin \(2k 

- l)ir8/P)/[(2k - l ) 2 - (2m)2] + 1 • sin (2m7r0//3) - 1 • (-4/TT) 

X £ 2m cos {(2k - l)7T0//3)/[(2fc - l ) 2 - (2m)2] 

+ 1 • cos j(2m - 1)7T0 1 • (4/TT) £ 2k sin (2kirO/P)/[(2k)2 

k=i 

- (2m - l)2] + 1 • sin |(2m - l)ir0//8) - 1 • ( -4 /TT) £ (2m - 1) 

X cos (2kir8/p)/[(2k)2 - (2m - l)2] (22a) 

and then replace unity, i.e., 1, in this expression by the appropriate 
form of equation (24). We then use the fact that 

[V2 - (2fi/X)2d2/d22] cos a8Ja(ryv"/a) cosh [ez/a^{l - (2fi/X)2] 

= |e2/a2 - (7„"/a)2! cos a8Ja(ry„«/a) 

X cosh [ez/aVIl ~ (2H/X)2|] (26) 

where the term being operated on by |V2 — (2S2/X)2d2/dz2| is, formally, 
similar to a separable solution of the nonbarriered problem, but where 
e, which is not equal to y„a, as it is for the Stewartson problem, is an 
yet undetermined separation constant for the separated ordinary 
differential equations in z and r. We can thus write the following 
modification of equation (22a) (which we will label $ rather than G 
because it will then no longer be identically zero in 0 < 0 < /?, i.e., it 
will no longer be the Null function): 

$ = [A cosh (tz/ay/) + B sinh (ez/ai /)! 

»=1 m=0 
AMJM(AM cos M0 + BM sin M0)/(e, 7, M) 

- ( 4 / T T ) £ Ar
k'Jk'[AM(k'ir/P)smk'0 

k=i 
(27) 
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• BM2m cos k'8]/(e, 7, k')(k'^h2 - 4m2) 

+ Z Z 
»=1 m = l 

A m ' J m ' [Am' cos m'd + Bm> sin m'6]/(e, 7, mA 

- (4/TT) Z AKJK[A„ •2k sin K6 - Bm-(m'P/ir) 

X cos KB]/(e, 7, K)(4/e2 - m'2/32/7r2) 
(27) 

(Corat.) 

In this equation, for the sake of brevity, we have set -^ [1 — (20/X)2] 
= y/, M'= 2mir/P, ie/a)2 - (7-"/a)2 = (e, 7, a) , fe' = (2fe - 1)TT/|8, m' = 
(2m - l W f t K" = 2fe7r//3, and Ja(ry„«/a) = J„. 

Expression (27) is a solution of equation (6); for, not only when 
substituted into (6) does it yield the Null function.G (and hence zero), 
but also (a) by construction it satisfies boundary condition (14), (6) 
there are sufficient constants to assure satisfaction of the other two 
boundary conditions, and (c) all of the functions, of which the Aa's 
and Ba's are coefficients, are convergent throughout.the sector and 
are finite on r = a, z = ±c, and 6 = 0,p\ On the other hand, as Green­
span [1] makes clear, there may be a practical problem with the ra­
pidity of convergence of the series expression for the solution owing 
to the inhomogeneous boundary condition (13) and the fact that the 
mere presence of the inertial waves implies discontinuities in the flow 
field. We shall return to this matter in Section 3. Finally, with respect 
to expression (27), note that p ' , the solution of equation (5), will 
consist of terms of the form hi(r)h2(6)h3(z)e,Xt, a form indicating that 
the pressure waves are stationary rather than progressive. It is ob­
vious, however, that the solution is not the simple separation of 
variable form T(t)U(r)V(6)W(z); rather it is an infinite sum of sep­
arable solutions, none of which alone satisfies the boundary condi­
tions. What we have, in essence, is a "Fourier series" of separable 
solutions. 

The substitution of expression (27) into boundary condition (13) 
gives immediately A = 0, a result allowing one to absorb B into the 
Aa's and Ba's. Then expanding the cosines and sines on the right-hand 
side of equation (13) into Fourier series in the interval 0 to /3 and ex­
panding r in a Bessel function series 

r = Z Cv«Ja[ry«la), 
i.=i 

C"" = S" ri<J"(n»ala)drl f ° rJJ{ry„<>/a)dr 

where 

and then equating the series on both sides of the equation term by 
term, one can determine the A„'s and the Ba's. The denominator of 
each of these constants contains the term cosh \tcla\J [1 — 4/(X/fi)2]|, 
where E is the as yet undetermined separation constant. Since these 
A„'s and B„'s determine the amplitude of the pressure fluctuations, 
it follows that these amplitudes become infinite when c/ay/[l — 4/ 
(X/fi)2| = (2/ + 1)IR'/2,.; ' = 0,1, 2 This expression would deter­
mine the resonant frequency A in terms of the geometry of the cavity 
if we knew e, the aforementioned separation constant. As we shall 
show, however, the frequency equation we are about to derive will also 
involve e and X; hence, we can use this relation to eliminate the un­
known separation constant e, leaving the frequency equation in terms 
of X alone. 

We now consider boundary condition (15). The frequency equation, 
which will result from this relation because it will give us finally an 
equation involving only X as the unknown, can be gotten most ex­
peditiously if we use the two identities and the expansion involving 
Bessel functions that follow: 

(dldr)Ja(n,ala) = iyr
al2a)[Ja-iin,"la) - J„+ i ( /7„«/a)] 

(28) 

Ja(n-aM = (r/2a)[Ja+1(n„a/a) + J a-iiry l" I a)} (29) 

Ja(ry,"/a) = Z (2p + a)Tip + a ) 2 F1(-p, a + p, a + 1, 
p = 0 

E Z HP}ClJa+2Pirla) 
p = 0 

[7»"]Va+2P(r /a) / |p!r(a + l ) | 

(30) 

Equation (30) is the Neuman expansion (Erdelyi [16]) ofJa(ry„a/a), 
and 2F\i ) is the hypergeometric function. 

Upon using (27)-(30) in equation (15), one gets n identical sets of 
two equations, one for 0 = /3, say, and one for 9 = 2/3. Hence, one need 
consider only any two. Following Goldsbrough, one finds that adding 
and subtracting the two equations give two equations much simpler 
to work with. And in our case, since the goal is the frequency equation 
which will result from setting a certain determinate equal to zero, we 
can omit consideration of the equation resulting from addition be­
cause the sum has as a multiplier the term 

A 0 : s: [rJoiry»°Mdr/E = -ialyv
a)2Ja'iy°)IE, 

where 

E- f ° rJ0Hry,°Mdr. 
Jo 

From boundary condition (23), the numerator of the right-hand side 
of this equation is zero. Hence, adding the two equations ultimately 
leads to a determinant that is identically zero and thus yields no in­
formation. So, considering only the result from subtracting the two 
equations, one gets 

Z Z Z f(8QA<nr) Z A/'Hp,h.2mBM[Jk-+P^ . 
K=1 m = l p = 0 I k = l 

- JWp+ ' ] /[(£'/3/ir)2 - (2m)2](€, y, k') + (2S2AV) 

XA,,m'Hp,m.Am,[Jm'+p_' - Jm<+p+<]/(£, 7, m') + (4/TT) Z Av
k\2k 

- l)k'AMHp,k'[Jk,+p+. + Jh,+P_.]lik' + 2p)[ik'PM2 

- (2m)2](f, 7, k') + A^'m'BmlHp,m\Jm.+p+-

+ Jm<+p_<]/(m' + 2p)(e, 7 ,m ' ) = 0 , (31) 

where now J = J(r/a), pJ = 2p - 1, p+ = 2p + 1. 
Interpreting both "sides" of equation (31) to be expansions in Bessel 

functions of odd order, we can then set the two "series" equal term 
by term. In other words, we successively equate to zero the coefficients 

0fJe-l, Je+l, Je+3, • • • J%e-1, ^ 3 e + l , Jie+3, • • • Jhe-\, J&e+l, Jse+S, 

. . . J-]e-i, Jie+i, • • • , etc., where e = ir//3. This process gives us an in­
finite set of equations involving the A„'s and the B„'s. The condition 
that these constants be nonvanishing is that the determinant formed 
from their coefficients must vanish. Hence 

De-XlDe-l.iDe-ijDn-i^e-lf 

\D3e-l.2D3 303 4£>3 " 3 c - l , l i ' 3 e - l , 2 i - ' 3 c - l , a L ' 3 e - l , 4 i - ' 3 e - l , B 
D 3 e + l , 1 ^ 3 e + l , 2 £ ' 3 e + 1 , 3 ^ 3 3 6 + 1 , 4 0 3 6 + 1 ^ 

Dbe-l,lDse-l,2D be-l,sD5e-l,4^Cm~l,5 

Dbe+l.lDfe+i^Dcm+i^Dse+l^Dcie+i^ 

•• 0 ( 3 2 ) 

where, for example, D c_x t = (2fi/iX) Z^rA^'Wo^/ie, 7, TT//?), 
Pse-i.i = 0, Dae+iA = (4/TT) 2„'MiW<>(4QAX)[H(VM3]/5(e, 7, 3TT//3), 
etc. 

Equation (32) contains the unknowns e and X. However, from the 
equation ec/ay/\l - (2fl/X)2| = (2/ + l)7ri/2, we can solve for e in terms 
of X. Making this substitution in (32), we have an equation involving 
only the resonant frequency X. Hence, it is the frequency equation. 
However, with X, the frequency, as the unknown, the equation is 
formidable (the A„"'s are functions of X, for instance). Hence, we 
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T a b l e 1 D imens ion le s s inert ia l w a v e f requenc ies versus var ious cavi ty f ineness rat ios for severa l d i f ferent ang le s 
b e t w e e n the barr i er s 

A/A 

-1.00 
-0.96 
-0.92 
-0.88 
-0.84 
-0.80 
-0.76 
-0.72 
-0.68 
-0.64 
-0.60 

A/A + l 

0.00 
0.04 
0.08 
0.12 
0.16 
0.20 
0.24 
0.28 
0.32 
0.36 
0.40 

c/[a(2j + l ) ] s 

• 0.995 
1.042 
1.091 
1.144 
1.201 
1.262 
1.382 
1.399 
1.478 
1.565 
1.662 

C1-/4' 

0.0420 
0.0443 
0.0467 
0.0493 
0.0522 
0.0552 
0:0586 
0.0623 
0.0663 
0.0709 
0.0749 

Cjr /a ' 

0.0973 
0.1020 
0.1069 
0.1121 
0.1175 
0.1231 
0.1291 
0.1353 
0.1418 
0.1485 
0.1519 

Clir/& 

0.1746 
0.1845 
0.1948 
0.2058 
0.2179 
0.2311 
0.2453 
0.2612 
0.2789 
0.2984 
0.3095 

Cw/ 

0.3081 
0.3263 
0.3439 
0.3624 
0.3829 
0.4051 
0.4293 
0.4559 
0.4854 
0.5184 
0.5513 

cv 
0.3621 
0.3806 
0.4003 
0.4213 
0.4439 
0.4682 
0.4945 
0.5235 
0.5551 
0.5902 
0.6261 

Clir' 

0.3674 
0.3890 
0.4124 
0.4377 
0.4654 
0.4958 
0.5295 
0.5669 
0.6088 
0.6561 
0.7093 

follow both Goldsbrough [10] and Stewartson [6] and we fix A at some 
reasonable value and we then let the frequency equation determine 
c/a(2j +1) , the cavity fineness ratio, which one can extract much more 
easily. The determinant was programmed on the HP9830 and was 
solved by considering successively a 2 X 2 determinant, then a 3 X 3, 
then a 4 X 4, etc., until there was no change in the fourth significant 
figure. In this manner we constructed Table 1 for values of /3 = 7r/4, 
7r/3 27r/5,7r/2,7r, 2TT. The slowness of convergence alluded to earlier 
did not seem to manifest itself here, for in no case was more than a 4 
X 4 determinant needed, nor more than nine (9) terms needed in any 
summation. This agrees with some comments by Goldsbrough [10]. 
Perhaps the situation is saved by our interest being the eigenvalues 
and not an actual evaluation of the velocity or the pressure. In addi­
tion, since it is nonhomogeneity in the boundary conditions that in­
duces the slowness of convergence, it is relevant to note that the 
transformation that follows equation (12) made two of the boundary 
conditions homogeneous, leaving the inhomogeneity in the boundary 
condition that was easy to satisfy. 

In Table 1, A/A is the dimensionless frequency one would measure 
in the rotating frame, and A/A + 1 is the dimensionless frequency one 
would measure in an inertial frame. [c/a(2j + l)]s is the Stewartson 
[6] fineness ratio value for a nonbarriered cavity. The negative sign 
for A/A means that one in the rotating frame is rotating faster than 
the stationary wave appears to precess progradely. Finally, in Table 
1, Cp' = c/[o(2; + 1)]„, e.g., C,/4 ' = c/[a(2j + 1)] for /3 = TT/4. 

The salient feature about barriered cavities that Table 1 illustrates 
is that sectoring a cylinder increases the inertial mode frequencies as 
measured in an inertial frame. Relative to the experiments about to 
be described, a pertinent way of stating this is that, given a cavity of 
fixed radius but variable height, increasing the number of barriers 
necessitates making the cavity shorter if one wishes to maintain the 
same inertial mode frequency, i.e., sectoring a cylinder necessitates 
making it more dumpy if one doesn't wish to change the inertial mode 
frequency. 

3 T h e N u l l D y n a m i c a l E f f e c t of the R e s o n a n t 
Iner t ia l Osc i l la t ions: E x p e r i m e n t a l Ver i f i ca t ion 

The determination of the torque on the container due to the 
asymmetrical pressure fluctuations associated with the inertial os­
cillations in the sectors involves products of integrals over r, 6, and 
2. The 6 integral has the form 

2?r/0 f nfi 

Z 8(B)d9, 

where g(0), the integrand, can be cos 6 cos (2mird/fi), or cos 8 sin 
(2mir9/l3), or sin 6 cos [(2m - 1)TT0//3], etc. Recalling the restriction 
that 2-ir/P must be an integer, one can show easily that these integrals 
sum to zero! This means, of course, that there is no net torque on the 
cavity due to the oscillations; and since this is the torque that produces 
the unstable container motion when the cavity is not sectored 
(Stewartson [6]), one concludes that due to this cancellation effect, 
the insertion of radial barriers in a cylindrical container can ameliorate 
the destabilizing effect of the inertial oscillations no matter what is 
the state of resonance. The physical reason for this is that the pressure 

nMPLITUjE OF ' 
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DEGREES , 

10 l b 20 25 30 3b 

TIME IN SECONDS 

Fig. 4 Amplitude of gyroscopic motion (In degrees) versus time (in seconds) 
for a 100 percent liquid-filled, nonbarriered, resonant cavity; 16-/3(2/ + 1)]s 

= 1.05, A = 4000 rpm, T0 = 0.048 
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Fig. 5 Amplitude of gyroscopic motion (in degrees) versus time (in seconds) 
for a 100 percent liquid-filled, 90° sectored cylinder; [c/a(2; + 1)]go° = 1.05, 
A = 4000 rpm, T0 = 0.40 
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Fig. 6 Amplitude of gyroscopic motion (in degrees) versus time (in seconds) 
for an empty cylinder, A = 4000 rpm, nutational frequency = 0.48 

distribution due to the inertial oscillations in any given sector is a 
function of the geometry of that particular sector and not its angular 
orientation within the cavity, i.e., in so far as the inertial oscillations 
in a sector are concerned, the liquid does not know where it is. As 
experimental proof of the foregoing conclusion, we show in Fig. 4 the 
amplitude growth rate for a gyroscope containing a 100 percent 
water-filled cylinder having a c/a(2; + 1) value, i.e., a fineness ratio, 
of 1.05. (for details of the apparatus and the experiments, see Scott 
[17]). From Stewartson's tables [6] we find, for that fineness ratio, a 
dimensionless inertial wave frequency, r 0 (=1 + A/A), of value 0.048. 
Adjusting the gyroscope to have that value for its nutational fre­
quency, we have resonance and we observe the amplitude of the 
gyroscopic motion to grow as in Fig. 4. Inserting 90° barriers in the 
same cavity, thereby altering the inertial wave frequency to a value 
numerically far from any value in Stewartson's tables (and hence 
removing the system from resonance) and additionally (as shown 
previously) simultaneously reducing to zero the net torque due to the 
inertial oscillations, we observe in Fig. 5 the amplitude of motion of 
the gyroscope to decay (as it should according to the theory) with 
nearly the same decay rate as when empty (Fig. 6). 
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AMPLITUDE OF 
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Fig. 7 Amplitude of gyroscopic motion (in degrees) versus time (in seconds) 
for a 100 percent liquid-filled resonant sectored cavity, with four 90° sectors; 
Q = 4000 rpm, [ c / a ( 2 / + 1)]90° = 0.3298, r0 = 0.048 
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Fig. 8 Amplitude of gyroscopic motion (in degrees) versus time (in seconds) 
for a liquid-filled resonant cavity with only one 90° sector; O = 4000 rpm, 
[c /a(2/ '+ 1)]90° = 0.3298, T 0 = 0.048 

We next consider a resonant sectored cavity. According to Table 
1, a value of c/a(2j + 1) of 0.3298 for a cavity with /3 = 90° gives a T 0 

value (i.e., a X/fi + 1 value) for the liquid of 0.048. As just mentioned, 
adjusting the nutational motion of the gyroscope to have a nutational 
frequency of that value, we have resonance. However, the zero net 
torque (as the theory indicates) should result in a gyroscope damping 
at nearly the same rate as in Fig. 5 (where there was no resonance). 
That Fig. 7 seems experimentally to confirm this conclusion is com­
forting, even though the author is well aware that the figure may 
simply mean that the resonant frequency has been miscalculated. 

4 Concluding Remarks 
An objection to the experimental results can be raised by pointing 

out that, unlike the case for the unsectored cylinder where the reso­
nance can be inferred from the visual observations of the amplitude 
growth (Scott [17]), no such observations can be made here because 
of the cancelling effect of the several sectors. Ideally, then, one should 
use the pressure measurement technique of Aldridge and Toomre [18] 
to determine the inertial modes. However, not only did we not have 
immediate access to such an apparatus, but also since the gyroscope 
had been very effective even in determining the small frequency shifts 
due to the effect of viscosity on the inertial modes (Karpov, [19]), we 
chose to use it to consider the effect of a single sector. So, consider 
again the previous case, but with a single 90° sector rather than four, 
and with the remainder of the cavity being filled with lucite having 
the same density as the liquid (a one centistoke viscosity silicone oil). 
Again adjusting the gyroscope to have a nutation frequency of 0.048, 
we have resonance. However, in the final expression for the torque 
on a single sector, terms like pir,a2{2c), the mass of the liquid, appear 
as multiplicative factors, thereby governing the magnitude of the 
torque. If this mass is too small, then even the amplification at exact 
resonance may not be large enough to overcome the natural amplitude 
decay rate of the gyroscope. Accordingly, it appears that the mass of 
the liquid in this single sector, one fourth that of the preceding ex­
periment, was too small to effect an amplitude growth of the gyroscope 
(see Fig. 8). The use of a larger cavity or a heavier liquid was then in 
order. Unfortunately, we had only one gyroscope, which did not allow 
the use of a larger cylinder (Scott [17]). Also, the use of mercury, which 
would have been the ideal liquid to solve the small mass problem, was 
disallowed by safety personnel at the Ballistic Research Laborato­
ries. 

In spite of the small mass, we should, nevertheless, expect a decrease 
in the natural damping rate of the gyroscope. Figs. 8 and 9 give some 
evidence of this, evidence that is admittedly perhaps not very con-

L0GARITHM OF 

NORMALIZED 

GYROSCOPIC 

AMPLITUDE 

25 50 

TIME IN SECONDS 

Fig. 9 Logarithm of the normalized gyroscopic amplitudes in Figs. 7 and 8 
versus time in seconds 

vincing because the difference in slopes in Fig. 9 is not too far removed 
from noise level. We remark, however, that the reproducibility of the 
experiments does tend to remove some of the inconclusiveness. In 
addition, Karpov [19] showed that dissipation effects that may cloud 
the issue in these experiments are almost negligible for the low vis­
cosity liquids used (water and silicone oil). Finally, in response to any 
concern that imperfect density matching of the lucite and liquid might 
affect the decay rate, we remark the Murphy and Nicolaides [20] 
showed that such an asymmetry would change the gyroscopic motion 
to a tricyclic one. We observed no evidence of such an effect in these 
experiments. 
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Stokes Flow in a Driven Sector by 
Two Different Methods 
A biorthogonal series expansion and a numerical finite-difference approximation are ap­
plied to the problem of steady Stokes flow in a driven sector of 10° total angle, providing 
mutual support of the theoretical techniques. For this problem the method of biorthogo­
nal series is faster, cheaper, and more accurate. 

Introduction 
In this paper we model the Stokes flow in a long driven sector, using 

finite differences and a biorthogonal series expansion to compare the 
results. The problem is chosen from a modified Couette flow including 
a sector cavity [1]. Our aim is to examine closely the results of the 
approximate finite difference solution and to advertise the biortho­
gonal series for solving biharmonic boundary-value problems in do­
mains where separation of variables is possible (a very common 
problem in fluid mechanics and elasticity). The analytic method is 
elucidated in [2, 3]. New aspects concerning the computation are 
developed here. 

Mathematical Formulation 
The slow motion of a Newtonian liquid, neglecting gravity (Stokes 

flow) for two-dimensional flow is described by 

* = 0, 
n= 1 -sm^ ir <p 

V 4 ^ = 0 (1) 

where *f? is t he s t ream function and V2 is the Laplacian operator. 
Using polar coordinates (r, (p, z), 

„ 1 d / d \ I d 2 

V2 = r — + — — -
r dr \ drj r2 dip2 

and the velocity v = rot (^ez). In our model there shall be viscous 
nonslip at the solid walls <p = ±/3 and r = ro- At the outer radius r = 
n = 1 we prescribe the vorticity $2 = 1 — sin3 (-jrcp/2/3), where ft = 
—V2^, and no flow through the surface shall be possible (Pig. 1). For 
our comparison we chose ro = 0.05 and 2/3 = 10°. 
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* = * n = 0 

* = * n
= 0 

Fig. 1 The biharmonic sector problem 

The Series Solution 
The theory of biorthogonal series for biharmonic functions as de­

scribed in [2, 3] allows us to write the solution of (1) in the form 
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Table 1 The first five eigenvalues (note tha t X_B = \ n 
where overbar denotes complex conjugate) 

n X„ 
1 25.14114414 + 12.86408537J 
2 62.38088865 + 17.74998684J 
3 98.82482881 + 20.31681729J 
4 135.06392018 + 22.08005326J 
5 171.21595479 + 23.42596613J 

* = L \Cnr
x" + Dnr-^+* 

4>iM (<p) 
(2) 

X„(Xn - 2) 

where <£i<n> (<p) = cos (X„ - 2)0 cos Xn<p - cos X„0 cos (X„ - 2)<p, the 
X„ are roots of sin [20(X„ - 1)] + (X„ - 1) sin 20 = 0 (see Table 1 j and 
Co = Do = 0. The boundary conditions at <p = ±0 are already satisfied, 
so that the constants C„ and D„ will have to match the conditions at 
the inner and outer radius. 

We introduce the biorthogonal sequence <ftn\ ^/<-n\ where 

0(n> = 01(n)> 02<n)j With 02
(n> = 

corresponding adjoint \f,'n' with 

0 i ( " » » / X n ( X „ - 2 ) , 

* • 

(n) 
(X„ - 2) 

cos (X„ — 2)0 cos Xntp — • 
Xn 

X „ - 2 

• cos X„0 cos (Xn - 2)ip; fcM = <t>iM 

such that 

= C ^<«>rA0<m> d<p = 0 for (X„ - l ) 2 * (Xm - l ) 2 

J-a 
= Fn for (X„ - l ) 2 = (Xm - l ) 2 (3) 

and the biorthogonality matrix 

0 - 1 \ 
A = 

The "Fourier" coefficients C„ and D„ are determined by the bior­
thogonality condition 

* « r A 
r 

- U W T i 

\ 

and 

^(n)TA >0. 

(4a) 

(46) 

Further details of the theory can be found in [2]. We solve the linear 
system (4) by truncation, i.e., replace the "°°" sign in (2) by a finite 
number. At this point it is interesting to look at equations (4) in de­
tail, 

(Cn + Dn)Fn+ £ 
• & • ) 

<0i<"Wm>> 

It ' 9 

1 — sin' -
UMTA\ 

20! 

0 
(5a) 

where 

Fn = 4 
I cos2 Xn0 0 cos2 (X„ - 2)0 

Xn (Xn ~ 2) 

1 

X„(X„ - 2) 
sin 20 cos X„0 cos (X„ — 2)0 

(Extrema) -|.o< 

* = - 0 . 2 7 5 x 1 0 - 3 

0.8^ 

* = 0 . 6x 1 0 - 6 

0.7W 
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r-r 
1 , 'r-

it1' 

1 

i j lnner vortices f rom 
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Fig. 2 Sector solutions (streamlines); extrema at vortex centers, X; (a) 
biorthogonal series solution; (b) approximate solution 

Table 2 Coefficients in the biorthogonal series (scien­
tific notation: the second number is the power of ten) 

Real 

Ci = ( 0.208369 + 01, 
C2 = (-0.266598 + 00, 
C3 = (-0.851842 - 01, 
C4 = (-0.332293 - 01, 
C5 = (-0.162217 - 01, 

Imaginary 

-0.219573 + 00) 
0.440204 + 00) 
0.559270 - 01) 
0.152098 - 01) 
0.596175 - 02) 

£>i = (-0.201026 - 62, 0.686494 - 62) 
D2 = ( 0.760589 - 112,0.229382 - 111) 
D 3 = ( 0.459605 - 159,0.613469 - 159) 
Di = (-0.258214 - 206, 0.221233 - 206) 
D5 = ( 0.697736 - 254,0.252238 - 254) 

and 

E rox-Cm |2(^("V2
(" , ,)+-

n>(Xm - 2) - ( W ) 

+ r 0 - V D m 2ro
2<0i<n>4>2(m)> - f2" <4>i ( ' IW' ,> 

\ Xm 

-r 0
2( i / ' i< mVi< m ))] = 0. (56) 

For the chosen 0, the real parts of the eigenvalues X„ are very large 
(Table 1), so that for ro = 0.05 the coefficients in (56) suggest that the 
Cm are large compared with the Dm. Therefore (5a) or (4a) can be 
solved for the Cm, neglecting the Dm, which then can be easily found 
from (5b) or (4b) (or find Dm = ro_XmDm). Thus the system (4) or (5) 
is split into two systems that can be solved consecutively. This reflects 
the fact that the boundary condition at ro does not have any signifi­
cant influence on the flow, except very close to rg where the D„-r_x"+2 

term in (2) is dominating (even when the D„ are small). Note that the 
Dn = 0 for r0 = 0. 

Result. Sufficient accuracy of the truncated series can be obtained 
for five terms in the series. The coefficients Cn and Dn converge 
rapidly as n increases; see Table 2. The residual error in the boundary 
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Table 3 Boundary values at the inner and outer radius; ai, b\, a, and di are the indicated values at the boundary; 
they are compared to: a2 the prescribed vorticity at r = 1, l>2 — ci the zero stream function values and di the zero 
gradient value at r = 0.05 

<p 

ai 

fi(r = 1) 1 
1 2 

- sin2 cp K/W 

bi 
* ( r = 1) 

62 
* ( r = 1) *(/ 

Cl 

= 0.05) * ( r 
C2 

= 0.05) d*/d; 
di 
(r = = 0.05) 

d<S?/dr (r = 
0.05) 

0° 
1° 
2U 

3° 
4° 
5" 

0.9990 
0.9056 
0.6530 
0.3481 
0.0910 

-0.0052 

1 
0.9045 
0.6545 
0.3455 
0.0955 
0 

-0.659-10"7 

0.552-10"7 

0.20440-7 

-O.452.IO-7 

0.129-10"6 

0 

0 
0 
0 
0 
0 
0 

0.141-10"39 

-0.149-10"39 

0.156-10~39 

-0.115-10-39 

-0.337-10"40 

0 

0 
0 
0 
0 
0 
0 

0.23140"35 

-0.220-10-35 

0.182-10"36 

-0.103-10"36 

-0.757-10-36 

0.407-10"46 

0 
0 
0 
0 
0 
0 

contours symmetric 
wi th respect to centerline 

Biorthogonal series 

Finite difference 
approximation 

0.80 

Fig. 3 Comparisons of the velocity and vorticity in the outer region; 
biorthogonal series; — 0 — approximate solution 

conditions is insignificant; see Table 3. The ^ boundary conditions 
are satisfied exactly on the sidewalls, ft = ±5°. The stream function 
^ (Fig. 2(a)) and vorticity (Fig. 3) show details of the solution. 

The Numerical Solution 
Now the same problem is solved numerically using finite differ­

ences. A successive over-relaxation method is used, alternating be­

tween ^ and fl with a fixed relaxation factor for each as described in 
[4]. The relaxation factors were not optimized. In order to work in a 
rectangular plane a new radial coordinate r\ = In r is introduced. 
Compromising between the desired accuracy and the cost of the 
computations, we use meshes of hv = 0.023404 and hv = 0.005454. 

Result. The stream function ^ (Fig. 2(b)) and the vorticity fl are 
calculated until their residual values are less than 10~9 and 10 - 6 , re­
spectively. Asymptotic theory,1 utilizing the first eigenvalue (after 
Moffatt [5] with Burggraf correction [6]), is used to fill in the inner 
part of the sector where Q residuals exceed the functional values. 
Results are shown in Fig. 2(6) and Fig. 3. 

Comparison 
The profiles of the center-line velocity are compared in Fig. 3. The 

velocity at the center of the outside arc is 0.0201 for the approximate 
numerical solution and 0.0196 in the analytical result. 

It is obvious that the result of the biorthogonal series solution is 
more accurate and because of the easy, straightforward computation 
its use should be preferred for similar problems. The computation of 
the numerical solution was carried out on an IBM 360/91 requiring 
about 66 sec of computing time compared to only fractions of a second 
for the series (on a Cyber 74). However, this test has shown that the 
numerical results may be good enough for many applications (within 
the two top vortices, where the liquid flows fastest, the streamline 
error lies within the mesh length) and the method can be applied to 
more general, nonseparable domains. The truncation error can be 
reduced by a finer mesh computation. 
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L Neglecting the boundary condition at ro which cannot be satisfied. 
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The Flow of a Non-Newtonian Fluid 
Past Projections and Depressions 
The plane flow of a homogenous incompressible second-order fluid past projections or de­
pressions of arbitrary shape is considered. A numerical technique based on a boundary 
integral equation is developed and the problem of the flow past a rectangular slot of depth 
d and width W is solved. 

1 Introduction 
A numerical scheme based on boundary integral equations is de­

veloped to determine the flow characteristics of a homogenous in­
compressible fluid of second grade past a projection or a depression 
of arbitrary shape. Restricting attention to a rectangular slot of finite* 
depth, the streamlines, due to the flow of a second-grade fluid past 
such a slot, are determined. While the problem of the flow a Navier-
Stokes fluid past a circular projection or depression has been obtained 
by Schubert [1], the technique used depends on conformal transfor­
mations which cannot be used when arbitrary shapes are involved, 
unlike the technique developed herein. It is also pointed out that the 
technique could be gainfully employed in determining the "hole 
pressure error" due to the flow of such a non-Newtonian fluid past 
a hole of finite depth. After a few preliminary remarks regarding the 
equations governing the flow of the fluid under consideration, in 
Section 2, we develop the boundary integral equation corresponding 
to the partial differential equations governing the motion of the fluid 
in Section 3. The details of the computations in terms of certain 
characteristic parameters is outlined in Section 4. The results and 
certain extensions of the technique are discussed in Sections 5 and 
6, respectively. 

2 Preliminaries 
The Cauchy stress T in a homogenous incompressible fluid of sec­

ond grade1 is given by 

-p 1 4- juAi + CV1A2 + 1X2A1 

1 The constitutive relation (1) has been employed both in the sense of a sec­
ond-order approximation to a general simple fluid [2, 3] as well as an exact model 
in its own right [4]. Suffice it is to say that our results do not depend on either 
point of view, our results being applicable in either case. We refer the reader 
to [4-6] for details regarding the differing points of view. 
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where \x is the coefficient of viscosity, a\ and «2 the normal stress 
moduli, —p1 the constitutively indeterminate spherical stress due to 
the constraint of incompressibility, and Ai and A2 the first two 
Rivlin-Ericksen tensors defined through 

and 

Ai = grad v + (grad v)T, 

A2 = Ai + Ai(grad v) + (grad v) TAi. 

(2a) 

(2b) 

In equation (26) the dot denotes material time differentiation. 
We are interested in obtaining the. stream function due to the flow 

of a second-grade fluid between two infinitely parallel plates D apart, 
the bottom plate having either a depression or a projection of arbitrary 
shape (see Fig. 1). The flow is due to both the top plate shearing with 
a velocity V uijthe x -coordinate direction and pressure gradients along 
the x -direction. 

By virtue of Tanner's theorem [7] and the uniqueness2 of plane 
creeping flows of second-grade fluids, as far as the velocity field is 
concerned, it is sufficient that we obtain the solution for the velocity 
corresponding to the flow of a' Navier-Stokes fluid across the slot. The 
balance of linear momentum in the case of a Navier-Stokes fluid in 
plane motion, in a Cartesian coordinate system, reduces to 

(1) where 

Vi// = 0 in A, 

„ d4 d4 d4 

V4 = + 2 + 
dx4 dx2dy2 dy* 

(3) 

is the usual biharmonic operator, and \p is the stream function defined 
through 

u(x, v) = ± — , 
dx 

2 The uniqueness theorem for plane creeping flows of a fluid modeled by 
equation (1) has been established by Fosdick and Rajagopal [5] for the exact 
model and Huilgol [8] for the model in the sense of second-order approxima­
tions. 

Journal of Applied Mechanics SEPTEMBER 1980, VOL. 47 / 485 

Copyright © 1980 by ASME
Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



/ / 

Vrrr» 

•iJT-2 

\ 

•• «- X 

^(x) = r2(x) f T(£)G(x,|)ds(£) + f Q(|)G(x,£)ds(£). (10) 
Jdil o/dS! 

As x approaches a point x' belonging to the boundary, we obtain from 
the boundary conditions (6) that 

W = W f TI&GV.&M&+ f Q(&G^,&M&. 
Jm »/an 

(11) 

and 

Fig. 1 Flow domain with arbitrary projection or depression 

dG 

'an dn, 

dr2(x') 

dre. 

u(*, y ) ; 

where u and u are the velocities in the x and y-directions, respectively. 
For the problem in question, the appropriate boundary conditions 
are (see Fig. 1) 

0 on dfii 

Constant (C) on dfl2 

g(x') = 7-2(x') f T(f) — (x ' , f )c fe ({ ) 

^ f T(£)G(x',£)dS(£) 
„- J a n 

+ f Q(©r^-G(x ' ,0<fc({) , (12) 
•-'an drex< 

where d/drex' denotes partial differentiation in the direction of the 
unit outward normal at the point x'. T(£) and Q({) can now be ob­
tained from the coupled boundary integral equations (11) and (12). 

For the two-dimensional problem under question 

G ( x , 0 = — l n r ( x . f ) . 
Z7T 

(13) 

dn 

(4) 

(*, y) = 
0 on dfii 

V on d^2 

$(x,y)—f{y) as x — i - ^ 

where n is the coordinate direction along the unit outward normal n 
to the boundary of fi. 

In the next section we obtain the boundary integral equation cor­
responding to the equations (3) and (4). 

3 T h e B o u n d a r y I n t e g r a l E q u a t i o n 
Consider the problem 

V4^ = 0 in fi 

with the boundary conditions 

t(x,y) = f(x,y) on dfi, 

and 

(5) 

In order to solve the boundary integral equation (11) and (12), we shall 
discretize the boundary into iV intervals ASj(j = 1,...N), and assume 
that the fictitious source points T(£) and Q(l-) are constant over each 
of these intervals. The boundary integral equations then reduce to 

r2(x') N r 

f(x')=^-J-Z T{& In r(x',&dsj 

+ — Z Q(& f In r(x',&dsj, (14) 

and 

g(x') = - y - £ T(© J — - In r(x', &dsj 

dr2(x') IN r 
+ — — • — £ T ( 0 \nr(x,Z)dSj 

on%' 2-JT y=i JASj 

1 » 

2TT 
E Q ( © f —InrV.&dsj. (15) 

;=i ./AS; on%> 

dn 
•(x,y)=g(x,y) on dfi, (6) 

When £ approaches x', the integrals involving both In r(x', £) and 
(d/dn„<) In r(x', £) become singular and it can be easily verified 
that 

where dfi is the boundary of Q. The solution \p for the problem rep­
resented by equations (5) and (6) is uniquely determined in Q, [9], and 
has the following form: 

f lnr(x',$)ds(£) = AS In 
AS 

2 

and 

f =. r24> + I (7) 

where ij> and 0 are harmonic functions and r2 = x2 + y2. On embedding 
fi in an infinite domain, and assuming a layer of fictitious source 
points on dfl, the harmonic functions <l> and 0 can then be expressed 
as [10] 

f — In r(x',£)ds (£) = *-, 
J AS drcx' 

(16) 

(17) 

where AS is an interval containing the point x'. Thus equations (14) 
and (15) reduce to 

and 

0(x)= f V d . W , 

0(x)= f Q(©G(x, {)&(*), 
./an 

(8) 

(9) 

2TT 
AS; In 

AS; 
- 1 T i + £ lnr ; ,T,AS; 

J.= i. 

2ir 
AS; In 

AS; 
- l f t + I lnro-Q/ASy 

where x and £ denote points in fi and dfl, respectively. G(x, £) is the 
Green's function (influence function) and T(l-) and Q(£) are the source 
points associated with 0 and 0, respectively. Substitution of equations 
(8) and (9) into equation (7) leads to 

and 

2TT 

N a 
TTT; + Z 1" rijTjASj 

(18) 

(19) 
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Fig. 2 Mesh arrangement in a rectangular slot of depth d and width W W 

Fig. 3 Streamline pattern for z = 1 and P = 0.5 

dr;2 

dn; 
AS; In 

AS; 
1 T ; + £ l n r ; , T , A S , -

1 
+ — 

2TT 
^Qi+t^-lnnjQjASj (19) 

(Cont.) 

where the suffixes i and / denote the value of the functions at the 
points x' and £, belonging to the N discretized intervals, respectively. 
Finally, equations (18) and (19) can be expressed in the form 

m 
2TT 

A B 

C D\ [Q\ 

where 

A = ";2 (in 

B = lln 

;2TT + In 
dn \ 

AS; 

2 

ASi 

2 

AS; 

2 

..)< 

- 1 + V lnry, 

d dr2 

r;2 — In rij -\ In rij 
dn dn 

N 

N J) 
D = w+ E —njASi, 

J.-X dn 

Tk = I Tkdsk, 
J&Sk 

^k = \ Qkdsk, 

and 

J&sk 
ghdsk. 

(20) 

(21) 

(22) 

ASj, (23) 

(24) 

(25) 

(26) 

(27) 

The system of equations represented by (20) can be solved for T and 
Q and once T and Q are determined, we can determine the stream 
function \p from 

r2(x) N IN 
*(x) = - T ^ E In r(x, ;)Ty + — E In r(x, J)Q,. (28) 

ATT ; = 1 2 7 T ; = 1 

In the next section we shall provide an example which is of significance 
in rheology. 

4 C o m p u t a t i o n 
We shall plot the streamlines due to the flow of a second-grade fluid 

past a rectangular slot of finite width and depth as shown in Fig. 2. 
We subdivide the boundary into 92 meshes (see Fig. 2) and define 
nondimensional quantities 

W 

Fig. 4 Streamline pattern for z = 1 and P = 1 

C 

VD' 
P = d/w 

where C and V are the boundary conditions in equation (4), and d is 
the depth of the slot and w the width of the slot. A computer program 
has been written to calculate T and (J from equation (20). With the 
help of T and ^ so determined, the streamlines are plotted employing 
equation (28). 

5 R e s u l t s a n d D i s c u s s i o n 
First, we computed the streamlines due to the flow corresponding 

to z = 0 and P = 0, which is the flow between two infinitely flat plates. 
We find that our results are in very good agreement with the classical 
couette flow solution. We find that depending on the nondimensional 
numbers z and P there exists two distinct streamline patterns, namely, 
Figs. 3 and 4. Fig. 3 corresponds to z = 1 and P - 0.5 wherein there 
are two distinct groups of eddies. In fig. 4 which corresponds to z = 
1 and P = 1, we find that these distinct eddies have coalesced. 

To plot the streamlines due to the flow past a projection or de­
pression of arbitrary shapes poses little problem. The same computer 
program can be employed with a different set of field points to solve 
the appropriate problem. 

Finally, we wish to add that the boundary integral technique has 
the advantage of being accurate in addition to permitting a more ef­
ficient use of the computer in comparison to other numerical tech­
niques. 

6 D e t e r m i n a t i o n of P r e s s u r e Error 
The hole pressure error, due to the flow of a second-grade fluid past 

a slot of finite depth, can be expressed in terms of the values of \pxx, 
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\pXy, a n d 4>yy a t t h e po in t s 0 and C (see Fig. 2), where \pxx deno tes 

d2/dx 2, etc. An expression for these part ial derivatives can be obtained 

in a m a n n e r similar to t h a t in which equat ion (28) was obtained, and 

hence t h e hole pressure error can be computed . A slight modification 

of t h e c o m p u t e r p r o g r a m can b e m a d e t o d e t e r m i n e t h e var ia t ion of 

t h e hole p ressure error , wi th t h e nond imens iona l q u a n t i t y d/w, for 

a fixed D/W. 
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Fluid lot ion Past a Porous Circular 
Cylinder With Initial Pressure 
Gradient 
The problem of two-dimensional flow, past a porous circular cylinder, with initial pres­
sure gradient is solved using the method of matched asymptotic expansions. It is found 
that the drag force experienced by the cylinder is increased due to initial gradient al­
though it remains smaller than the drag force experienced by an identical impervious 
body. 

Introduction 
The limits and nature of the validity of Darcy law has been a subject 

of every day interest to the industry for many years. It is well known 
that as the Reynolds number, characteristic of the flow through porous 
media, becomes large, Darcy law loses its predictive accuracy in the 
laminar regime itself [1] and ultimately becomes void. Similarly for 
very slow speeds, the flow description deviates from the "Darcy flow 
regime." This clearly shows that Darcy law is valid only over a limited 
range of Reynolds number. 

In particular, for very slow velocities, it has been found experi­
mentally that the fluid moves more slowly than is predicted by Darcy 
law. Consequently, a limiting velocity may exist under which the 
Darcy law ceases to be valid. This phenomenon was first observed by 
Schmidt (see [2]). Lower limit of validity of Darcy law is induced by 
the increasing effects of molecular forces. The region where the mo­
lecular forces influence the seepage is called the region of micro-
seepage. The idea of limit gradient, also called initial gradient, at 
which the fluid motion occurs, was set forth empirically by Puzyr-
evskaya [3]. The existence of the pressure gradient shows that in 
certain conditions, account must also be taken of the rheological as­
pect of motion [4]. In dense clays and heavy loams, in which the water 
is of a molecularly bound nature, seepage starts only when the pres­
sure gradient exceeds a certain value. 

The existence of initial gradient in clayey and other fine grained 
soils has been attributed to the predominance of surface forces over 
gravity forces existing in fine grained soil and generally these surface 
forces are strong enough to counteract a certain portion of applied 
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pressure gradient [5], It is therefore natural to expect that the lower 
the porosity and smaller the grain size, the higher will be the surface 
forces resulting in an increase in initial pressure gradient. 

Consequences of the existence of initial gradient are of potential 
interest in several disciplines such as ground water movement and 
drainage in clayey soils, soil water movement to plant roots, etc. In 
drainage problems, nonrecognition of the role of initial gradient will 
result in inefficient layout of drains [6]. Valsangkar and Subramanya 
[7] and Arumagam [8] recently investigated the effect of initial gra­
dient on various physical problems of interest in the field of drainage 
and irrigation. 

The mathematical formulation and application to some simple 
problems of the phenomenon of motion with initial gradient was first 
given by Gheorghitza [9] which was later generalized by himself [10] 
to include the nonlinear effects caused due to microinhomogeneity 
of the macroscopically homogeneous porous medium because of the 
varied effects of the rheological properties of the medium. Later 
Gheorghitza [11] himself solved the problem of motion of a sphere, 
with initial gradient in Stokes flow. 

Here, we propose to solve the two-dimensional-problem of flow past 
a circular porous cylinder with initial gradient, by the method of 
matched asymptotic expansions as have been done by Kaplun [12] 
for an impervious cylinder and by Shi and Braden [13] for the flow 
past a permeable cylinder. 

Mathematical Formulation 
Consider the flow of an incompressible viscous fluid past a circular 

porous cylinder of radius a and permeability k'. Let the free-stream 
velocity be Ui with origin of the coordinates at the center of the cyl­
inder (see Fig. 1). We assume Q' to be the filtration velocity and K* 
to be the initial gradient which is the critical value of the pressure 
gradient VP', P' being the pressure in porous medium. Flow through 
the porous medium starts when | VP' | exceeds K*, otherwise the po­
rous body behaves as an impervious one, and the analysis of flow past 
an impervious body holds for this case [12]. 
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V-q„ = 0 (13) 

Fig. 1 Configuration of the problem 

Introducing the following dimensionless quantities 

a(p'-p^) q' r' k' 
p = , q = —, r = —, k = — 

liU U a a* 

a(P' - P„) Q' _ a2K* 
P = — - , Q = —, K = , 

IxU U IJ.U 
(1) 

the equations governing the flow outside the cylinder take the 
form 

Re (q-V)q + Vp = V2q (2) 

V-q = 0 (3) 

while the flow in the porous matrix is governed by 

| 0 f o r | V P | « X 

VP1 
V P - K -

|VP 

V-Q = 

for \VP\>K 

0 

(4) 

(5) 

where the Reynolds number Re = aUp/fi, p being the density and p, 
being the dynamic viscosity of the fluid. 

The concerned boundary conditions are 

p(l,0) = P(l,6) 

qAU) = QAiJ) 

g»(l,0) = O 

q(r, 6) = i as r -* <» 

(6) 

(7) 

(8) 

(9) 

where the subscripts r and B denote the radial and transverse com­
ponents, respectively. 

Solution 
It is clear from the physical aspect of the problem that the Reynolds 

number Re < 1. The set of equations (2)-(5) with the conditions 
(6)-(9) can be solved by introducing three simultaneous asymptotic 
expansions—an interior expansion which is valid in the porous matrix, 
the inner expansion which holds good near the cylinder, and an outer 
expansion which describes the flow phenomenon far away from the 
surface of the cylinder. We now give the construction of these ex­
pansions and the corresponding equations which hold in the respective 
regions. 

I nne r Expansion. We take the inner expansion of the form 

q = fq0 + e2qi + . . . 

p = ep0+ 62pi + . . . 

(10) 

(11) 

where e is some function of Re, the exact form of which will be de­
termined by matching. 

The governing equations for the foregoing expansions are well-
known Stokes equations 

V2q„ = Vp„; n = 0,1,2,- (12). 

In ter ior Expansion. In view of (10) and (11) and the boundary 
conditions (6) and (7), the interior expansion should be of the form 

Q = eQo + £2Qi + . 

P = fPo + £2Pi + . 

(14) 

(15) 

Further the equations (4), (14), and (15) suggest the form of the 
perturbation expansion of K as 

K = eK0 + (2KX + . (16) 

In view of the similarity of phenomena and nature of the solution 
to be expected in our present problem with respect to the motion of 
a permeable cylinder with zero initial gradient [13], we observe that 
a linear function of x satsifies the equation for P which is obtained 
from (4) and (5) as 

v2p : 
K 

|VP | 
V 2 P-

VP-V( |VP | 2 ) ' 
(17) 

2 | V P | 2 

The governing equations for the various order interior expansions 
can be obtained from (4) and (14)-(16). 

Oute r Expansion. In the Oseen region, the inertial and visous 
terms become comparable to each other, hence we introduce the outer 
variables as [13] 

Re x, y = Re y 

and 

q = q and P = R ^ P 

(18) 

(19) 

The equations governing the flow field in the outer region are 

(q-V)q + Vp = V2q (20) 

V-q = 0 (21) 

Outer expansions are of the form 

q = i + £qi + (22) 

p = epi + . . . . (23) 

The governing equations for the outer expansions would, then be 
given by 

V2 - ^ W . = Vp„ + "£ (q;-V)q„_i 

n = 1, 2, 3 , . 

V-q„ = 0 

(24) 

-(25) 

It is required that the outer solution, besides satisfying the 
boundary condition at infinity, matches asymptotically with the inner 
solution in some overlapping domain. 

Zeroth-Order Inner and In ter ior Solutions. In view of the 
matching condition of qo with the outer limit i, the zeroth-order inner 
and interior solutions satisfying the boundary conditions are obtained 
as 

2x 
Po= ~ — 

qo = i ',r + 
1 + 2k - kK0 

• V r • 
1 + 2k - kKt M3 

Qo = 

with 

Po = - 2 x 

0 for 2 =£ K0 

[k(2-K0)i for 2 > K 0 

lim (-£ log Re) = 1 
Re—O 

(26) 

(27) 

(28) 

(29) 

(30) 

The form of (30), without loss of generality, may be written as 
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- 6 log Re = 1 + bX€ + b2e
2 + ... (31) 

where b'° will be found later. 
First-order Outer Solution. We obtain the appropriate first-

order outer solutions, which match completely up to an order e with 
the inner solutions as 

2x 

?2 Pi = - " 

qi = -2ie*/2K0(r/2) + 2V[e*'2K0(r/2) + log r] 

(32) 

(33) 

where Ko(r/2) is the modified Bessel function of the second kind and 
zero order and the value of &i in the expression (31) is obtained as 

bi = 7 - log 4 • 
1 + 2k - K0k 

(34) 

where 7 is the Euler's constant. 
First-Order Inner and Interior Expansions. The first-order 

inner and interior expansion which satisfy the appropriate boundary 
and matching conditions up to an order c2, obtained are 

Pi = P i = 0 

and 

qi = -

fo 

Kik 

2 
* x 

with 

Qi = 

Kik 

2 

for 0 < Ki 

kKxl for 0 > K i 

and bn = 0 for n > 3 

(35) 

(36) 

(37) 

(38) 

Now, the form of £ is completely known from (31), (34), and (38) 
and may be written as 

where 

e = 2[1 + (1 - 2Ktktc2)i/2]-i x ec 

, 4M exp [(1 - K0/2)k] , 1 
log 7 

Ua 2 f 

(39) 

(40) 

Second-Order Outer Solution. The second-order outer solution 
q2 can be obtained by solving the equations 

IV2 - — ] % ! = Vp2 + (qi-V)qi 

V-q2 = 0 

(41) 

(42) 

with the boundary condition that it vanishes at infinity. Now, since, 
there are no unbounded terms in the second-order inner solution to 
be matched, it is required that (J2 must be continuous at the origin. 
It implies, in turn, that q2 should only be the particular solution <j2p 

of (41) and (42). 
Now, since the body, in the Oseen limit is transcendentally small, 

only <J2 (? —» 0, 8) matters for matching purposes. 
Following Kaplun [12] we have 

q2 (f — 0, 6) = -0.87? (43) 

Third-Order Inner and Interior Solutions. The third-order 
inner and interior solutions which satisfy corresponding boundary 
and matching conditions are obtained as 

q2 = 0.87 

1-74—, P 2 = 1.74x 

„,, 1 + 2K\ x 1 + 2k lx 
H log r H Vr V 1 2 I r 2 

kK2 [t-V(x/r*)} 

(44) 

(45) 

IMPERMEABLE 
ZERO INITIAL GRAOIENT 
WITH INITIAL GRAOIENT 

Ko-0.5. K.--0.5 

0.4 0.5 0.6 
Re ~ 

Fig. 2 Drag coefficient Cd versus Reynolds number Re 

Q 2 : (46) 
0 for -1.74 =S K2 

-kl(l.7\ + K2) for -1.74 > K2 

Drag. The drag force experienced by the cylinder, obtained by 
using the momentum integral is 

Di = ( ( [-pni + Tijtij - qiqjn,j\ds (47) 

Coefficient of drag Cd is obtained as 

D 
Cd = 

4TT(IU 
[e-0.87t3 + o((3)] 

where 

and 

e = 2[1 + (1 - 2Kik(c
2)1/2]-1 X ec 

log — • exp 
tip 

1 -
K0' 

(49) 

(50) 

• 7 

We find here that similar drag formula as (48) holds in the problems 
of flow past (i) an impervious cylinder, and (ii) a permeable cylinder 
with zero initial pressure gradient, the difference is in the expressions: 

of the perturbation parameter in the three cases. If fp and £; are the 
perturbation parameters in the cases of permeable and impervious 
cylinders, respectively, it may be seen that 

< e < «.- (51) 

The obvious implication of (51) is that the drag force is increased 
due to the effect of initial gradient, although it still rerhains smaller 
than the drag force experienced by the identical impervious body. 
This result may also be observed from the graphical representation 
in Fig. 2 where variation of Cd with Re is shown. It may also be ob­
served from Fig. 2 that for the same initial pressure gradient, the rate 
of increase in the drag force, due to it, increases with increasing per­
meability. The graph also shows that the increase in permeability 
results in the decrease in Cd. 

If the initial gradient K is taken zero in the present analysis, we 
recover the results due to Shi and Braden [13]. The results due to 
Kaplun [12] and Proudman and Pearson [14] for the flow past an 
impervious cylinder may be obtained by taking k = 0 in the present 
results. 
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Static Equilibrium of a Fluid-
Saturated Porous Solid 
The equilibrium equations for a fluid-saturated, porous elastic solid are obtained by a 
variational method. The total energy of the body is assumed to be the sum of that of the 
fluid and that of the solid, and the free energy of the solid is taken to be sensitive to its po­
rosity. 

Introduction 
We develop the equilibrium theory for a fluid-saturated porous 

solid using a principle of virtual work introduced in a similar context 
by Kenyon [1]. The free energy of the system is supposed to be the 
sum of that of the solid and that of the fluid. Here, each of these 
energies is taken to be independent of the presence of the other con­
stituent and the free energy of the solid is assumed to depend upon 
the volume fraction of the solid as well as upon its deformation. In this 
event the balance laws and boundary conditions are simple in form 
and have easy physical interpretations. In particular, the pressure in 
the pore fluid is seen to be the "external" generalized force associated 
with changes in the solid volume fraction. Such a generalized force 
appears in the theory for granular materials proposed by Goodman 
and Cowin [2] and in a corresponding theory for porous solids put 
forth by Nunziato and Cowin [3]. With this form of the free energy 
it is possible to relate these balance laws to those of the appropriate 
specializations of the more general and somewhat more complicated 
theories of Drumheller and Bedford [4] and Nunziato and Walsh [5] 
and to recover, in a somewhat different guise, several results obtained 
by Biot [6] in his specialization of a more general variational principle 
to fluid saturated porous solids. The common feature of all of the 
theories already mentioned is that the apparent density of each 
constituent may be changed in two ways: by changing its volume 
fraction; or by changing its true density. In this respect these theories 
differ from the perhaps more familiar mixture theories reviewed, for 
example, by Bowen [7]. 

E q u i l i b r i u m 
The total density p of the fluid-saturated porous solid is the sum 

of the apparent solid density pi and the apparent fluid density P2- The 
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apparent density of the fluid may be expressed in terms of the solid 
volume fraction v and the true density y of the pore fluid as 

P2 = (1 - v)y. (1) 

There is, of course, a similar decomposition for the apparent density 
of the solid. 

The volume density of free energy W is supposed to be given as the 
sum of contributions from the solid and the fluid, 

where, for the solid, 

W = pi4>i + Piipz 

4>\ = ^i(v,FiA), 

(2) 

(3) 

with FiA = xi:A—the deformation gradients associated with the 
mapping xi = XI(XA) from a reference configuration; and, for the 
fluid, 

^2 = f 2(7)- (4) 

The energies are assumed to be unchanged in rigid motions of the 
material. The energy summation apparently ignores any energy of 
interaction between the solid and fluid. However, for the fluid-satu­
rated porous solids, this additional energy is likely to be that associ­
ated with wetting the interior of the solid and, as Biot [6] points out, 
it may be considered to be part of the energy of the solid. In mixture 
theories formulated to describe molecular diffusion such a summed 
energy is known to be realistic only for mixtures of perfect gases 
[7]. 

In any event, the principle of virtual work based on this energy has 
the form [1], 

oJvWdV = fvSWdV+ fs(pi4>i8xi + p2^5yi)dSi 

= Ss(Ti&Xi - Pmbyi) dS + fvipifiSxi + pzhbyMV, (5)' 

where the integrations are to be carried out over a volume V fixed in 
space bounded by the surface S, and y; is the position of a fluid ele­
ment. The virtual displacements ox; and 5y; are calculated following 
fixed material points of the solid and fluid, respectively. Associated 
with hxi are the surface traction Ti and the body force /,-; corre­
sponding to hyi are the pressure P and the body force &;. The first 
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equality follows from the variational form of the transport theorem 
[8]. 

The variations of FIA, V, and y are taken to be those induced at a 
fixed spatial point by the virtual displacements. In this case 

bFiA = bxiikFkA - FiA:kbxk. (6) 

Fluid mass conservation requires that the virtual displacement byi 
and the variations of y and v be related by 

8[y(l - v)] + [7(1 - v)byi\„i = 0. (7) 

Solid mass conservation is satisfied by regarding p\ as given in terms 
of the determinant J of FIA by 

Pi = P&J (8) 

where po is the, supposedly constant, apparent density of the solid in 
its reference configuration. 

Upon carrying out the variation in (5), respecting (6) and employing 
(7) to eliminate by in favor of bv and Syi, then integrating by parts, 
and collecting coefficients of like terms, we obtain 

J\ 
'bW „ \ dW „ 
Z^-FkA] +—-FkA,i + Pii 
$FiA ),k dFkA 

Sxi 

- 7 
W\ 

7 / . ' 

d 

dy 
+ (1 - »)-

dW 
1 

dy 

x , dW dW\ 
(1 - v)~ly + 

dy dv 

Pibi byi 

bv dV 

-Ss 
IdW 

\dFiA 
FkAik + pi^int - TA bxi 

dW 
- 7 dy 

Pi^i + P\ niby. dS = Q (9) 

Using the assumed additivity (2) of W and introducing the defini­
tions 

tik = Pl—r~*kA, 
dbiA dy 

and 

P = ^2 + 7 p = (1 - v)w, g = - p i 
Hi 

dv 

(10) 

(11) 

we may write the local balance laws resulting from the variational 
principle as 

and 

kh,h ~ P,i + PW.i + Pifi = 0, 

P,i ~ bi = 0, 

H ~ 7T = 0, 

(12) 

(13) 

(14) 

(16) 

in V, and the boundary conditions as 

Ti = tihnk, 

and 

P = p, 

onS. 
The familiar definitions (10) and the form of the boundary condi­

tions (15) and (16) lead to the identification of tik as the apparent 
stress in the solid, TT as the pore pressure in the fluid, and p as the 
apparent pore pressure. The assumed invariance of \pi in rigid motions 
insures that the stress is symmetric. 

The balance laws (12) and (13) are the same as those obtained by 
Kenyon [1]. The balance of force for the solid (12) contains explicit 
contributions arising from the pore pressure. These are written here 
in terms of the apparent pore pressure p and the function p. As dis­
cussed by Biot [6] and Kenyon [1], fi is analogous to the chemical 
potential of a diffusing fluid in a classical mixture theory for molecular 
diffusion. Note that the force balance for the pore fluid (13) requires 

that an external force compatible with equilibrium must be the gra­
dient of a potential function <j>, 

In this event (13) integrates to 

ix + (j> = c, 

(17) 

(18) 

where c is a constant. With the definition ( l l ) i , it's possible to show, 
as does Biot [6], that (18) is the static form of an energy integral for 
inviscid compressible fluids (Lamb [9, Chapter II]): 

Sy~ld-K + (/> = c; (19) 

and this provides the more familiar identification of ^ as the pressure 
function of classical hydrodynamics. 

The final condition (14) resulting from the variation provides a 
relation between the pore pressure of the fluid, the deformation of 
the matrix, and the solid volume fraction. Kenyon [1] did not obtain 
this balance law because he did not allow the free energy of the matrix 
to depend upon its volume fraction. He did, however, later adopt a 
somewhat similar relation when dealing with an incompressible ma­
trix and incompressible pore fluid [10]. 

Using (14) it is also possible to obtain an explicit interpretation of 
a generalized force that appears in theories for porous solids [3] and 
their fluid counterparts, granular materials [2]. In these theories only 
the free energy of the matrix is taken into account and a balance law 
for "equilibriated force" serves to determine the solid volume fraction 
and contains an external generalized force. If here we had felt that it 
were necessary to suppose that the free energy of the porous solid 
depended upon the spatial gradients of the solid volume fraction, the 
static version of the balance of equilibriated force would have been 
obtained in place of (14) with the important difference that, because 
the free energy of the pore fluid had been included in the variation, 
the negative of the pore pressure ir would stand in place of the volume 
density of external generalized force. The analogous result for granular 
materials is obtained from the theory for the porous solid by requiring 
that the free energy depend on FtA only through J. The identification 
of the volume density of external generalized force with the negative 
of the pore pressure had been anticipated by Jenkins [11]; who, 
however, did not distinguish between the pore pressure and that 
fraction of it communicated to the matrix. 

In order to relate the stress relations and balance laws to those in 
Kenyon's [10] theory for incompressible constituents, it is necessary 
to adopt a more symmetric notation and to write the free energy of 
the solid as a function of FiA and the true solid density 71 

ii(FiA, v) = MFu, Poyi^J-1) =HFiA, 7i)- (20) 

The latter is the form of this free energy favored by Drumheller and 
Bedford [4]. In terms of it, (10)i becomes, through an application of 
the chain rule, 

tik - Tik ~ VTTlbik, 

(15) where 

£>fi Mi 
Tik = Pi —— FkA and in = y^ -—; 

dFiA dYi 

while the balance law (14), takes the form 

7 i 
6 7 1 

,dfa 
t>72 

= 0, 

T l - 7T2 = 0. 

(21) 

(22) 

(23) 

(24) 

Thus, in equilibrium, the true pore pressure of the fluid is balanced 
by a true "matrix pressure" in the solid. As a consequence of (24), the 
total stress may be written as 

tik - pbik = Tik ~ ir25;A. (25) 

Then, if the total surface traction T; — Pn, is supposed to be a contact 
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traction T; less the pressure 7r of that pore fluid exterior to the 
solid, 

Tt - Put = n - imu (26) 

it is natural to follow Kenyon [10] in supposing that the pressure in 
the pore fluid is continuous over the boundary of the solid and in in­
ferring from the boundary condition on the total stress that nk is the 
apparent contact stress in the solid. 

The forms of the stress relations and balance equations appropriate 
to incompressible materials may be obtained from the principle of 
virtual work by introducing Lagrange multipliers. For example, when 
the pore fluid is incompressible, W2 is the multiplier associated with 
this constraint and, as such, is determined up to a constant by (18). 
Then (12) and (14) serve to determine xi and 71 (or v). When both the 
pore fluid and the material of the matrix are incompressible, T2 and 
7Ti are, respectively, the multipliers associated with these constraints. 
In this case, iti is determined as before; then -K\ is fixed by (14). 

The general thermodynamical theories for chemical reacting 
mixtures of solids and fluids that have been proposed by Drumheller 
and Bedford [4] and Nunziato and Walsh [5] can be specialized to 
apply to a single fluid saturated porous solid. When this is done it is 
relatively easy to recover from them the equilibrium theory previously 
outlined provided that in the equilibrium specialization of these 
general theories the form of the free energy given by (2)-(4) is used. 
The advantage in relating the three equilibrium theories is that in 
some applications it may be easier to generate a nonequilibrium 
theory for the fluid saturated porous solid by adding the appropriate 
inertial, thermal, and dissipative terms to the equilibrium theory 
obtained here rather than simplifying either of the general theories. 
This, for example, is the approach adopted by Bibt [6]. 
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Pipe Flow of Plastic Materials 
Plastic materials behave as both solids and fluids. When forced to move in a pipe, they 
flow as a solid plug with a slipping boundary. Depending on the cross-sectional shape of 
the pipe, the slipping boundary may not coincide with the inner boundary of the pipe. 
When such is the situation, there exist dead regions in the flow. This is undesirable when 
the material is time degradable as those encountered in the food processing and chemical 
industry. Two formulations of nonlinear programming problems governing the pipe flow 
are presented. They correspond, respectively, to the lower bound and upper bound theo­
rems of plasticity. An efficient method is developed for the nonlinear programming prob­
lem formulated from the upper bound theorem. Application of the method to two exam­
ples are demonstrated. 

Introduction 
It is a widely acceptable theory that for a class of materials, there 

exist a yield function f(a) of the stress tensor. For the stress states in 
the set 

E = \a: f(a) < f(a*)\ (1) 

the material behaves as a solid, where a* denotes the states of all yield 
stresses. Under these yield stresses which satisfy 

/(<T*) = constant (2) 

the material flows as a fluid. This class of materials is called perfectly 
plastic [1]. The yield functions are theoretically convex. 

This.simple switching type of nonlinear behavior has made the 
mathematical formulations for such problems difficult to solve. Only 
limited number of problems with relatively simple domains are solved 
often by a special technique to each of the problems. Two general 
theorems [2] are available to bound the exact solutions. A lower bound 
solution which satisfies the equilibrium equation and stress boundary 
conditions 

V • a = b in D and n • a = t on dD (3) 

where b and t are known vectors and the yield criterion 

f(a) < constant (4) 

bounds the exact solution from below. An upper bound solution which 
assumes a physically reasonable kinematics of flow and satisfies in­
tegral equilibrium bounds the exact solution from above. 

It is conceivable that the exact solution can be approached by a 
minimization procedure applied to all possible upper bound solutions 
or a maximization to lower bound solutions. These ideas lead to for-
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mulations of mathematical programming problems. Although some 
problems of this type are solvable in principle, the large size of the 
finite dimensional space of numerical approximation and computa­
tional inefficiency have kept most solutions from easy reach. 

Both maximization and minimization formulations on the pipe flow 
problems are presented. A possible method for the lower bound for­
mulation artd its computational inefficiency are discussed. The upper 
bound formulation leads to minimization of a nonlinear functional 
with simple bounds on the variables as constraints. An efficient 
method for this formulation which applies to general pipe cross sec­
tions is developed and applied to two examples. 

The Problem 
Pipe flows of highly viscous materials like cream and grease and 

granular materials like sand and coal powder behave similarly that 
they flow under a critical pressure gradient below which static equi­
librium is maintained without flow of material. The perfect plastic 
model [1] can best approximate this behavior. In this section, two 
formulations for such flow problems are presented. 

By a semi-inverse assumption similar to the Saint-Venant's on the 
torsion problem [3], we assume the nontrivial stress components in 
a steady-state pipe flow in z- direction to be 

Ax, y), 

-Cz 

; dzy(x, y) (5) 

where C is a positive constant having the meaning of hydrostatic 
pressure differential per unit pipe length. The nontrivial equilibrium 
equation is 

d<r2. do-,. 

dx dy 

The yield criterion (von Mises or Tresca) reduces to 

(6) 

(7) 

where tro is the yield stress in shear. 
Any solution that satisfies (6) and (7) is a lower bound solution. The 

maximization of lower bound solutions leads to the following non­
linear programming problem: 
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Maximize 

Subject to 

DEAD REGIONS 

dazx 

dx ay 
(9) 

; + < x <°\ 
Since the constraint set is convex, the problem has a unique solution. 
Presence of quadratic constraints in (9) makes the problem difficult 
to solve. An attempt [4] is made to linearize the quadratic constraints 
by a set of piecewise linear inequalities and using the finite elements 
to discretize the differential equation in (9). The resulting linear 
programming problem can be solved but rather inefficiently. 

Two dual formulations [4, 5] can be solved more efficiently but the 
mathematical language used in [4, 5] may not be understood by en­
gineers who actually need to solve these problems with complex do­
mains. 

An intuitive approach is adopted for the presentation of the upper 
bound formulation which is the dual of (9). Let the cross-section of 
the pipe interior be the domain Q bounded by a closed curve Y. If the 
plug flow involves material contained in a subdomain W c fl where 
Q' is bounded by V with outward normal n, the stress acting on the 
lateral plug surface is anz = OQ. The z equilibrium on the plug of unit 
length is 

(£ (Tods = 1 1 CdA (10) 

where C is the same as that in (9). For any reasonably assumed T', C 
computed from (10) is an upper bound to the exact value which is the 
solution to the nonlinear programming problem 

Minimize p = ® ds J I j dA 

- "' (11) 
Subject to W c_ Q 

where p = C/oo- This is the inverse of the standard isoperimetric 
problem [6,7]. 

Maximize I } dA (£ ds 

Subject to fi'crfl-
(12) 

for which exact solutions exist for a few simple domains. 
An efficient numerical method for the solutions of problem (11) 

with a general domain is given in the next section. 

The Method 
For a general cross section fl, we assume there exist an origin O e 

Q, such that the polar description R = R(8) of V is a single-valued 
function. Let the slip domain Q' be bounded by r = r{8) then 

r(6)<R(B) 

The nonlinear programming problem (11) takes the form 

Minimize p = f^/r'2 + r2d8/fy2r
2d8 

Subject to r < R 

(13) 

(14) 

which is a one-dimensional problem for optimal function r(6). 
A finite-element scheme may be used to discretize the integrals in 

(14). We prefer the more familiar Simpson's rule [8] with the 2 T angle 
measure devided into 2N equal intervals. The finite dimensional space 
approximation of (14) has the form 

Minimize p = f(t) 

Subject to 0 < n < Rit i=l,2,...,2N 

where r and R are vector representations of r(8) and R(8). 
Let gi = df/dri and set 

(15) 

gi = 0 if df/dn < 0 and •Hi 1, 2 , . , 1, 2 , . , 2N 

(16) 

The gradient vector so constructed is a projected gradient along active 
constraint boundaries. 

8 ( ° ) 
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Fig. 1 Comparison of computer and exact solutions 

2.0' 

O.f 0.6 

b/a 
Fig. 2 Pressure per length required for plastic flow 

We may start from an initial solution say r*0' : 

solution by the updating 

r(*+i) = r(A) _ agm k = 0 ,1 , 2 , . . 

R and improve the 

(17) 

where a is the descent parameter obtained by a linear search [9]. 
Quadratic minimization is used along the direction of - g in the ex­
ample problems to determine a at each step. 

The updated r must satisfy 0 < r < R. This projected gradient al­
gorithm converges rather rapidly as demonstrated in the following 
examples. The efficiency of the algorithm may be improved further, 
but it is adequate for all practical purposes. 

The method should apply to a wide variety of pipe cross sections 
of practical interest. It tolerates certain nonconvex domains provided 
the condition of single-valued R(d) is satisfied. 

Examples 
Applications of the method to a family of rectangular and a family 

of elliptic pipes are presented here with the square and circular ones 
as special cases. 

1 Rectangular Pipes. Consider first the flow in a 2 X 2 square 
pipe for which the exact solution, pmi„ = 1 + ^J~il2, is known [5]. By 
symmetry, only one-eighth of the domain (0 < 8 < 7r/4) needs be 
considered for the computer solution. For JV = 20, (A0 = 7r/160), the 
computed and the exact solutions are presented in Fig. 1 both nu­
merically and graphically. The graphic display cannot show the error 
of rCOmp in the 4th digit. Such accuracy is achieved with 74 iterations 
at a mere 2.03 sec CPU time. 

A family of rectangular domains (2a X 2b) with the same area as 
that of 2 X 2 square is considered. We have therefore the relation ab 
= 1. For various b/a ratios, the required pressure per unit length is 
shown in Fig. 2. For b/a < 0.530159 four dead regions merge into 
two. 
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2 Elliptic Pipes. In this family, a special case is the circular 
domain of radius 1. There is no dead region and p = 2 is the minimum 
solution to (14). 

The family of ellipses with major and minor semiaxes a and b {ab 
= 1) has the same area. For b/a > 0.733576, there is no dead region 
in the flow. The dead regions for other elliptic domains are shown in 
Fig. 2 along the pressure curve. 

The extensive parametric computations in the examples has set 
back a mere 10 dollars from an estimated computing budget of 150 
dollars. 

Final Remarks 
An intuitive approach often produces excellent mathematical 

formulation to a physical problem. The method presented is simple 
and efficient for the plastic flow in pipes of an arbitrary cross sec­
tion. 

If the problem of the square pipe is solved by an incremental elas-
toplastic computer code, four plastic zones will first be developed at 
the midpoints of the edges. The zones will then spread and have finite 
area. They will finally join together and reduce to a closed curve with 
zero area. Complicated local loading and unloading must be examined 
at each increment during computation. Approaching the flow solution, 
the matrix equation involved in the incremental method becomes 
increasingly ill-conditioned [10] and therefore more difficult to solve. 
The mathematical programming approach avoids these difficulties 
and directly seeks the flow solution. It is more suitable for this 
problem. 

The field of plasticity experiences slow development especially in 
the solution methods area. The type of nonlinearities in plasticity lend 
the problems to numerical approaches. The incremental method has 
produced a large number of solutions. The mathematical pro­
gramming approach deserves more attention and study. 
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Random Response of a Rigid 
Sphere Embedded in a Viscoelastic 
Medium and Related Problems 
Random and harmonic responses are considered for a rigid movable sphere embedded in 
a viscoelastic medium. The solution takes into account the filtering effect of the viscoelas­
tic medium on the traveling random waves. The sphere can be also randomly located with 
respect to a plane at which the spectral density of incident stochastic waves is prescribed. 
For a Maxwellian medium with small losses the exact stationary response is derived. The 
results regarding the nonstationary response of the sphere embedded in a Kelvin- Voight 
medium are obtained numerically. It is shown that the results obtained are applicable 
to the prediction of mechanical properties of composite materials, as well as to those of 
buried structures, when these objects are excited by incompletely known or random dis­
turbances. 

1 Introduction 
Scattering of waves by an obstacle embedded in an infinite de-

formable solid has been intensively studied for the past 20-odd years 
following the work by Ying and Truell [1]. The continuing interest 
is due to the importance of this phenomenon to the mechanics of 
materials and structures and to seismic engineering. An extensive 
bibliography on this subject is given by Scott [2]. Accordingly, we do 
not provide here a complete list of references. The monograph by Pao 
and Mow [3] and the review papers by Achenbach [4] and Datta [5] 
cover the majority of the existing results. Recent works by Pao [6], 
Waterman [7], Lewis, Kraft, and Horn [8], Gaunaurd and Uberall [9], 
and Mei [10] provide an extension of the basic approaches and tech­
niques. 

All these works deal with deterministic incident waves which are 
supposed to be fully and exactly known. In distinction to such a for­
mulation the information available on natural or artificially created 
disturbances usually involves uncertainty to a greater or lesser degree. 
Moreover, in some problems the disturbance acting upon the obstacle 
is essentially random. Appropriate examples may be found in the 
works of Beran [11], Lin [12], Bolotin [13], and Newmark and 
Rosenblueth [14]. 

It is obvious that to be more practical the analysis of scattering 
phenomena should be combined with an account of random factors 
inherent in actual physical situations and, in particular, with an ac­
count of the random nature of the propagated disturbances. Beltzer 
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[15] has considered the random response of a rigid sphere embedded 
in a purely elastic medium.1 This study has been primarily devoted 

"to a mathematical treatment of the problem. 
It should be noted that a rigid insert in a deformable solid is an 

interesting example of a coupled system and, in addition to its engi­
neering applications, is important from a theoretical viewpoint. In­
deed, it is a generalization of the well-known simple models which 
consist of masses, springs, and dashpots. One of the important dif­
ferences is the presence of radiation damping in the general case 
considered here. 

The present paper uses essentially results given by Pao and Mow 
[16] and by Mow [17] on rigid inclusion motion in a perfectly elastic 
medium excited by a harmonic wave. The work deals with the fol­
lowing as yet untreated problems: 

1 The harmonic response of a rigid sphere embedded in a visco­
elastic and, hence, sound absorbing medium. 

2 A description of the propagation process of random viscoelastic 
waves and the prediction of their action on a randomly located 
spherical insert, including the transient and steady cases. 

3 Some applications of the results to the mechanics of composite 
materials and to the protection of buried structures when these objects 
are excited by incompletely known or random disturbances. 

2 Harmonic Response of a Rigid Sphere Embedded in 
a Viscoelastic Medium 

We deal with an infinite isotropic viscoelastic medium with mass 

1 See also, a recent paper by A. Beltzer, B. Robinson, and N. Rudy "The Effect 
of Random Compressional Waves on a Rigid Sphere Embedded in an Elastic 
Medium," Journal of Sound and Vibration Vol. 66, No. 4, 1979, pp. 513-
519. 
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density p and with complex dilatational and shear compliances D* 
and S«, respectively. The medium contains a rigid movable sphere 
of density po and radius a. The sphere is located at the origin of the 
coordinate system and is excited by plane harmonic P- waves traveling 
in the positive 2-direction. 

Since the boundary conditions at the sphere surface, which match 
the displacements of the medium with those of an insertion do not 
depend explicitly on time, the response of the sphere can be obtained 
directly from the solution for an elastic medium by means of the 
well-known correspondence principle [18]. The same conclusion can 
also be reached by reproducing the derivation presented by Pao and 
Mow [16] and by Mow [17] for the perfectly elastic case, making one 
change only: the two real wave numbers should be replaced by their 
complex generalizations. 

Making the indicated changes the displacement W of the sphere 
is found to be 

2 . 0 

W = (j>oikoH(ij))e~ (1) 

where (/loiko is the amplitude of the incident wave, W(t), and H(a)), 
the admittance function is as follows: 

ff(co) = 3me- i n ( -x 2 ra 2 - Sixn + 3)/{x2 i4 + i[x
2(2+m) 

+ x ( l + 2m)]n3 - [x3(2 + m) + 9mx 

+ 2m + l]n? - i9(x + l)mn + 9m) (2) 

with X = ks/ko' n = ako and m = p/po. 
The complex wave numbers ko and ks appearing in (2.) are ex­

pressed in terms of the compliances D* and S» by 

kD = u(p\D*\)V2ei<l<°'2; ks = co(p|S.|)1 'V*s/2 

where 

D*=Di- iD2 = |D . | e - '>" ; S* = Si.- iS2 •• 

(3) 

(4) 

Substitution of the expressions (3) into equation (2) makes it pos­
sible to determine -ff(oi) and hence |i/(oj)|2 which governs the 
steady-state response. This function is plotted in Fig. 1 according to 
equations (2) and (3) and the appropriate equations of Maxwell and 
Kelvin-Voight models [18]. Thus the energy losses which take place 
in the surrounding medium lead to a decrease in the resonance am­
plitude in comparison with the perfectly elastic medium. However 
the details of the response depend upon the viscoelastic model. 

3 The Effect of Random Viscoelastic Waves on 
Spherical Discontinuity 

We proceed now to the analysis of the response to a disturbance 
which is taken to be a superposition of traveling P- waves with random 
amplitudes and phases. In distinction to purely elastic waves, where 
the stochastic process describing such a disturbance is easily con­
structed [15], the case of viscoelastic random waves involves some 
peculiarities due to their dispersion and attenuation. 

The approach similar to that of control theory [19] can be adopted 
to describe the interaction between random disturbances and a dis­
continuity located in a viscoelastic medium. We shall suppose without 
loss of generality that the disturbance has zero mean. 

To make clearer the physical situation, it can be assumed that the 
viscoelastic waves emanate from the plane z = — zo(zo > 0) which vi­
brates with random complex amplitudes B(co) (Fig. 2). This leads to 
the description of the incident waves, W(i), in the form of the two 
stochastic integrals 

W(f)(t,z) •• £ e-i"teikDMzclB(u)) •• s: *dA(&>, (5) 

where z = z + zo, ko(w) = fcfl°(co) + ikoH<>>) is the complex dilata­
tional wave number and JB(OJ) and A(u>, z) are complex random pro­
cesses with uncorrelated increments. This expression shows that B{o>) 
and A(oo, z) and the associated spectral densities SB(W) and SA(O), Z) 
are related by 

A{d), z) s: eikDM*dB(e) ( - ° ° < a > < ° ° ) (6) 

0 . 5 
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— . — Maxwell medii; 
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Fig. 1 Transmittance function versus real part of wave number, v = 0.3; m 
= 0.2. Maxwell medium: Im (aks) = 7.10-2; Im (akD) = 5.1IT2. Kelvin-Voight 
medium: Im (aks) = 10~1,n0

2; Im (akD) = 8.10~2n0
2, 
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o s 
u o 
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Fig. 2 Geometry of problem 

and 

SA(u, z)/SB(w) = \e ikDW)z\1 .. -2* D l (u ) I (7) 

The relationships (6) and (7) reflect the filtering behavior of the 
viscoelastic medium. As is seen from (7) only the imaginary part of 
the wave number affects the spectral density of a process when the 
stationary process is considered. ° 

Let us now suppose that the discontinuity occurs at z = 0 with ad­
mittance function H(w). Taking into account the time-invariance of 
the system it can be found that the response W of the discontinuity 
and its nth derivative WM have the following variance functions 
when zo is held constant: 

Var [WW] = f " w2n\H(u})\2SA(co, 0)d<o 

= f ° Co2n|tf(<o)|2e-2fc°1<<»>z° (8) 
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XSB(<o)d<o(ra = 0 , 1 , 2 , . . . ) (8) 
{Cont.) 

2.0 

When the distance ZQ of a plane with a known spectral density 
Sg (co) is also a random variable, the additional averaging must be done 
by means of a probability function for ZQ. This yields 

">])20= j"° co2n\H(w)\2(e-2^1^o)Z(>SB(co)dw (9) (Var [ W 

where < ) z o designates the averaging with respect to ZQ. 
- By adopting the theory of nonstationary stochastic process we now 

extend the results expressed by equations (7) and (9) to the transient 
case. It can be assumed for this purpose that the nonstationary ran­
dom vibrations with a known spectral density SB(oii, C02) take place 
at 2 = — ZQ. Then the spectral density at the plane z is 

SA(o>i, o>2, z) = e'*0(»i)se->*D*(°'2)2,S,
fl(a)1)ai2) (10) 

Here the asterisk designates the complex conjugate. 
The nonstationary variance for the displacement of the insert is 

(Var [W(t)])zo=^o J _ ° J*<r(« 1)>, 0<r*(« 2)>,o 

X SB(WJ, 0)2) exp [—it(coi — 0)2) — £eo>2]do>i, do>2 (11) 

where 

<r(co)>z0 = tfM<e<*D<<*°>2 (12) 

Thus, if SB (O>) and the probability function for z0 are known, the 
problem is one of evaluating the integrals (9) or (11). Straightforward 
application of the residue method in its routine form to evaluate these 
integrals leads to computations which are tedious at best. Moreover, 
depending upon the types of roots the result is expressed by different 
analytical formulas. Therefore, in general, a numerical approach is 
preferable. However, it is clear that the derivation of an analytical 
solution is very desirable from a variety of viewpoints. In the following 
section, we deal with this problem. 

4 S t a t i o n a r y R e s p o n s e of a S p h e r e to N a r r o w - B a n d 
R a n d o m P r o c e s s 

Let us consider a rigid sphere with a center at z = 0, which is excited 
by random P- waves of a displacement traveling in a Maxwellian 
medium (Fig. 2). We assume that <l>o and cj>s in equations (3) and (4) 
are small, which is a usual restriction in the dynamics of viscoelastic 
composites [20]. The stochastic generalization of an harmonic wave 
is a so-called narrow-band process [13]. We suppose that such a pro­
cess takes place at z = —ZQ. This means that 

and 

SB(w) = 6K0[(o)-2 + 6 2 ) - 1 + (co+2 + b2)-l]/2-K 

SA(o>, z) = e-2*^SB(a>) (13) 

where KQ is the variance of the process, coT = COTS, 8 is the predomi­
nant frequency and b describes the "sharpness" of the peak at o> = 
8. It should be noted that the relationship 8 » /x/rjs.D must be valid 
to insure that (j>o and (j>s are small. 

Under this assumption, an exact and relatively compact solution 
can be obtained. It can be shown from (2), (9) and (13) that the fol­
lowing representation is true: 

| f f (co,z0) |2S4(co,z) 

= e-2^1<»+2o»9m2feKor2g6(io)/^6(reo)/i6(-^o)7r (14) 

where 

reo = Re (ako); r = a/c; c2 

= (X + 2n)/p;gfi(n0) = £ dfc«0i°-2*;/i6(no) 

= E Cfcno6-*; ho1 = 0.5 [(X + 2At)p]i/2A)D. 
k=Q 

0.5 

ra=0.2 

Fig. 3 Influence of viscosity on variance of Inclusion displacement; Im (ak0) 
= 5.10 -2 ; Im (aks) = 7.1<r2; v = 0.3; bu = 10"4 

The coefficients du and c* and other required relationships are 
given in the Appendix. It can also be shown that all the roots of hg(no) 
are located in the upper half plane which makes it possible to use the 
integral formula due to Phillips [21]. This formula is also given in [22 
N. 3.112, p. 218]. 

By means of this formula the variances of the insert displacement, 
the velocity and acceleration are found (using equation (9)) to be 

<Var [W])zo = VM60/(a0A6); (Var [W^])z 

= VM61/(a0A6r2) 

<Var[iy<2>]>Z0= VM62/(a0A6T4) 

(15) 

(16) 

where 

V = -9m2K0bT5; 8 = (e~^DH<2+zo))Z(f 

The A6 and Me; are the determinants of the 6 X 6 matrixs 

A6 = 
C1C3C5000 

A 
Mfii 

(17) 

M 6 i = 
djdzdsdtdsdo 

where A is 5 X 6 matrix 

/ c o c2 

/ 0 . C l 

A = I 0 c0 

1 0 0 

\ 0 0 

; M6 2 

Ci 

C3 

C2 

Cl 

Co 

0 
0 
C6 

C5 

c4 

0 
0 
0 
0 
C6> 

dod^dsdids 

A 

d2d3d4dsd0d1 

A 

C6 

C5 
Ci 

C3 

C2 

The results obtained make it possible to estimate the influence of 
anyone of the parameters of the system on the variance of the inclu­
sion displacement, velocity, and acceleration. 

Fig. 3, computed from equation (15) exhibits the dependence of Var 
[ W] upon the predominant dimensionless frequency By = 8T for some 
values of the density ratio, m. It follows from the comparison between 
Figs. 3 and 1 that Var [W] is increased when 8\ approaches the natural 
dimensionless frequency. Fig. 3 also shows the influence of energy 
losses which take place in the surrounding medium. 

Fig. 4 shows the dependence of Var [F] upon 8\ where F is the force 
acting on the inclusion. It is computed by means of the equation Var 
[F] = (47ra3p0/3)2 X Var [W<2>] and equation (16). As the figure and 
equation (16) show, the force is very sensitive to changes in at least 
the following parameters: half-transit time T, density ratio m, radius 
a, and frequency 8\. 

It should be noted that as has been shown by Moon and Mow [23], 
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2.0 

Fig. 4 Variance of force versus dimensionless forcing frequency 8i for various 
m;v = sphere volume; v = 0.3; bn = 10~4; 1m (aks) - 7.10 -3; Im (ak0) = 
5.10"3 

and by Beltzer [24], the dynamic properties of a composite material 
containing dispersed rigid spheres can be predicted on the basis of 
the dynamics of a single particle if the mixture is dilute. Therefore, 
the high sensitivity of the force to deviations of the parameters takes 
place also for this case. This explains the significant dispersion of 
mechanical properties observed for composite materials. 

Compact closed solution, such as the in the foregoing, can only 
rarely be found for problems of this type. In the general case a nu­
merical approach is required. 

5 N o n s t a t i o n a r y R e s p o n s e and S o m e Appl i ca t ions of 
the T h e o r y 

The application of the results obtained to the analysis of the me­
chanical properties of the composite material was briefly noted in 
Section 4. We shall deal here, in greater detail, with applications to 
the protection of buried structures subject to incompletely known or 
random excitation. 

Usually, the effect of a random ground shock on a structure is an­
alyzed by means of a discrete model and the spatial shape and, hence, 
the scattering phenomena are not taken into account [25, 26]. The 
approach presented in Section 3 makes it possible to account for the 
propagation process of random viscoelastic waves from a randomly 
located source and the subsequent response of the structure including 
the transient and steady cases. 

Let us consider the rigid sphere containing light equipment whose 
influence on the sphere motion can be neglected. The last restriction 
is usual for the practice of the analysis of ground shock action. It is 
important to predict the sphere acceleration since this function is the 
forcing term in the governing equations for the light equipment [25, 
26]. 

The disturbance appearing during an earthquake can be described 
as a random wave of acceleration. As was shown by Mow [17], if the 
excitation is a wave of acceleration, and the acceleration of the sphere 
is considered as the response, then the same equation (2) yields the 
admittance function. Therefore, this.time equation (11) yields the 
transient variance of the sphere acceleration and equation (9) governs 
the steady case. 

One of the models of the ground shock disturbances is a shot noise, 
Fit) 

Fit) = E YkHt • •tk) (18) 

H. 0. 16 

Fig. 5 Transient variance of sphere acceleration under shot-noise distur­
bance; z0 = 0; v = 0.3; W, = 103; « 2 = 10e; Im (aks) = 10 -1-n0

2; Im (afr„) 
= 8-10-2n0

2 

Fig. 6 Number of level crossings versus parameter N for various d,\ m = 
2; b-,i = 10-"; Im (ak0) = 5.1Q-3 

expected nonstationary arrival rate A(J) [12, 26]. If this process takes 
place at 2 = —z0 then 

Sj3(a>i, a)2) = (27T)-1 Var [Y]A(on - <o2) (19) 

where A(u>) is the Fourier transform of X(t). 
For this case equation (11) yields the transient variance of the 

sphere acceleration if SB(O>I, 0)2) is given by equation (19) and 
Hiw)—by equation (2). 

The results obtained by means of the numerical integration are 
given in Fig. 5 for the case Mt/r) = JVie_N2'2/T2(iVi, JV2 - constants). 
It was assumed that the surrounding medium behaves as the model 
of Kelvin-Voight [18]. It should be noted that the motion of the insert 
begins at t/r = — 1 when the wave has arrived at the incident side of 
the inclusion. 

In the case of a stationary excitation the suitable functional for 
estimating the reliability of protection is the number of crossings of 
the critical level /3 per unit time of the function W(2\ The expectation 
of this value, y^W' 2 ' ] , is determined by the Rice formula [27]. In the 
particular case considered in Section 4, and under the condition that 
the process is Gaussian, this formula yields 

where Yk are identically distributed independent random variables 
and tk are random times that obey the Poisson distribution with an 

where 

73[iy<2)] r = (M6 1 /M6)1 / 2 exp (-JV/2/)/ir 

N = /32/Var [W\% 

(20) 

(21) 
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/ = 9m2brM6/(aoAe) (22) 

Thus the influence of the various parameters on the number of level 
crossings can be determined. Fig. 6, computed from (20), shows the 
influence of the parameter JV, defined by (21), on the dependence 
7„[JFffl>] = /(ft). 

The results obtained here also provide the estimation of the force 
on a sphere and therefore they are applicable to the dynamics of 
composite materials. In view of a single-valued dependence between 
the inclusion motion and the stresses at r = a [3, 28] the functionals 
(8), (11), and (20) can be used to predict the fatique strength [12,13] 
of the composite material. 

6 Conclusion 
Harmonic and random responses of a rigid movable sphere em­

bedded in a viscoelastic medium have been studied theoretically. It 
was shown that the presence of energy losses in the surrounding me­
dium affect the inclusion motion. This influence depends upon the 
viscoelastic model. 

Expressions (7), (9), and (11) show that the interaction between 
viscoelastic waves and the discontinuity is different from that of 
random purely elastic waves, considered in [15]. It is of interest that 
only the imaginary part of the wave number affects the propagation 
of a stationary random disturbance. Since the viscoelastic waves are 
filtered during their propagation, the distance between an insert and 
a plane, at which the excitation had a prescribed spectral density, 
plays an essential role. 

It can be concluded that the analysis of the scattering of random 
viscoelastic waves by an obstacle makes it possible to account more 
fully for actual physical situations and to extend the range of appli­
cations of the theory. 
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APPENDIX 
1 | H M p = 9m2e-2"tf4(rco)/Mno)M-no) 

where 
3 4 

g4(i0) = £ bkn0
e-2k; hMa) = £ akn0*-k; b0 = 0; 

bi = Xo4; b 2 = X o 2 ( 2 5 2 - 6 7 + 3); 
b3 = 54 - 6y52 + 1552 - I87 + 9; 
a0

 = Xo2; a i = i(pi + 4mp 0 ) ; a2 = P2 + 3pinx; 
a3 = i(P3 + 2raip2); 
a'4 = P4 — rciP3 

with 
Mo = Re (n) = Re (aferj); re, =_Im (n); 7 = Im (aks); 
q = Im (x)o; xo = Re (x); 8 = xot; e = qr; 

Pi = Xo2(2 + m - 2e) + Xo(l + 2m); 
P2 = Xo2(~ 2 - m - e2 + 4f + 2mt); 
P3 = Xo2(- 2f2 - me2 + 4e + 2me) + 9xo(~ m + me) - 9m; 
Pi= Xo2f2(2 + m) - xifime + 9m; 

2 I H(w)\2 -SA (CO) = e - ^ ' f ' + ^ m V c - ^ e l n o l M s 
•(no)he(- no) where 

geino) = £ c W 0 - 2 * ; h6(n0) = £ ckn0
6~k; d0 = dx = 0; 

fe=o k=o 

d.2 = bi; d3 = 62 + bip; dt = 63 + bip; ds = b3p; Co = a0; 
cx = i(-ai - 2buaQ); 
C2 = a2 - aop - 2 b u a i ; cs = i(- a3 + oip - 2b1:La2),' 
C4 = 04 - P02 - 26ua3 ; C5 = i(a3p — 2bu04); c6 = - <up 

where 
P = 0i2 + 6112; 0i = BT; bn = br. 

The compliances (equation (4)) are: 

TJi = (X + 2/t)-1; D2 = (VDU)-1; 

Si = /*-!; S2 = („so))-i 
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Elastostatic Far-Field Behafior in a 
Layered Half Space Under Surface 
Pressure1 

Elastostatic problem of a half space with a layer of possibly distinct mechanical proper­
ties under arbitrary normal tractions on the surface is reconsidered to establish far-field 
asymptotic expansions of the displacements. This work was motivated by application of 
such far field solutions to problems of the layered half space by Global-Local Finite-Ele­
ment Method (GLFEM). When the traction is a unit concentrated force, the asymptotic 
expansion is found to coincide, up to the second term of its inverse power series expansion 
with respect to the distance from the point at interface below the point of load applica­
tion, with that of the classical Boussinesq solution with a suitably chosen coordinate sys­
tem. This agreement between the two solutions is also observed for normal tractions on 
a bounded surface region. Comparative numerical results are given to demonstrate the 
modeling capabilities of the far-field asymptotic expansions in a GLFEM example. It's 
effectiveness is shown in terms of greater accuracy and computational efficiency over the 
conventional finite-element method. 

1 Introduction 
This paper is concerned with far-field asymptotic expansions of 

displacements in an elastic half space with an elastic layer of possibly 
distinct mechanical properties. The analysis presupposes perfect bond 
between the semi-infinite medium and the layer, while the loading 
is confined to normal tractions applied to a bounded portion of an 
otherwise free surface of the layer. The terms in the ensuing asymp­
totic series are ordered according to ft-11 (n = 1,2,...), where R is the 
distance from the point at interface below the centroid of load region, 
and explicitly relate the far-field behavior to the load distribution, 
the mechanical properties of both media, and the thickness of the 
layer. These asymptotic expansions illustrate Saint-Venant's principle 
by providing quantitative measures of decay in this particular in­
stance.2 The results are used in an application of the Global-Local 
Finite-Element Method (GLFEM) to elastostatic problems involving 
a layered, elastic half space. 

Because of their relevance to pavement design,3 geotechnical en-

1 This research was supported by Electric Power Research Institute, Palo 
Alto, Calif. 

2 See Gurtin [1] for a review of the Saint-Venant principle for homogeneous 
isotropic elastic bodies. 

3 See Yang [2]. 
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gineering, as well as many other applications, layered half-space 
problems have received repeated attention. Bufler's paper [3] contains 
a comprehensive review of elastostatic analyses of multilayered media. 
We shall rely on Bufler's summary of the literature and cite here only 
specific papers that bear directly on our present objectives. Of par­
ticular importance is Burmister's [4] exact solution to the problem 
of a layer perfectly bonded to a half space and subjected to a particular 
axisymmetric surface-pressure distribution. With the aid of this 
fundamental result, solutions corresponding to other normal loadings 
may be obtained by means of the Hankel transform. Reference should 
also be made to [5], where far-field asymptotic expansions of the 
displacements in a homogeneous, isotropic half space were system­
atically cataloged and their use in connection with GLFEM was ex­
amined. The present paper is thus an extension of [5]. 

GLFEM refers to a numerical analysis technique which employs 
both contemporary finite element and classical Rayleigh-Ritz dis­
placement approximations [6-8]. This method enjoys the advantage 
of more accurate modeling with substantially fewer degrees of freedom 
as compared to the conventional finite-element method (FEM). For 
brevity, we will refer to the Rayleigh-Ritz displacement approxima­
tions as global functions. The primary role of global functions is to 
capture the behavior in the regions where conventional finite-element 
modeling becomes kinematically inadequate or computationally 
cumbersome. Finite-element modeling limitations arise in a host of 
problems involving local singularities or unbounded regions. Known 
analytical results containing the essence of the relevant local or far-
field behavior can be incorporated into a finite-element analysis as 
global functions. It is evidently desirable to have such results available 
in as simple a mathematical form as possible. For this reason, as­
ymptotic expansions, in which the leading terms portray the dominant 
behavior, are particularly appealing. Our recent experience with 
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GLFEM analysis of half-space problems [5] demonstrated a marked 
improvement in computational efficiency for achieving a desired 
accuracy over conventional finite-element methods. 

Our first task here is to deduce a solution for a unit concentrated 
normal force on the surface of a layered half space from Burmister's 
solution by means of the Hankel transform. We will refer to this so­
lution as the generalized Boussinesq solution. Asymptotic expansions 
of the displacements are then extracted from this integral represen­
tation using the method described in [9]. These details are covered 
in Section 2. It will become apparent that the first two terms in the 
expansions are quire simple in form and readily admit useful physical 
interpretation. Higher-order terms are obtainable, but only with the 
expense of increasingly elaborate algebra and without a commensurate 
gain in significance and usefulness. In Section 3, we focus on the as­
ymptotic behavior of the layered half space under arbitrary normal 
surface tractions confined to a bounded region. For this case, the as­
ymptotic expansions are constructed by superposition of the as­
ymptotic results associated with the generalized Boussinesq solution. 
Again, the first two terms are quite simple and permit a convenient 
physical interpretation. Section 4 is devoted to a GLFEM numerical 
example in which the previously established far-field asymptotic 
behavior is utilized. From this, one can draw some interesting con­
clusions which provide guidance in the GLFEM modeling of soil-
structure interaction. 

2 T h e G e n e r a l i z e d B o u s s i n e s q P r o b l e m 
Consider a layer of thickness h perfectly bonded to a semi-infinite 

medium. Let fi', v' and fi, v denote the shear modulus and Poisson's 
ratio of the layer and the half space, respectively.4 Establish a rec­
tangular Cartesian coordinate system (xi, x% X3) with its origin at the 
interface of the two media. Let A' and A denote the domains occupied 
by the layer6 (—<*> <xa < <=, - h <x$ < 0 ) and the half space (—°° < 
xa < «>, 0 < X3 < <*>). Let ui and ffy represent the Cartesian compo­
nents of displacement and stress. We will have occasion to use circular 
cylindrical coordinates (r, d, 2) having the same origin and the z-axis 
coincident with the X3-axis. The cylindrical components of dis­
placement and stress are identified by subscripts (r, d,z). 

The problem for the layered half space subjected to an arbitrary 
axisymmetric surface pressure, p(r), can be stated as follows. The 
fundamental equations within the classical theory of elasticity for both 
the layer and the half space are to be accompanied by the boundary 
conditions 

(1) 

the interface conditions 

M r , 0+) = M r , 0 - ) , M r , 0+) = M r , 0 - ) , 

<r«(r, 0+) = <rzz(r, 0 - ) , <Jzr(r, 0+) = azr(r, 0 - ) 

(0 < r < ») , , 

(2) 

and the regularity requirement that all displacements and stresses 
vanish as R ~- <» where 

R = (x^'2. (3) 

Integral representations for the displacements due to p(r) can be 
constructed by using the Hankel transform6 and recognizing that 
Burmister's exact solution [4] in the kernal in that formula: 

4 Throughout this paper, quantities associated with the layer are distin­
guished by a prime from those pertaining to the half space. 
, 5 Greek and Roman subscripts have ranges (1, 2) and (1, 2, 3), respectively. 
The usual summation and differentiation conventions for indicial notation are 
employed. &ij denotes the Kronecker delta. 

6 See, for instance, Sneddon [10, p. 52]. 

ur(r, z)=-j- C"p(Z)[[A'l& + (1 + WWW 
2u' Jo 

«z-h> 
2/f 

+ [B'(fl - (1 - e*)i) '($)]«-«*+ hVi(£r)d& 

uz(r,z) = ~ f " ^ ( € ) U - A ' ( € ) + (2 -4 i r - - f a )C ' ( f ) ] ee««-« >(4) 
2a' Jo la' 

+ [B'W + (2 - 4i/' + £2)D'(£)]e-«*+''>)Jo(£r)d£ 

in A' J 
M r , 2) = ^ - f" /)(£)[B(£)e-«; 

2a Jo 
z+h) 

(1 - £2)D(£)e-«2+">]Ji(ir)d£, 

uz(r,z) = — />(£)[B(£)e-«*+fc> 
2a Jo 

k5) 

Here 

and 

A'(f) = 

B'tt) 

+ ( 2 - 4 v + fz)D(£)e-«*+h>]Jo(£r)df in A. 

/H£) = 2TT rp(r)J0(£r)dr, I (6) 

2MB 
[K(1 - 4i/')(l + 2f/i) - X 

+ KX(4I/ - 2#i)e-2«h], 

2A(f) 
[(4i/ + 2#i) - Ae" 2 ^ 

with 

+ K ( l - 4 i / ' ) ( l - 2 £ / i ) e - 2 f ' ] , 

C'(f) = ^ - M l + 2#») - KXe-8*"], 

A(£) 

Btf) = 2 ( 1 " V>) C'U) - \ (1 - 4»)(1 - X)D'(£), 
w — 1 2 

D(& = (1 - X)D'(S) 

A(£) = 2ir[ l - (X + K + 4/c£2/i2)e-2f' + /cXe"4^]/ 

p! a > - l 
w = — • 

M 

X = l -

>(7) 

co + 3 - 4i/' 

4(1 - v') 

(8) 

1 + (3 - 4i/')co 

For the case of a unit concentrated compressive force applied at 
r = 0 on the surface, its pressure distribution is given by 

Hr) 
P(r) = 

2irr 
(9) 

where 6(r) is the Dirac delta function. The Hankel transform of p(r) 
is 

MB- (10) 

As noted earlier, we refer to the displacements (4) and (5) with p = 
1 and the associated stresses as the generalized Boussinesq solution. 
We shall identify the components of this solution by means of a su­
perscript "o". 

For the particular case in which the elastic properties of the layer 
and the half space are the same, the generalized Boussinesq solution 
reduces to Boussinesq's solution. This reduction, however, leads to 
an elastostatic field that differs from its classical representation by 
a translation in x$ direction because of the adopted coordinated sys­
tem. Thus, for fi = a' and v = v', 

&i(xi, x% X3) = Ui(x\, x2, x3 + h) in A and A', (11) 
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w h e r e u; are d i sp l acemen t s of t h e classical Bouss inesq solut ion: 

Ui(xi,x2,xa) =-
4-irfi 

XiXa ... „ .Xi(l - 5ia) 
(1 — 2v) 

R3 R(R + xa) 

+ —R~5i3 ( -0° < * „ < < » , 0 < x 3 < < » ) . (12)7 

F o r fu ture reference we record here t h e inverse power series of t h e 

d isp laced Bouss inesq solut ion wi th respec t to t h e d is tance from t h e 

origin: 

udxi, x2, xa + h) = ut(xi, x% 0) 

+ L fi{n)(xh x2, xa) in A' 
n=2 Tn 

ui(x\, x2, xz + h) = Ui(x-i, x2, xa) 

" * hn~l 

n=2 Rn 

where , for every fixed n, 

fi{n)(xi, x2, xa) = 0 ( 1 ) as r - » °°, 

FiM(xi, x2, x3) = 0 ( 1 ) as R — °°. 

I n par t i cu la r , we have 

* / Xo\ * * 
/a<

2> = ( l + - ^ k , < 2 > ( * i , * 2 , 0 ) , /3
(2> = 0, 

in A, 1(13) 

(14) 

(3) : /*<3> = 0, fa-

pJ2) = _ L ^ 
4irfi R 

KH\ hi 4lTfl 

2(1 - v) -

(15) 

3x3
5 

F 3 (2) , _±_xa 
4TTHR 

tea2! 

* (a)=_J_x*xs 

STTIX R2 

2 K - -

2(2 - j/) -

F3(3) = 
1 

47T^t 

2 15 xa4 

(16) 

„ - - ( 3 + 2 . ) ^ - + , 
2 R2 2 R4 

I t can be shown t h a t t h e two series in (13) converge for any positive 

r a n d R in the appropr ia te domains. At the same t ime, these series are 

a s y m p t o t i c as r —• <*> or as R —>• °°. 

O u r n e x t objective is to ex t r ac t t h e far-field behavior from t h e in­

tegra l r ep re sen t a t i ons (4) a n d (5) wi th fi = 1. For th i s t a sk t h e as­

y m p t o t i c formulas in [9] for integrals of t h e Lipsh i tz -Hankel type are 

needed , which we s u m m a r i z e as follows. 

L e t 4>(k< 2)> f ° r z o n [~h, 0], and $ (£ ) be bo th JV-times cont inuously 

d i f ferent iable wi th r e spec t t o ij on [0, =>) and m e e t cer ta in add i t iona l 

r e q u i r e m e n t s s t a t ed in [9]. T h e n , 

a re r e p r e s e n t a b l e in t e r m s of hype rgeomet r i c func t ions 8 which, for 

ce r t a in c o m b i n a t i o n s of m a n d n, a s sume algebraic forms. 

W e list here the Cartesian displacement components of the far-field 

a s y m p t o t i c expans ion of t h e general ized Bouss inesq solut ion. 

Ui(xi, x% Xa) = " ; ( * i , x% 0) + / ; ( 2 ) ( * i , x2, xa) 
h 

+ fii3)(xi,x2,xa) — +0(r-'i) as r -- °° in A', (19) 
7-3 

i l i d i , x% xa) = Ui(xi, x2, xa) + F ; ( 2 ) U i , x2, x3) 

h2 

R2 

+ Fi^(xi,x2,X3) — +0(R-4) as fi — » in A, (20) 
Ra 

where 

/ i ( 2 ) = ( 

/ 3 (3 )= 
47r/i 

l + 7 - ^ l ^ < 2 ) ( * i . * 2 , 0 ) , 

; „ < 3 ) = o, 

Co(3) + C l ( 3 ) f 3 + C 2 ( 3 ) 
h 

Fi^=(l + y)Fi^(x1,x2,xsy 

1 xaxa 

PJ3) = 
2M R2 B 0

( 3 ) + S 2
( 3 ) | — 

2M 
Co<3) + C2<

3> | - j + C4<
3> p " 

(21) 

1 

1 - p ' 
(1 - 2v) - - (1 - 2 / ) 

(22) 

(23) 

in which F , ( 2 ) is given in (16), while Cft<3>, Bu(3\ C^<3) a re cons t an t s 

d e p e n d e n t u p o n v, v', n'lp- Because of t h e a lgebra involved, i t is n o t 

conven ien t t o seek explici t express ions for t h e c o n s t a n t s Ck ( 3 ' , B/,(3', 

Ckt-3\ However, they can be de te rmined numerically wi thout difficulty 

for specific va lues of v, v', a n d p!l\i by use of (17) a n d (18). 

On compar ing t h e far-field expansion of t h e displaced Boussinesq . 

solution (13) with t h a t of t h e generalized Boussinesq solution (19) and 

(20), we observe t h e a s y m p t o t i c re la t ions 

di(xi, x% xa) = ui(xi, x2, xa + h) + 0 ( # ~ 3 ) 

as R — <•» in A a n d A', (24) 9 

where 

h = ( l + 7 ) h . (25) 

At th i s po in t we in t roduce scaled coord ina tes a n d scaled d i s t ance 

as 

X \PK N~l 1 
<M,z)Jm(rH)dli = ^ - E — 

o 2m „ -o rn+1 

T(m + n + 1) 

n\T{{m - n + l ) / 2 ) r ( ( m + n + 2)12) d £ " £-0 
+ o(r~N) 

* ; = — ' — , R = (XiXi)1'2 -
1 + 7 

T h e n it follows from (12), (24)-(26) t h a t 

1 

1 + 7 
(26) 

ut(xi, x% xa) 
1 + 7 

as r-*<*», z e \-h,Q], (17) 

udxi, x2, x3 + h) + 0(R-3) 

as R - * » in A a n d A'. (27) 

X' * « ) • " ' V m ( r f ) d f 

N-l 1 1 r ~ 
E -Z~r;- \ ^ " e - i ^ ^ d j s i n ^ d T ) 

n=o Rn+1n\ Jo l=o 
+ o(R~N) 

a s f l ^ c o , z s [ 0 , » ) , (18) 

where cos \j/ = 2/i? a n d sin ip = r/R. T h e integrals on t h e r ight in (18) 

- As shown in (24), t h e general ized Bouss inesq solut ion associa ted 

wi th t h e layer of th ickness , h, has t h e s a m e far-field behavior u p to 

0(R~2) with t h a t for the displaced Boussinesq solution corresponding 

to a half space wi th t h e free surface a t xa - — h. T h u s , wi th in t h e 

cur ren t order es t imate , the far-field d i sp lacements in t h e layered half 

space coincide wi th those for a homogeneous half space even t h o u g h 

the far-field expansions refer to a poin t on the interface for the former 

7 See, for example, Love [11, p. 191], or Sokolnikoff [12, p. 339]. 
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9 The order statement 0(R~3) is equivalent to 0(r~3) in A'. 
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and to an interior point of the depth h from the free surface for the 
latter. 

If we wish to have the translation for the displaced Boussinesq so­
lution equal to the thickness of the layer, the elastic properties of the 
layer distinct from those for the half space emerge as a scaling factor, 
1/(1 + 7), both in coordinates and in magnitude as demonstrated in 
(27). The relation (27) will be employed in the numerical example to 
draw some information. 

It should be mentioned that the formal differentiation of (24) is 
permissible and yields the same results which follow from the integral 
representations for the derivatives of i2;. This statement holds true 
also for the asymptotic relations (19) and (20). 

3 Far-Field Displacement Due to an Arbitrary 
Pressure Over a Bounded Region 

Let a pressure p act over a bounded region II on the otherwise 
traction-free surface of the layered half space. Suppose also that the 
origin of the coordinate system coincides with the perpendicular 
projection of the centroid of II at the plane x3 = 0. Denote by P, P„, 
and Pap the total force, the first moment, and the second moment of 
p , respectively, i.e., 

P= ( p(xi,xz)dA, Pa= I xap(x\, x2)dA, 
%) IT J 7T 

Pap= ) xaxpp(xi, x2)dA. (28) 

By appealing to superposition, the displacements in the layered 
half space can be written as 

Ui(xi, X% X3) = I p(£l, £z)"t(«l — £l. * 2 - £2, X3)d£ld& 

in A' and A, (29) 

where the kernel has the Taylor series representation 

u-i(x\ - £1, xi - £2, x3) = &i(xi, x% xs) 

Uim(xi, x2, x3) = Pudxi, x2, 0) 

+ p( l + 7 + ^)£ ( 2 ) Ui,* 2 ,0 )^ 

* . h2 

~ PaUi,a(Xl, Xi, 0) + P/j (3 '(*l, X% X3) — 
r6 

- P J 1 + 7 + 
x3 d 

h dx. 
Fi^(xi,x2,0)-n 

+ —Pafiii,ap(xi,X2,Q) in A', 

Uim(Xl, x^ x3) = Pui(Xl, x% xs) + P(l + y}FiW(xi,X2, x3) 

h . h2 

X — - PaUi,a(xi, x% xs) + PFi^Hx!, x^ x3) — 
R-1 icd 

- P „ ( l + 7) 
dxa 

Fi^(xix2,x3): 

>(36) 

+ —Pal3Uirafi(xi,Xi,x3) in A. 

It follows from (33) and (35) that use of u;11 and u ; m as global 
functions approximates the far-field behavior up to 0(R~2) and 
0(R~3), respectively. Note that although it;11 is inherently less ac­
curate that Uim, it is far more appealing because of its simplicity. Only 
a single expression is needed in it,-11 to describe the behavior in both 
domains A and A', whereas in u,: m , there is a separate formula for each 
domain. Moreover, numerical evaluations of some constants in u,111 

are necessary before it can be used. 

4 Numerical Example and Discussion 
In our numerical example we consider a layered half space on which 

a uniform pressure of unit total force acts over a circular region with 
unit radius. For this loading the Hankel transform (6) of the pressure 
and the loading parameters (28) take the forms: 

' £«U;,a(*l, Xi, XS) + — £„£(3"j,a/3Ul, Xi, Xs) 

-Qi(xh x2, x3; £h £2, £3), (30) 

with 

Qi = — £«£/3£7";,a0TUi - «£i, X2 - e£2, x3), (31) 

for some e on (0,1). We note here that the consecutive terms on the 
right-hand side of (30) are of OiR'1), 0{R~2), 0{R~3), and OCR"4) 
as R —• °>, as is apparent from (24) and its differentiability. 

- Substitution of u; from (30) into (29) and utilization of (28) yield 
the asymptotic expansions of the displacements as R -» <= up to 
0(R-3): 

Ui(xi, Xi, Xs) = PUi(xi, Xi, Xs) - PaUi,a(xi, X2, X3) 

+ -JfuiiaS)(x1,Xi,x3) + 0(R-'i). (32) 

In anticipation of the GLFEM application, we recast (32) with the 
aid of (19), (20), and (24) into forms which are compact and can be 
directly employed as the required global functions. One such form 
is 

ui(x\, x% xs) = utll(xi, x% x3) + 0(R 3), (33) 

with 

uin(xi, x% x3) = Pui(xh Xi, x3 + h) - PaUiia(xi, Xi, xs + h) 

in A and A' (34) 

Another form is 

Ui(xi, Xi, x3) = Uim(xu x% xs) + 0(R-4) (35) 

with 

P(£) = - J I ( £ ) , 

P = l , P„ = 0, P„/3 = - 5 „ 
4 

(37) 

(38) 

Further, let the thickness of the layer be unity. For mechanical 
properties, we take v = v' = 0.3 and treat the shear-moduli ratio fi'//i 
as a parameter to be varied. However, the bulk of the numerical results 
will be restricted to fx'lii = 2 and \i!l\i = 10. 

For comparison purposes the exact displacements along two lines 
from the center of the load region II are evaluated: (a) along the axis 
of symmetry (xa = 0, — 1 <x3 < <») and (b) along a line on the surface 
(0 < x\ < <*>, Xi = 0, x3 = —1). The integral representations for the 
exact solution appropriate for the uniform pressure are given by (4), 
(5), and (37). These results are shown by solid lines in Figs. 1 and 2 
for /t'/V = 2 and n'//i = 10. 

We next examine the accuracy of the asymptotic displacements u , n 

and Uim by comparing them with the exact solution. Note from (34) 
and (38) that 

: ui(xi, Xi, x3 + h) (39) 

This asymptotic result, for the lines (a) and (b), is plotted on Figs. 1 
and 2 as dashed lines. In contrast, u,-m given by (36) and (38) involves 
certain coefficients appearing in (21) and (22), which are found nu­
merically. Along the lines (a) and (b) the asymptotic displacements 
u ; l n assume the following forms: 

(a) jxua 

where 

: 0 , M"3m = Cl £2 £3 

z2 z 3 

(40) 

z = x3 (1 < z < •»). 
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Fig. 1(a) Displacement fiu3 along x3-axis: fi'lfi = 2 
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Fig. 2(a) Displacements on the surface: n'/ft = 2 
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Fig. 2(b) Displacements on the surface: H'/JX = 10 

with the constants c„ for n'/fi = 2 and /U'/M = 10 listed in Table 1. Note 
that the leading terms in (40) and (41) are those of Boussinesq's so­
lution, and thus the constants a, C4, and ce are independent of the 
stiffness ratio. This asymptotic result is superimposed on Figs. 1 and 
2 as dotted lines. In addition, numerical vlues of u;11 and u ; I n at dis­
crete locations are given in the inlaid tables to reveal their quantitative 
differences. As anticipated, both asymptotic solutions gain accuracy 
with the distance from the center of II. The accuracy is slightly more 
favorable for u ; l n when R is large. However, departures from their 
exact values are greater for u,111 than for m11 as this distance becomes 
small. This fact, coupled with the greater algebraic effort needed to 
obtain u , i n , makes it;11 much more attractive as a global function. 
Therefore, we will not consider it;111 in our GLFEM example. It is also 
seen that these asymptotic displacements are sensitive to the shear-
moduli ratio with the accuracy diminishing as fi'/n increases. 

In the GLFEM numerical example with u;11 as the global function, 
a sequence of finite-element mesh sizes was considered. The master 
finite-element grid is shown in Fig. 3. This mesh sequence is obtained 
by successively removing elements that lie beyond a certain set of 
mesh radii. The displacements exterior to a mesh will be represented 
by a\\UiK with an as the global coefficient. If a global function is exact 
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MASTER FINITE ELEMENT GRID OF LAYERED HALF SPACE 

Fig. 3 Master finite-element grid of layered half space 

Table 1 Coefficient c„ for /tu/" 

u ' / y 

C l 

C2 

C3 

C4 

C5 

C6 

C7 

2 

0.190986 

0.300121 

2 .10211 

0.0318310 

0.0636620 

0.111409 

0.236193 

10 

0.190986 

1.17320 

58.8307 

0.0318310 

0.572958 

0.111409 

3.49430 

for the given loading, then the global coefficient should emerge from 
the GLFEM analysis as unity. Even though u;11 is merely asymptotic 
as R —<• oo, global coefficients close to unity are indications of proper 
modeling of the far field. In Table 2 are shown the global coefficients 
obtained for various mesh radii for stiffness ratio 1, 2, 5, and 10. The 

' values of the global coefficients for fi'lfi = 1 are quoted from [5] and 
as are all the other results for this stiffness ratio. Also given in Table 
2 are the degrees of freedom from the mesh sizes. Table 3 gives the 
displacement /nu3 for ix'/u = 2,10 along the x3-axis from both GLFEM 
and conventional FEM based on several meshes. In FEM, zero dis­
placement conditions were imposed along the boundary of the 
mesh. 

The accuracy inherent in GLFEM vis-a-vis conventional FEM may 
be seen in Figs. 4 and 5, where results for the depression at the center 
of the load region by the two methods are shown. In these figures, the 
relative error (the difference between the GLFEM or FEM result and 
its associated exact value divided by the exact value and expressed 
as a percentage) is plotted. The dependence of the mesh radius and 
the stiffness ratio on the results are clearly seen. Also included in these 
figures are GLFEM results based on the classical Boussinesq solution. 
The flat portions of the GLFEM curves in Figs. 4 and 5 indicate that 
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Table 2 

1 

0.98949 

0.99668 

0.99776 

0.99881 

Global coefficient 

2 

1.00420 

1.00812 

1.00072 

0.99956 

5 

0.74876 

0.98972 

1.01386 

1.00485 

10 

0.54058 

0.73361 

1.01263 

1.01620 

R - mesh radius 

DOF = FEM degrees of freedom + one global coefficient 

the associated mesh sizes incorporates the far-field behavior as ac­
curately as would be possible using the given global function and the 
interior finite-element discretization pattern. Thus the beginning of 
the flat portion can be interpreted as the minimum required mesh 
radius. Any further improvement with additional degrees of freedom 
in the model should be invested in the refinement of the interior mesh 
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Table 3(a) GLFEM and FEM values of /^u3 along x3-axis: fi'//j. = 2 

R 

^ 
-1 

0 

1 

5 

10 

25 

50 

100 

EXACT 

-

-

165.26 

125.97 

79.770 

30.250 

16.844 

7.2296 

3.7102 

1.8813 

GLFEM with u*1 

5 

176 

164.45 

124.86 

78.068 

29.185 

16.574 

7.2178 

3.7189 

1.8882 

10 

292 

164.87 

125.45 

78.781 

29.986 

16.639 

7.2460 

3.7334 

1.8956 

25 

640 

164.87 

125.47 

78.819 

30.099 

16.895 

7.1928 

3.7060 

1.8817 

50 

750 

164.82 

125.42 

78.763 

30.045 

16.847 

7.2108 

3.7017 

1.8795 

FEM 

25 

639 

157.66 

118.21 

71.517 

22.687 

9.4479 

0 

50 

749 

161.13 

121.72 

75.056 

26.294 

13.060 

3.3945 

0 

100 

857 

162.92 

123.53 

76.868 

28.136 

14.924 

5.2621 

1.7696 

0 

y u 3 ( 0 , 0 , x 3 ) x 10 J ( y ' / y = 2) 

Table 3(6) GFLEM and FEM values of /tu3 along x3-axis: /i'/fi = 10 

R 

* 3 * \ 

-1 

0 

1 

5 

10 

25 

50 

100 

EXACT 

-

-

97.383 

90.739 

63.216 

27.269 

15.600 

6.8241 

3.5529 

1.8273 

GLFEM with u*1 

5 

176 

75.599 

68.374 

41.631 

9.2654 

6.3956 

3.3151 

1.8389 

0.97268 

10 

292 

89.112 

82.211 

55.115 

19.997 

8.6793 

4.4989 

2.4956 

1.3200 

25 

640 

95.427 

88.688 

61.700 

26.695 

15.193 

6.2100 

3.4447 

1.8221 

50 

750 

95.669 

88.944 

61.967 

27,012 

15.578 

6.7562 

3.4569 

1.8285 

FEM 

25 

639 

88.798 

82.046 

55.048 

20.044 

8.6103 

0 

50 

749 

92.107 

85,373 

58.389 

23.410 

11,960 

3.1542 

0 

100 

857 

93,830 

87,103 

60.124 

25.164 

13.726 

4.9128 

1.6675 

0 

V u (0,0.x ) x 103 (p ' /p = 10) 

accuracy for a layered half space (7 ^ 0) and a homogeneous half 
space (7 = 0) if the scaled mesh radius j \ is the same, i.e., 

ny = 5?0 = n0 or my = a + 7)^0. (43) 

When the results in Figs. 4 and 5 are replotted in Fig. 6 in terms of 31, 
the GLFEM curves for various stiffness ratios are brought closer to­
gether even though they remain far from coalescence to a single curve. 
The FEM curves are also brought closer. For a fixed scaled mesh ra­
dius ft, the accuracy of GLFEM results deteriorate as /i'V/n increase 
while those of FEM improve. The better quality of the latter for large 
ju'/ju. ratios is due to the diminishing multiplier 1/(1 + 7) in (42) and 
hence vanishing displacements, which are more in agreement with 
the prescribed boundary conditions in conventional FEM. On the 
other hand, the deterioration of the GLFEM results may be attributed 
to the coarse mesh configuration in the vicinity of load region and the 

and not in its enlargement. The conventional FEM results are much 
less accurate in comparison and lack the asymptotic flat portion in 
the range of mesh radii considered. Displacements obtained at other 
locations exhibit the same general trend for accuracy in terms of mesh 
radius and stiffness ratio. 

As apparent in these two figures, the GLFEM solution improves 
with increasing mesh radius ft and deteriorates as the stiffness ratio 
increases. With a view toward combining these two effects, we note 
from (24), (27), and (39) that 

1 * 
«in(*ii *2, xa) = ut(xi, ic2, xz + h), (42) 

1 + 7 

where £,- are scaled coordinates defined by (26). Thus u , n for any 
layered half space has, in scaled coordinates, exactly the same 
mathematical expression as that for a homogeneous half space except 
a multiplier 1/(1 + 7). We may, therefore, expect the same degree of 
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Fig. 6 Dependence of relative error of nu3 at (0, 0, —1) upon scaled mesh 
radius 
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Fig. 8 Relative and significant errors of fuii at the surface: n'/fi = 10 
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30 

Fig. 9 Relative and significant errors of )iu3 at the surface: ji'lji = 10 

Fig. 7 Relative and significant errors of fiu3 along x3-axis: n'/fi = 10 

interface and to the high displacement gradients when fi'ljx is 
large. 

The beginning of the asymptotic flat portions of the GLFEM curves 
for 1 < n'/fx < 10 occurred in the range 6 < ?? < 9. Thus the finite-
element mesh size ft in a GLFEM application for a given \i'l\x ratio 
should be in the corresponding range 6(1 + 7) < ft < 9(1 + 7). 

Finally, Figs. 7, 8, and 9 show, for n'/n = 10, errors of the GLFEM 
results for 5? = 50 and those of the FEM results for ft = 100 along the 
two lines (a) and (6). In these figures the solid lines refer to the relative 
error as previously defined while the dashed lines refer to the signif­
icant error, i.e., the difference between the GLFEM or FEM results 
and their associated exact values divided by the largest displacement 
which, in this case, is U3<0, 0, - 1 ) . In fairness to conventional FEM, 
it is noted that even though the relative error increases with the dis­
tance from the center of IT, the corresponding significant error re­
mains almost constant after a certain distance. Both relative and 
significant errors for the GLFEM results are much smaller than their 
FEM counterparts, except in the neighborhood of the load region, 
where errors are due to inadequate element discretization. Although 
the results for ji'lfi = 2 are not shown, they are similar in nature but 
are better than those for n'//i = 10. 

5 Concluding Remarks 
Far-field asymptotic expansion of displacements was established 

for a layered elastic half space under a concentrated normal force. This 
fundamental result designated as the generalized Boussinesq solution 

can be used to generate far-field asymptotic expansion for arbitrary 
normal loading by superposition. Far-field displacements for a uni­
form normal pressure confined to a circular surface region were es­
tablished and their accuracy was compared with the exact solution. 
This expansion was applied as a global function in a GLFEM example 
to show its modeling capabilities. The benefits of GLFEM based on 
this asymptotic solution over conventional FEM solution were seen 
in the significant reduction in the number of degrees of freedom and 
the increased accuracy. With global functions derived from the gen­
eralized Boussinesq solution, soil-structure interaction problems 
involving a layered half space may be easily and economically ex­
plored. 
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The Circumferential Contact 
Problem for the Belted Radial Tire 

Introduction 
The equilibrium distribution of pressure along the circumference 

of a belted radial tire loaded at its hub and in contact with a rigid, flat, 
frictionless roadway is obtained here using simple beam theory. The 
hard rubber in which the steel or fabric belt is embedded is assumed 
to be an inextensible, initially circular ring, the side wall is supposed 
to be an elastic foundation, and the tread rubber is replaced by a 
second distribution of linear springs in order to account for tread 
compression. 

In the past, bias ply and radial tires have often been modeled as a 
ring connected to. a rigid hub by a distribution of springs representing 
the side wall. These springs transmit the load applied at the hub to 
the ring which is in contact with the roadway [1-4]. Using this model, 
Clark [5], for example, has discussed the contact problem of a rolling 
tire under load. The geometry of the contact region is determined 
kinematically and, in the static limit, the distribution of contact 
pressure is obtained in a balance between it and the transverse forces 
due to bending and the side wall springs. To obtain numerical results, 
the stiffness of these springs must be determined in an experiment. 
The load is then calculated by integrating the contact pressure over 
the contact region. However, as pointed out by Clark [6] in a review 
of such tire models, the transverse shear and bending moment are 
discontinuous at the edges of the contact region and a pressure dis­
tribution resembling that observed experimentally is obtained only 
if shear deformations are included. 

Here, shear deformations are ignored, but the compressibility of 
the tread rubber is taken into account in a way proposed by Akasaka 
[7]. Following Rotta [8], the stiffness of the side wall spring is obtained 
in terms of the geometry of the side wall membrane and the inflation 
pressure. For the tire at rest, the linear differential equations gov­
erning the small deformations of the ring in the contact and free re­
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Fig. 1 The model tire 

gions are derived, taking care to include the initial tension in the ring 
due to the inflation pressure. The solutions of these differential 
equations are easily obtained, and the arbitrary constants involved 
in the solutions are determined by using the symmetry of the problem 
and requiring continuity of displacement, moment, shear, and tension 
at the edges of the contact region. In the contact region there are two 
different types of exact solutions possible depending upon the relative 
magnitudes of the parameters that characterize the tire geometry, 
inflation pressure, bending stiffness, and side wall and tread spring 
moduli. The first solution is obtained for the relatively large diameter 
and highly inflated truck and bus tire, while the second solution 
applies to the smaller diameter and less highly inflated passenger car 
tire. 

The geometrical and structural parameters are evaluated or esti­
mated for a commercial steel belted radial truck and bus tire. The 
predicted distribution of contact pressure is compared with experi­
ment. 

Equilibrium Equations 
The model radial tire illustrated in Fig. 1 consists of a circular ring, 

representing the hard rubber of the tread region, connected to a 
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central rigid hub by a continuous distribution of identical linear 
springs that models the effect of the side wall membrane of the in­
flated tire. On the outside of the ring a similar distribution of springs, 
with a stiffness different from the first, represents the tire tread. 

With the unit vectors n and t, respectively, normal and tangent to 
the deformed ring, the arc length s along the deformed ring, the cir­
cumferential tension T, the transverse shear V, the bending moment 
M, and the normal force density p , the local balance of force for the 
deformed ring is 

— (Vn) + — ( T t ) + p n = 0. 
as as 

(1) 

Upon introducing the radius of curvature p of the deformed ring and 
the relations 

dt _ _ 1. _ 

ds p ds 

dn 1 
I, (2) 

the tangential and normal components of the equilibrium equation 
(1) may be written as 

and 

dT V 
= 0, 

as p 

dV T 
— + - - P = O, 
as p 

respectively. The local balance of moment is 

dM 
V = 0. 

ds 

The ring is assumed to be inextensible; so 

s = ad, 

(3) 

(4) 

(5) 

(6) 

where a is the radius of the circular ring and 6 is the angle from the 
vertical to a material point in the undeformed configuration. Because 
of the constraint, the tension T is determined by the equilibrium 
equations. 

The ring is assumed to be a simple beam for which the relation 
between the bending moment and the change in curvature is 

M = EI (i-i). 
\a pi 

(7) 

where E is the Young's modulus of the material of the beam, and / is 
the second moment of its cross-sectional area about the neutral 
axis. . 

The circumferential displacement 7J, the normal displacement w, 
and their derivatives are assumed to be so small that their products 
may be neglected. In this event 

1 1 1 
- (w" - u'), (8) 

where a prime indicates a derivative with respect to 0. The inextens-
ibility assumption, expressed in terms of v and w, is, then, 

v' + w = 0; (9) 

so, if w is known, V may be determined, up to an arbitrary constant, 
by an integration; From equations (7)-(9) the bending moment is 
given by 

EI 
M = — (w" + w). (10) 

a2 

In the contact region the distributed load p is 

p = bP - 2Q0 - k-LW - k2\, (11) 

where b is the width of the ring, P is the inflation pressure, Qo is the 
loading of the inflated side wall, fei is the stiffness of the side wall 
spring, k2 is the stiffness of the tread spring, and X is compression of 
the tread spring. The load Qo and the spring stiffness ki are deter­
mined in terms of the side wall geometry and the inflation pressure 

STEEL BELT 

JS 
£ t^L 

-TREAD RUBBER 

Fig. 2 The tread geometry and the contact angle 

in the Appendix. From the geometry of the deformation given in Fig. 
2, the tread spring compression is determined to be [7] 

A = 57 + -
1_ 

,cos 8 
(12) 

where do is the displacement of the point on the bottom of the tire, 
and a is the distance from the center of the tire to the bottom of the 
tread. To the accuracy of the approximations already introduced 
[7], 

X = w + i • a(l — cos 8). (13) 

In the free region the compression of the tread spring is zero, and 
the distributed load is given by equation (11) with the last term de­
leted. 

The circumferential tension T is decomposed into two parts, 

T = To + AT; (14) 

To is the tension in the circular ring due to the inflation pressure P, 
and AT is the additional tension due to the deformation. For the 
inextensible circular ring subjected to the inflation pressure P, the 
equilibrium equations (3)-(5) and the constitutive equation (7) re­
quire that the moment and shear vanish, while 

T0 = abP - 2<zQo. (15) 

The contact angle 0*, at which contact between the tread and the 
the roadway is lost, is assumed to be known, and the differential 
equation governing w and AT are to be formulated and solved in the 
contact region and the free region subject to boundary conditions 
applied on the axis of symmetry and continuity conditions applied 
at 8*. 

The displacement d0 of the bottom of the tire is determined by the 
condition that, at 8*, the compression of the tread spring vanishes: 

0 = 57(0*) + d0 - a ( l - cos 0*). 

The contact pressure p c is, then, given by 

pc = fe2X = ki[w + do - a ( l - cos 8)], 

(16) 

(17) 

and the total load W is obtained by integrating the contact pressure 
over the contact region, 

W ak2[w + do - a ( l - cos 6)]d6. (18) 
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If equations (6), (10), (14), and (15) are used in the equilibrium 
equations (3)-(5), and terms of second order and higher in the de­
formation are disregarded, there results the three equations 

(AT)' - V = 0, 

To 

(19) 

V+AT- — (57" + w) + Ta-pa = 0, (20) 
a 

and 

ET 
— (57'" + 57') - V = 0. (21) 

If AT is eliminated from equation (20) by a differentiation and a 
substitution, and equation (21) is used to express V in terms of the 
derivatives of 57, the single equation 

EI EI To 
— (57'" + 57')" + — (iff" + 57') (57" + W)' - p ' = 0 (22) 
a 4 a 4 a 2 

is obtained for 57. Because p ' is discontinuous at 8*, this equation must 
be solved in each of the two regions; each solution must satisfy 
boundary conditions on the axis of symmetry, and the two solutions 
are joined by applying the appropriate continuity conditions at 6*. 

In the contact region, the displacement is normalized by a, and the 
nondimensional displacement is called wc. Then, by equations (11) 
and (13), the form of equation (22) appropriate to the contact region 
is 

e(5) + (2 _ £-4)u;c(3) + (1 + ai 6-4 + a2€-B)Wcil) 

a3e~6 sin 0, (23) 

where 

EI 

"a*T0' 
« i = -

a2ki 
1, a 2 = • 

a%2 

T0 
• f, as = a2- (24) 

In the tire to be considered as an example, 64 is small, and a\, a% and 
a3 are order unity. 

The particular solution of equation (23) is 

<*3 
(25) 

(1 + a!2)e2 + a2 

The characteristic equation of the homogeneous differential 
equation is " 

<r|o-4 - (2 - e-4)<r2 + [1 + «i€- 4 + a2e~6] = 0. (26) 

The nature of the solutions of this characteristic equation depend 
upon whether S = 4[(1 + ai)e2 + a^t2 is less than, equal to, or greater 
than unity. For the truck and bus tire to be considered as an example, 
only the first of the three possibilities is or interest. The last possibility 
corresponds to the smaller, less highly inflated passenger car tire [10, 
11]. 

When 52 < 1. the roots are 

(7 = 0, a — ±71, ff = ±72, 

where 71 and 72 are given by 

V 2 71 = y/-2 + e"*(l + V T ^ l 2 ) , 

(27) 

V 2 72 = V-2 + e~4(l - VT^¥), (28) 

and, for sufficiently small e, both 71 and 72 are real. 
In the free region the tread spring compression A is zero, so by 

equation (11) the form of equation (22) governing the nondimensional 
displacement uy in the free region is 

Wf(a) + (2 - e-4)w/<3' + (1 + ait-4)wf<» = 0. (29) 

The characteristic equation here is 

o-[<r4 - (e-4 - 2)ff2 + (1 + aie"4)] = 0. (30) 

Again there are three cases to consider, depending upon whether /j2 

= 4(1 + ai)«4 is less than, equal to, or greater than unity. Only the first 
possibility is of practical interest. 

When ju2 < 1, the roots are 

a = 0, a = ±73, cr = ±74, 

where 

(31) 

V 2 73 = V - ^ + ^ O ^ V T ^ 5 ) , 
V 2 74 = V - 2 + f-4(l + VY^i?). (32) 

In each of the regions the solution involves the five arbitrary con­
stants associated with the exponential solutions of the homogeneous 
differential equation. An integration of equation (9) gives the non-
dimensional circumferential displacement v in each region up to an 
arbitrary constant. 

On the axis of symmetry the circumferential displacement and the 
transverse shear must vanish and the tangent must be horizontal. 
Hence, at 8 = 0, 

(l) ; (3) + Wc(l) = 0; 

while, at 8 = 7r, 

Vf = wf
m = u>f(3> + wf

m = 0. 

(33) 

(34) 

At the edge of the contact region, the displacements, tangent, moment, 
shear, and tension must be continuous. Hence, at 8 = 8*, 

(i) = i^U), (35) 

(36) 

Wc = Wf, Uc = Vf, W, 

wcW + Wc = WfW + wf, u>W + wcV = WfW + wf<
l\ 

and, from equation (20), 

€4(u>c
(4> + Wc(2)) - (wc<2) + wc) + aie-2wc 

= 64(w/<4» + WfW) - (u>/2> + Wf) + a3e-2wf. (37) 

These 12 conditions determine the 12 arbitrary constants. The 
boundary conditions (33) at 8 = 0 are satisfied by retaining only those 
terms in the solution which are even about 8 = 0. Likewise, the 
boundary conditions (34) at 8 = w are satisfied by retaining only those 
terms even about 8 = ir. The remaining conditions (35) and (36) may 
be written more compactly as 

Vf, Wc = Wf, (0 : Wf (l) (38) 

where / = 1, 2, 3 and 4. 
Given 6*, the displacements w and v are determined at every point 

of the ring in the fashion just outlined. The displacement do of the 
bottom of the tire is then given by equation (16), the distribution of 
contact pressure p c over the contact region follows from equation (17), 
and the load W applied to the hub is obtained as a function of 8* or, 
alternatively, as a function of do through equation (18). 

In the contact region, the solutions wc and vc of equation (23) and 
(9) which satisfy the boundary conditions (33) are, when <52 < 1, 

wc = Ci + C2 cosh 7i0 + C3 cosh 726 — 

and 

«3 

(1 + a i k 2 + ai 
cos 6, (39) 

vc = — c\8 sinh ~f\8 sinh 726 H sin 6. 
71 72 (1 + «i) f + «2 

(40)' 

For the passenger car tire, the homogeneous solution contains terms 
that oscillate [10,11]. 

In the free region, the solutions Wf and Vf which satisfy the 
boundary conditions (34) are, when /it2 < 1, 

wf = C4 + cc, cosh [73(17 — 8)} + ce cosh [y^ir - 8)], (41) 

and 

Vf = —C4 H sinh [73(77 — 8)] + — sinh [74(77 - 8)]. (42) 
73 74 

The constants C\ to c$ are determined by the continuity conditions 
(35)-(37) applied at 0*. 
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experimentally at three stations across the tread and as calculated 

Numerical Results 
Numerical results are presented for the Bridgestone Radial Truck 

and Bus Tire 10.00-20. For this tire, the geometrical parameters 
identified in Pig. 1 are estimated to be 

b = 14 cm, a = 50 cm, T = 2.2 cm, 

t = 2.7 cm, a = 52.7 cm. (43) 

These quantities are determined from the tire in the following way: 
b is the width of the two center layers, or breakers, of the four layers 
that comprise the steel belt, a is the distance from the center of the ' 
hub to the innermost breaker, T is the distance from the outermost 
breaker to the bottom of the tire, t is the distance from the innermost 
breaker to the bottom of the tire. The last four of these lengths are 
measured along the center line of the cross section. 

The geometry of the side wall is idealized as a section of a circular 
cylinder shown in Fig. 5 of the Appendix. The angle 0O is taken to be 
the tangent angle of the radial cord in the inflated tire at the point on 
the cord at the edge of the center breakers. The chord of the circular 
arc of the side wall section is assumed to be the vertical distance from 
the point at which <j>o is determined, to the inner surface of the side 
wall. The radius ro of the circular arc is found from the length of the 
chord and the tangent angle. However, without performing a detailed 
analysis of the natural shape of the side wall, similar to those described 
by Bohm [4], it is not possible to determine 0o and ro exactly in the 
inflated tire from the geometry of the uninflated tire. Consequently, 
ro is here estimated from the uninflated cross section as 11 cm, and 
numerical results were obtained for several values of $o-

The cross section of the circular ring is assumed to be a rectangle 
of width b and thickness t. In calculating the bending stiffness of the 
ring the neutral axis of the rectangular cross section is supposed to 
be at the inner edge of the rectangle along the inner breaker of the 
relatively inextensible steel belt. The displacement w is that of this 
axis and the second moment / of the rectangular cross section is cal­
culated with respect to it. The Young's modulus E of the ring is taken 
to be that of the rubber in the tread region; so E = 50 kg/cm2 and D 
= EI= 4590 kg cm2. 

The stiffness k2 of the tread spring is given in terms of E and the 
tread geometry by k2 = Eb/T = 318 kg/cm2. Note that it has been 
assumed that the tread resists both compression and bending. 

The experiments on the truck and bus tire were performed at the 
relatively high inflation pressure P = 7.0 kg/cm2; consequently, the 
numerical results presented here employ this value. 

It is supposed that $ 0 = 75° and that the bending stiffness is D. 
Then, as detailed in the Appendix, Q0 = 1992 kg, and ki = 17.0 kg/ 
cm2; so To = 2900 kg, and c4 = 6.33 X 10~4, « i = 13.66, a2 = 6.93, a 3 

= 7.30. In this case, <52 = 0.735 and n2 = 3.71 X 10"2. Consequently, 
the displacements in the contact region are given by equations (39) 
and (40) in which, from equation (28), 71 = 34.6,72 = 19.6, and otz/[(\ 
+ ai)e2 + a2] = 1.000; while.the displacements in the free region are 
given by equations (41) and (42) in which, from equation (32), 73 = 
39.6, 74 = 3.7. 

For a given value of the contact angle, here taken to be 8* = 18°, 
the continuity conditions (38) result in a system of six linear algebraic 
equations for the six unknowns ci to ce. Because of the presence in 
the relatively large values of 71 and 73, the matrix of the coefficients 
of ci to C6 contains both extremely small and extremely large entries. 
Because it is difficult to calculate the inverse of such an ill-conditioned 
matrix by standard techniques, the problem is reformulated utilizing 
an approximation to the solutions (41) and (42) in the free region 
which avoids the numerical difficulties. In the free region these so­
lutions are replaced by 

Wf = C4 + Cffi y3° + cee~ 740 

and 

v, = Ci(Tr -6)+ — e -T3» + £ i e -74«. 
73 74 

(44) 

(45) 

The functions w/ and vf satisfy exactly the differential equations (29) 
and (9), respectively; but only approximately satisfy the boundary 
conditions (34) at 8 = w. 

In situations where the coefficient of the highest derivative in a 
differential equations is extremely small, it is anticipated that nu­
merical difficulties will be encountered in determining the exact so­
lution. In this problem, the fact that e4 is small indicates, for example, 
that the effects of bending are important only in the neighborhood 
of 8*. In a sequel to this paper [9], singular perturbation solutions to 
equations (23) and (29) are obtained which illustrate the nature of the 
boundary layers about 8* in which the effects of bending and shear 
are significant. 

With (39), (40), (44), and (45) the continuity conditions (38) applied 
at 6* = 18° determine the constants appearing in the solutions to 
be 

c1 = 4.52 X 10 \ c2 = 1.89 X 10"6, c3 = 1.56 X 10"3 (46) 

and 

c4 = 6.69 X 10"1, c5 = 2.45 X 103, c6 = -9 .21 . (47) 

With these values the solutions (44) and (45) give, at 8 = ir, 

vf = 0, WfW = 4.07 X 10-3(0.017°), 
Wfm +.W/d) : 4.065 X 10-3. (48) 

The last value is to be compared with the maximum value of the 
nondimensional shear, which is 750.4 at 8 = 8*. Thus the solutions (44) 
•md (45) satisfy almost exactly the boundary conditions at 8 = -ir. 

The displacement do of the bottom of the tread, calculated using 
equation (16), is 4.6 cm. The deformation w of the inner breaker is 
sketched in Fig. 3. The distribution of the contact pressure is drawn 
in Fig. 4 superposed upon the experimental determinations of the 
pressure at various stations across the tread. The total load W sup-
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ported by the tire, found through equation (18), is 2900 kg. In the 
experiment, do = 4.6 cm and W = 3635 kg. Thus, while the contact 
pressure obtained from the mode is a smooth distribution with a shape 
similar to those of the experiments, the level of the contact pressure 
is somewhat low. 

The distribution of pressure was found to be insensitive to increases 
of the side wall tangent angle $o- This was unexpected, because an 
increase in <£o reduces the shear Qo exerted Upon the tread beam by 
the side wall, and this decrease in shear loading increases the tension 
To in the ring. However an analysis of equation (56) of the Appendix 
shows that this increase in tension is compensated for by a reduction 
of the stiffness k\ of the side wall spring. 

It might be tempting to single out the linearization as the source 
of the disagreement between the analysis and the experiments, par­
ticularly since the change in nondimensional curvature in the contact 
region is close to unity on and near the axis of symmetry. However the 
nonlinear terms which have been neglected enter the governing 
equation multiplied by high powers of a small parameter; so their 
contribution to the equation is insignificant. 

A more probable reason for the low level of the calculated contact 
pressure is that a distribution of normal loads due to meridional 
prestress and changes in the meridional curvature has been ignored 
in the model. A preliminary analysis [10] of the meridional section cut 
by the plane of symmetry that begins with the equilibrium equations 
for a cylindrical shell shows that the level of contact pressure is raised 
about 20 percent when this load is taken into account. This brings the 
calculated pressure distribution into good agreement with the ex­
periments, and indicates that excellent results can be expected from 
a complete analysis of a cylindrical shell model. 

However, before this analysis can be carried out, the circumferential 
problem must be solved as a true contact problem. That is, when the 
deflection do of the bottom of the tread is specified, the contact angle 
6* should be determined in the course of solution. This problem is 
treated in the following paper [9]. 
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APPENDIX 
Here Rotta's [8] model of the side wall is employed in order to de­

termine the normal load On the ring due to the inflated side wall and 
the resistance of the inflated sidewall to deflections of the tread re­
gion. 

Fig. 5 The side wall geometry before and after deformation 

The geometry of the side wall in the inflated tire and in the inflated 
tire with a displaced tread region is shown in Fig. 5. The subscript zero 
identifies quantities associated with the inflated, undeformed tire. 
For the purposes of these calculations the tread region is assumed to 
be rigid, and the side wall of the tire is assumed to be a cylindrical 
membrane reinforced by inextensible cords of length I running parallel 
to its circumference. 

In the inflated, undeformed state the circumferential tension in 
the side wall is Pro. At the juncture of the side wall and the steel belt 
the side wall exerts upon the steel belt a horizontal force and a shear 
force Qo = Pro cos <j>o directed as shown in Fig. 5. After the deforma­
tion the vertical force Q = Pr cos 4>- Their difference AQ, 

AQ = Pr cos 0 — Pro cos < (49) 

represents the resistance of the side wall to the displacement of the 
tread region. In order to determine the stiffness k\ of the side wall 
spring it is first necessary to express AQ in terms of the displacement 
w of the steel belt. 

The geometry of the deformed tire is related to that of the unde­
formed tire by the inextensibility of the cords 

I = 2ro$o = 2r0. (50) 

Before the deformation, ro sin < 
tion, 

ho/2; while after the deforma-

ho+ w . w 
•• — - — = r0 sin <t>o + ~. 

Upon combining equations (50) and (51), 
of uJby 

• + • 

(51) 

is determined in terms 

(52) 
0 </>o 2r0</>o 

Then r is obtained in terms of $ and w through (51). 
The stiffness k\ is twice the derivative of AQ with respect to w 

evaluated at 4> — </>o and w = 0. With 

(53) r cos 0 = cot cmro sin 

dr _ dr d<t> dr 

dw d$ dw dw 
(54) 
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and 
feis2 

d(AQ) 

dw = P 
i»=o (sin 

(cos <t>0 + 4>Q sin 0O) 
(56) 

d<l> 

dw 

0 2 

2?'o0o(0 cos $ — sin </>) 
(55) 

0 0 COS </>0) 

This expression for the side wall stiffness is the same as that obtained 
by Rotta [8] by a different argument. 
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Singular Perturbation Solutions of 
-the Circumferential Contact Problem 
for the Belted Radial Truck and 
Bus Tire 

Introduction 
Here, a singular perturbation technique is used to obtain asymp­

totic solutions to the differential equations, boundary conditions, and 
continuity conditions which govern the circumferential behavior of 
a model steel belted radial tire. 

The formulation of the model is discussed in detail in a previous 
paper [1]. The belt is assumed to be inextensible and the tread region 
of the tire, consisting of the hard rubber in which the belt is embedded 
and the rubber of the tread, is idealized as a circular ring with a rec­
tangular cross section which resists changes in curvature. The side 
wall of the tire is assumed to be an inflated membrane, with simple 
geometry and material properties, which, as a consequence of its in­
flation and subsequent deformation, exerts transverse forces upon 
the ring. The transverse force due to the inflation of the circular side 
wall modifies the initial tension in the circular ring due to the inflation 
pressures. That part of the transverse force due to the deformation 
of the side wall enters the model as a distribution of linear springs with 
a stiffness which may be calculated from the inflation pressure and 
the side wall geometry. The effect of the compression of the tread 
rubber is included by girdling the ring with an elastic foundation with 
a stiffness based upon the modulus of the tread rubber. 

Because the tension in the ring is large compared to its bending 
stiffness, bending is important only in limited regions in the neigh­
borhood of the point at which the model tire loses contact with the 
roadway. Mathematically, the large difference in the size of the ten­
sion and the bending stiffness renders the coefficient of the highest 
derivative of the governing differential equations extremely small. 
This small parameter is the source of the numerical difficulties which 
are encountered when attempting to obtain exact solutions [1]. One 
possible alternative to obtaining exact solutions is to consider ap-
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proximate solutions which are series expansions in the small param­
eter. In situations in which the small parameter multiplies the highest 
derivative, an expansion of this type is not uniformly valid, but must 
be modified in regions where the highest derivative is important. 
These regions are the boundary layers. The expansions appropriate 
to each of the regions are joined, or matched, in their common region 
of validity. Such a singular perturbation analysis of the differential 
equations of the model radial tire is undertaken here for three reasons: 
first, because such an approach illuminates the physical phenomena 
by delineating the regions in which various physical effects are im­
portant; second, because the approximate solution which results is 
simple in form and easy to interpret; third, because such an analysis 
appears to provide the only means of obtaining solutions to contact 
problems for the cylindrical shell model of the tire. The problem 
considered here is similar to the "beam-string" discussed by Cole [2] 
and the nonuniform prestressed beam treated by Hutter and Pao [3]. 
An important difference is that the present problem is a contact 
problem; and, for a given vertical deflection of the tire bottom, the 
extent of tread in contact with the roadway is not known at the outset, 
but must be determined as part of the solution. Additional compli­
cations result from the initial curvature of the ring and the presence 
in the problem of a second small parameter, other than the ratio of 
the bending stiffness to the tension, which appears as a coefficient of 
high derivatives in the differential equation. In principle, these two 
small parameters may be varied independently, generating model tires 
of various sizes, side wall geometries, tread stiffnesses, and inflation 
pressures. However, in the problem at hand, it is convenient to relate 
the second of these small parameters to the first, converting the 
problem from one with two small parameters to a problem involving 
only one. In a tire of fixed geometry and tread displacement, as this 
parameter approaches zero the inflation pressure and the stiffness 
of the tread spring both increase without bound, but in a fixed ratio. 
In this "distinguished limit" corrections are obtained to previous 
analyses of simpler tire models, reviewed by Clark [4], which neces­
sitate that a concentrated moment and a concentrated transverse 
shear be applied at the edge of the contact region. 

Where the tire is in contact with the road, different solutions are 
found in each of three regions. In the boundary layer closest to the 
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Fig. 1 The model of the steel belted radial tire 

point at which contact is lost, bending and tension dominate. In an 
intermediate layer, the effects of tension and the tread spring are most 
important, while the deformation in the outer region, furthest from 
the contact point, is governed by the side wall and tread springs. In 
that part of the tire not in contact with the road, there are different 
solutions in each of two regions. In the boundary layer closest to the 
contact point, bending and tension again dominate, while the defor­
mation in the outer region is governed by the side wall spring. 

T h e S i n g u l a r P e r t u r b a t i o n So lu t ions 
The differential equation governing the radial displacement wc for 

the portion of the model steel belted radial tire shown in Fig. 1 which 
is at rest and in contact with a flat, smooth rigid roadway was deter­
mined in [1] to be 

wc™ + 
( - ^ 

uJ<3> 

1 + — ki 
\ EI EI I EI 

0, (1) 

where the number in parenthesis indicates the number of derivatives 
with respect to the circumferential angle 8, a is the radius of the ini­
tially circular ring, To is the initial tension in the ring, EI is the 
bending stiffness of the ring, k\ is the stiffness of the side wall spring, 
ft 2 is the stiffness of the tread spring and A is the compression of the 
tread spring, given in equation (13) of [1] as 

; + do — a ( l — cos#), (2) 

where do is the displacement of the bottom of the tire, and a is the 
distance from the center of the tire to the bottom of the tire. 

In the noncontact, or free, region the differential equation governing 
the radial displacement Wf is 

a2T0\ 
»/<» + (2 - ^ ) %<» + [ l + — fex • 

\ EI I \ EI EI 
WfM = 0. (3) 

Because the ring is assumed to be inextensible, the circumferential 
displacement v is determined in each region by integrating the con­
straint equation 

t?(i) + w = 0. (4) 

On the axis of symmetry, the circumferential displacement and the 
transverse shear must vanish, and the tangent must be horizontal. At 
9 = 0, these conditions require 

„ < « : (3) : 0, (5) 

so vc is an odd function of 8 and wc is an even function of 8; while at 
0 = 7T, 

Vf = uJ/D = WfW = 0, (6) 

thus Vf is an odd function of w — 8 and Wf is an even function of it — 
8. 

At the point, called the contact point, at which the tread loses 

contact with the road, 8 is 8*, and the displacements, tangent, 
transverse shear, bending, and circumferential tension must all be 
continuous. These conditions are equivalent to the requirements that, 
at 0 = 8*, 

Vf, Wc = Wf, IUC
(" = WfV\ (7) 

where I = 1,2, 3, and 4. 
The differential equations (1) and (3) in the contact region and the 

free region may each be integrated once to give 

toc<
4> + 2 

and 

a2T0\ ,„, a4 a 4 , a 2 T 0 \ _ 
5>c

<2> + 1 + — ki + — k2 ' " 
EI ) \ EI EI EI 

a*k2 ,_ , , a*k2_ „ a4c ,n^ 
= — ( a - d o ) - — a c o s 0 + — , (8) 

respectively. The constant of integration c is the same in both equa­
tions by virtue of the continuity conditions (7). 

In each region the displacement w is nondimensionalized by a and 
the nondimensional displacement is denoted by w. 

Estimates based on a real tire [1] indicate that the dimensionless 
ratio f4 = EI/a2To is extremely small; while the dimensionless ratios 
«i , «2, 013, and a.4, defined by 

a i 1 
a2fti 

"~To~~ 
a 2 = 

a2fe2 
1 T0 

a 
as = « 2 ~ , 

a 
CX4 = « 2 M' 

(10) 

are all of order one. The asymptotic solutions to the differential 
equations which are obtained here are strictly valid only in the limit 
as 1 goes to zero with a\, OL% a% and <XJ remaining fixed. Consequently, 
for a tire of given geometry with a definite tread displacement do, the 
process of passing to the limit corresponds, according to these defi­
nitions, to the consideration of a succession of such tires in which the 
bending stiffness EI decreases to zero, the initial tension To or, 
equivalently, the inflation pressure P increases without bound, and 
the stiffness ft 2 of the tread spring increases like To3/2. Such a limit 
is called a distinguished limit, for in restricting attention to this limit 
a special case, involving the single small parameter e, has been dis­
tinguished from the general case which involves the two small pa­
rameters « and To/a2k2. 

Expressed in terms of the dimensionless quantities, the differential 
equation (8) in the contact region becomes 

f6(tu(4) + 2iu<2' + w) — e2(u;(2) — a\w) + a2w = 04 — 0:3 cos 8 + e"2c 

(11) 

while the differential equation (9) in the free region becomes 

eHwM + 2w<2> + w) - u>W + aiw = c. (12) 

The methods used here to obtain asymptotic solutions to the dif­
ferential equations (11) and (12) are discussed in detail in Cole's book 
[2]. 

To initiate the process, the constant c is expanded in a power series 
in e, 

c = A0+ eAi + e2A2 + . (13) 

where the coefficients of the powers of c are constants. 
In that portion of the contact region away from the contact point, 

the outer solution wc° of the differential equation (11) is expressed 
as a power series in e, 

; WQ + wie + w2e
2 + . (14) 

where the coefficients of the powers of e are functions of 8. Substitu­
tion of the two series (13) and (14) into the differential equation (11) 
yields, to third order, 
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0C2WQ — «4 + «3 COS 8 + ta<lW\ 

+ e2(a2itf2 - wom + cciw0 - Ao) + . . . = 0 . (15) 

Consequen t ly , t h e ou te r solut ion in t h e con tac t region is, t o t h i r d 

order , 

a — d a 
c ° = cos 8 + £2 — - (1 + a i ) cos 0 + — 

«2 «2 «2. 

(16) 

Because wc° is an even funct ion of 0, i t satisfies, to t h i r d order , t h e 

b o u n d a r y cond i t ions (5). 

In a similar fashion, the outer solut ion wf° in t h e free region which 

satisfies t h e different ial equa t ion (12) and t h e b o u n d a r y condi t ions 

(6) is, t o t h i r d order , 

Wf" 
Ao 

Oil 
+ D 0 cosh [ V o l (ir - B)] + t 

\M 

— + D i cosh [ V ^ ( T T - 6)]\ 
.Oil J 

+ e2 — + Z)2 cosh [V^T(ir - 8)] 
[ai 

, (17) 

where t h e coefficients of t h e hyperbol ic cosines are cons tan t s . 

In the pa r t of the contac t region close to the contact point the higher 

der iva t ives in t h e different ial equa t ion (11) are expec ted t o become 

impor tan t . T h e way in which these t e rms increase in the neighborhood 

of t h e c o n t a c t p o i n t m a y be d e t e r m i n e d by m a k i n g a change in inde­

p e n d e n t variable from 6 t o a "s t re tched" variable obtained by dividing 

t h e angle from the contact point by e raised to some power. T h e power 

is to be chosen so t h a t a ba lance be tween t e r m s in t h e differential 

e q u a t i o n involving high der ivat ives d o m i n a t e s t h e remain ing t e r m s 

in t h e l imi t as e goes t o zero. T w o such ba lances are found t o be pos­

sible in equa t ion (11). In one s t retching, the first t e rm in pa ren theses 

in e q u a t i o n (11) becomes negligible, a n d t h e ba lance is be tween t h e 

r ema in ing t e rms which represen t t h e effects of t h e initial tension and 

the t read spring. In t h e second stretching the t e rms in the parentheses 

ba lance one ano the r , a n d the r ema in ing t e rms become negligible in 

t h e l imit . H e r e t h e d o m i n a n t t e rms r ep re sen t t h e effects of b e n d i n g 

a n d t h e ini t ia l t ens ion . Because t h e h ighes t der ivat ive in t h e differ­

en t i a l e q u a t i o n is p rese rved in t h e second s t re tch ing , t h e solut ion t o 

th i s equa t ion can also satisfy the cont inui ty condi t ions a t t h e contac t 

po in t . Consequen t ly , t h e r e is t h e possibi l i ty of obta in ing different 

solut ions of t h e differential equa t ion (11) in each of t h ree p a r t s of t h e 

c o n t a c t region: t h e ou te r solut ion (16) in t h e region away from t h e 

con tac t point , an inner- inner solution in the bounda ry layer wi th the 

c o n t a c t p o i n t as an end po in t , a n d an inner solut ion in t h e layer be ­

tween t h e b o u n d a r y layer a n d t h e outer region. T h i s possibi l i ty will 

b e real ized if these so lu t ions can be jo ined, or m a t c h e d , in the i r 

c o m m o n regions of val idi ty . 

A s imilar analysis in t h e free region shows t h a t t h e r e is only one 

s t r e t ch ing which yields a ba lance , which d o m i n a t e s in t h e l imit , be­

tween t e r m s involving high derivatives. W i t h this s t re tching t h e t e r m 

in equa t ion (12) mul t ip l i ed by « i becomes negligible. Again t h e bal­

ance is between bending and initial tension, and the highest derivative 

is p rese rved . T h e free region, t hen , will conta in a b o u n d a r y layer, in 

which t h e inner so lu t ion appl ies , a n d an ou te r region, in which t h e 

ou t e r so lu t ion (17) is val id, p rov ided t h a t t he se two solut ions can b e 

m a t c h e d . 

In t h e con tac t region, t h e differential equat ion governing t h e inner 

so lu t ion Wj.' is o b t a i n e d from equa t ion (11) by t h e change of inde­

p e n d e n t var iable £ = (0* - 6)/e. T h i s equa t ion is 

-u>(2> + a2w + e2(u/ ( 4 ) + axw) + 2e4wl2) + e6w 

= a!4 - aa cos (0* - e£) + e2c, (18) 

where t h e n u m b e r s in pa r en the se s now indica te t h e n u m b e r of de ­

r ivat ives w i th respec t t o f. W i t h t h e expans ions (13), 

*6 + l *e2 + . . (19) 

cos (8* - e£) = cos 80* - e(0i* - £) sin 80* 

1 
f2[((?i* - £) 2 cos 0o* + 202* sin do*], (20) 

a n d 

Wc' = Wo + Wit + W2(
2 + W3C3 + . (21) 

in which t h e coefficients are funct ions of £, t h e differential equa t ion 

(18) becomes , t o four th order , 

— i«o(2) + CC2W0 — «4 + as cos 0o* 

+ e[— » i < 2 > + 012W1 — «3(0i* — £) sin 0o*] 

+ t2 — U)2^ + a2">2 + tfo'4 ' + OiiWo ~ Ao 

+ £a 

- — [(0i* - £ ) 2 cos 0O* + 202* sin 0o*] 

• U>3
(2> + a2W3 + W!<4> + CCiW! -Ai+— [(01* - £) 2 

6 

sin 0O* - 60i*02* cos 0O* - 603* sin 0O* •• 0. (22) 

T h e different ia l equa t ions which resu l t by separa te ly equa t ing t h e 

coefficients of t h e powers of e t o zero have t h e solut ions 

w0 = Boe-J^ti + — - — cos 0o*, 
ai u<i 

Wl = B i e - v ^ f + — (0i* - £) sin 0O*, 
<*2 

W2 = B a e - v ^ + l £ ! l {6l* - ip cos 0o* - ^ + ^ 
2 «2 #2 «2 

+ — 0 2 * sin 0O* + —0 (1 + on) cos 0O* 
Oi2 012 

(23) 

(24) 

(25) 

a n d 

r— 0*3 
W3 = B3e~v«2 { s in 0o* 

012 
; (0 i 

3a 2 . 

-£)2 + - ( 0 i * - £ ) 

«2 

+ —01*02* COS 0 O * + A l 

(26) 
OC2 «2 

where t h e exponen t i a l solut ions wi th posi t ive a r g u m e n t have been 

discarded because it is impossible to ma tch t h e m to the outer solution, 

and where t h e coefficients of the remaining exponentials are constants 

to be de te rmined through the matching and the continuity conditions. 

T h u s t h e i nne r so lu t ion in t h e con tac t region is d e t e r m i n e d u p t o 

fou r th order . 

T h e different ia l equa t ion governing the inner - inner solut ion wc
u 

in t h e c o n t a c t region is ob t a ined from equa t ion (11) t h r o u g h t h e 

change of var iab le t) = (8* — 8)It2 as 

it><4> - «J<2> + (2a2w + £4(2UJ<2> + onw) + e&w 

= 6 2 [ a 4 - a3 cos (0* - e2i?)] + e2c, (27) 

w h e r e he re t h e n u m b e r in p a r e n t h e s e s indicate t h e n u m b e r of de ­

r iva t ives wi th r e spec t t o rf. W i t h t h e expans ions (13), (19), (20) a n d 

Wc
u = Wo + W16 + W2(2 + W3t

3 + U>4C4 + . (28) 

in wh ich t h e coefficients are funct ions of rj, t h e differential equa t ion 

(27) is, t o fifth order , 

u 0 « - i » o ( 2 , + ( W « - » i f f l ) 

+ e2(w2 ( 4 ) _ ii>2(2) + 012W0 — 014+ as cos 0o*) 

+ e3(u)3(4> - u>3(2) + a2wi - «30i* sin 0o*) 

+ e4 u)4
( 4 ) - u)4<2) + a%W2 + 2i«o(2) + a2wo ~ Ao 

in which t h e coefficients are cons t an t s t o be d e t e r m i n e d , 
- — [0i*2 cos B0* + 2(0* - v) sin 0O*] = 0 (29) 
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The differential equations obtained by separately equating the 
coefficients to zero have the solutions 

wi = C4 + C-5V + C6e~", 

W2 = C7 + C8V + Cg 
a2C2 

' + _ (a2Ci — «4 + a3 cos 9o*)v2 + 
2 6 

w3 = Cw+ Ciu) + C i 2 e _ ' + 

and 

ai.Ce, 
rie-i + • 

a2C4 

, a2C6 

6 

(30) 

(31) 

'• 1 • f , 

(32) 

(33) 

cients in this expansion are then separately equated to the coefficients 
of the first five terms of the inner-inner expansion. Such a four-five 
matching is found to be necessary in order to determine the solutions 
to third order. The conditions which result from this matching are 
C2 = 0, 

Ci = Bo H cos Wo 
a2 a2 

C4 = B i + —0i*s in0 o * , 
«2 

Cg = -BoVai. 

Wi = — C13 + CUV + Cise-i + - \-a2Cn - a2d + — 0i* cos 0O* 
a2 2 \ 2 

+ a302* sin 0o* »72 — teCs + «3 sin 0O*)J?3 

+ — (a2Ci + a 3 cos 0O* - a3)v\ (34) 
24 

where the exponential solutions with positive argument have been 
discarded because it is impossible to match them to the inner solution. 
The arbitrary constants involved in the solutions are determined from 
the matchings and the continuity condition. 

In the free region the inner solution Wfl is obtained to fourth order 
from the appropriate form of equation (12). Here the stretching is 
again rj = (6* — 8)/e2, leading from (12) to the differential equation 

,jW _ w(2) + €4(2ly<2) + axW) + (SW = e4C) (35) 

where the derivatives are with respect to rj. The expansions (13) 
and 

Wc' = W0 + Wii + W2(
2 + W3C

3+ . . . , (36) 

used in (35) result in the approximate differential equation 

W 4 ) - ">o(2) + e ( V 4 ) - wi<2>) + eHw2
i4) - u>2m) 

+ e3(w3<4) - ^3(2)) = 0 (37) 

to fourth order. Equating the coefficients to zero and solving the re­
sulting differential equations, yields 

and 

WQ = Ei + E2») + £36' , 

«'i = Ei + EBT] + E0ei, 

w2 = E1 + Egr] + E9ei, 

ws = Eio + En7i + Ei2ei. 

(38) 

(39) 

(40) 

(41) 

The exponentional solutions with negative argument cannot match 
with the outer solution. 

The constants which appear in the expressions for the approximate 
solutions are determined by the continuity conditions (7) and by 
matching solutions in adjoining parts in each of the two regions. The 
constant coefficients in the expansion (19) for the contact angle are 
determined, for a given tread displacement do, from the contact 
condition which follows from equation (2) by requiring that \ = 0 at 
0 = 0*. A solution is obtained to third order, for example, when the 
contants in the coefficients of the powers of e up to and including the 
second in the expansions in each layer and in the outer regions have 
been determined. 

In matching the inner solution to the inner-inner solution in the 
contact region the first four terms in the inner solution expansion are 
first expressed in terms of the inner-inner variable r) = £/t. With rj 
fixed, these terms are expanded in powers of e and the first five terms, 
up to and including the fourth power of c, are retained. The coeffi-

C7 = B2 -I 0i* cos 0o — + — r cos 0o* 
2a2 a2

l a2
2 

«3 „ ^ . A0 0:3 „ „ 
V + — + —r cos 0O* 

a2 a2 a-f 

a2
z a2 

+ — 02* sin 0O* 

«3 
Cg = -B\\fa2 - — sin 0O* 

«2 

(42) 

(43) 

(44) 

(45) 

(46) 

) = B 3 - ~ — 0i*2 sin 0O* - ~ 0i* sin 0O* + — 0i*02* cos 0O* 
6 a2 a2

2 a2 a2 

+ — 0 3 * s i n 0 o - sin 0o -I , (47) 
a2 3 a2

2 c 

_ (ffi + «22) aa /— 
Cn = - B0— — 0x* cos 0O - BWa2, 

W a2 a2 

and 

Cu = -B3y/^ + - — 0j* sin 0O
: 

3 d ! 

0103 . . 
)* + — - sin 0O* 

«2 

(48) 

(49) 
3 a2 at 

Any such matching procedure between the outer solution and the 
inner solution in the contact region is found to be identically satisfied 
to third order and, consequently, furnishes no new information. 

In the free region a four-five matching of the outer solution and the 
inner solution yields E2 = £5 = 0, 

£1 = D0 cosh [sfa^br - 0o*)] + — , (50) 
«i 

E4, = - A ) V ^ 0 i * sinh [V^idi- - 0o*)] 

+ Di cosh [V^"(TT - 0O*)] + — , (51) 

En = -A>iai0i* 2cosh [Sofa - 0o*)] - 2V^"0 2 * 

sinh y^Kit - 0O*)]| - D i V ^ s i n h [y/a^ir - 0O*)] 

+ D2 cosh [ V ^ ( T - 0O*] + — , (52) 
«i 

Es = DoV^I sinh Wa\(ir - 0O*)], (53) 

Ew = D3 cosh [ v ^ O r - 60*)] - Dvfa\ sinh Wa~x(w - 0O*)] 

+ — - + ~ { - f f i v^S!* 3 sinh [Va^iir - 0O*)] 
ai 6 

+ 6a!0i*02* cosh Wa\(ir - 0O*)] 

- 6 V ^ 0 3 * sinh [Va~i(w - 0O*)]| 

+ — |ai0i*2 cosh [«i(7r - 0O*)] 

- 2 v ^ 0 2 * sinh [V^(5r - 0O*)]1 (54) 

£11 = -Daarfi* cosh [ V ^ ( T T - 0O*)] 

+ D i s i n h K / ^ ( i r - 0 o * ) ] , (55) 

and 

£1 t = 7 D o a i V ^ i * 2 - Diai6i* cosh [V^T(7r - 0O*] 
4 

+ D2y/a[ sinh [Val(ir - 0O*)]. (56) 
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The second, third, fourth, and fifth of the continuity conditions (7), 
expressed in terms of f] and derivatives with respect to T), are 

wc
il(0) = UY'(O), u>c

;''(0) = w/i'iO), 

and 

wc
ii"(0) = wf

i"(0), wc
ii"(0) = wfi"{0). 

These require that, at first order (e°), C3 = E$ = 0, 

Bo + — - — cos 0O* = D0 cosh [VcT^ir - B0*)] + — ; 
OL-l « 2 ffl 

at second order (e), C& — Ec = 0, 

- Doy/a^Bi* sinh [ A / O I V - 0O*)] 

(57) 

(58) 

(59) 

5 i + — 0i*s in0 o 
«2 

+ Di cosh [VaT(7r - Bo*)] + 
Al. (60) 

at third order (t2). 

Cil 
B 2 + — 0 i * c o s 0 o 

2a2 

a i a 4 , a i « 3 
* — -t — cos ( 

« 2 «2 

+ — 02* sin ( 
«2 

+ + -COS 00 
« 2 « 2 

= - n W i * ! cosh [V^ 1 (TT - 0o*)] 1 

- 2 V ^ 0 2 * sinh [ V ^ ( T T - 0O*)]) 

- Di\/~a[ sinh [Vai(ir - 0o*)] 

, Ao 
+ D2 cosh [VoTdir - 0O*)] + — + a2B0, (61) 

• (BiVoa + — sin 0O* = D0V~c7i sinh [ V ^ ( i r - 0O*)], (62) 

C9 = -Eg = Of2S0; (63) 

at fourth order (e3), 

« i + « 2 2 « 3 
(so ^ _ + — 0i* cos 0O* + S 2 V ^ 

2Va2 «2 / 

= +£>oai0i* cosh [V^I (TT - 0o*)] 

- fli sinh [ \ /ai ( T - 00*)] + a 2 So\ /a2 , (64) 

and, at fifth order (e4), 

-B3V «2 + ~ — »i* sin 0O* + — ; - sin 0O* 
3a 2 « 2 

= - D o a i V M i * 2 - Diai0i* cosh [ V ^ ( T T - 0o*)] 
4 

+ iJ2V/aT sinh [Va~i(.ir - 0O*)]. (65) 

The last of the continuity conditions (7) has already been satis­
fied. 

In order to apply the first of (7), the constraint condition (4) is in­
tegrated from 0 to TT and the first of the boundary conditions (5) and 
(6) are employed; so that the continuity of v at 0 = 0* requires that 

C wc{8)d6= C"wf(8)d8. 

wc = — - — cos 0 + B o e - ^ * + eBxe-
0C2 at 

/«2£ 

+ f2 (1 + «i) cos 0 ^ + — + B2e-^A 
<X2 «2 «2 

(«1 + «2
2) 

2%/^ 
B0^e-V"i« + C9e-" • (67) 

The composite solution wf in the free region is, to third order, 

Wf = Do cosh [Vai(v — 0)] H 
« i 

+ e Dx cosh [ V ^ ( T T - 0)] + — 

+ e2 D 2 cosh [ V ^ ( T T - 0)] + — + E9e" (68) 

If the composite solutions are used in the continuity condition (66), 
after a long calculation there result the requirements that, at first 
order, 

« 4 D0 
0* sin 0O* + —j= sinh [Valiir - 0o*)] 

« 2 « 2 V « l 

^ 0 , 
+ — (vr - 0o*) = 0, (69) 

0:1 

at second order, 

— 0i* - — 0i* cos 0O* + B 0 - Do0i* cosh [Vc7i(ir - 0o*)] 
« 2 «2 

- — 0i* + - ^ = sinh [VHIdr - 0o*)] 
« l v « i 

+ — (TT - 0O*) = 0, (70) 
« i 

and, at third order, 

— 02* + 0o* cos 0O* - - 0i*2 sin 0O* + Bi 
«2 2 

- — 02* - Dtfi* cosh [Vc7i(* - 0o*)] - — 0o* 
« i " i 

+ ~= sinh [V^(7r - 0O*)] + — (TT - 0O*) = 0. 
V on al 

There remains the contact condition 

<zwc"(0) + d0 - 5(1 - cos 0*) = 0. (71) 

If this condition is expressed in terms of the expansions, it requires 
that, at first order, Bo = 0, at second order, Bi = 0, and, at third 
order, 

«22B2 — «i«4 + a ia3 cos 0o* + 0:2^0 + «s cos 0o* = 0. (72) 

and 

B3 
a i O ! 3 , 

Ui* sin <fo 
1 0:3 

sin 0O* + 
Al 0. (73) 

(66) 

In order to use this condition to determine constants which appear 
in the expansion a composite solution is constructed for the contact 
region and for the free region. A composite solution is obtained in each 
region by adding together the solutions which are valid in each part 
and subtracting the terms which each pair of solutions has in common. 
These terms are those which have participated in the matching. The 
composite solution wc in the contact region is, to third order, 

af 3 aa2 «2 

In the contact region and the free region the constants appearing 
in the composite solutions (67) and (68) are determined, at first order 
by (59) with B 0 = 0, by using Bi = 0 in (62), and by (69) 

sin 0o* 
D 0 = -

« 3 

«2 Vai sinh [Vc7i(it - 60*)} 
(74) 

A0'-
a i 

«2 

« 3 
a 4 — a 3 cos 0o* + —prsin 0o* coth [Vc^(ir - 0O*)] 

VcT\ 
(75) 

where 0o* satisfies 
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«4 

«2 

«3 

a>4 

- sin 0O* - - ^ - sin 0O* + (TT - 0O*) 
a2ai 

a3 , „ as sin Op" 
cos So "1 ~l=~ 

ct2 a% di V u \ 
coth [ V ^ ( r r - So*)] •• 0 ( 7 6 ) 

At second-order use of R\ = 0 and (74) in (60), and B 0 - 0 and (59) in 
(70) yields Ai = Z)i = 0. Then (72) used in (64) gives 

Vailots cos 0O* - D0aiot2 cosh [Voi(ir - 0o*)]i 0i* 

= a2A0 + 013(1 + ai) cos 0o* - 0:10:4. (77) 

The constants which appear in the composite solutions at third order 
are determined by (61), (70), (65), and (73), which, because of their 
length, will not be repeated here. These four equations serve to de­
termine the four constants A% T)% B% ar>d 02*-

For small values of 0* equation (76) for do* may be approximated 
up to an error involving (0o*)3 by 

Va~! fl - I V^i) (So*)2 + (1 - TTV^O 0o* 

+ Qi(l - a3~
1Q!4)7r = 0. (78) 

The quantity in the last parenthesis is the ratio of the bottom dis­
placement d0 to the radius a of the tire. In this approximation the 

. contact angle depends upon this and upon 0:1—essentially the 
strength of the side wall spring relative to the inflation pressure. This 
illustrates the importance of side wall design on the contact geom­
etry. 

Comparison With the Exact Solution 
Numerical values of the parameters were determined for the 

Bridgestone Radial Truck and Bus Tire 10.00-20 in the way described 
in the preceding paper [1]. They are, for a bottom deflection d0 of 4.6 
cm. 

' e = 0.16, « i = 13.66, a 2 = 6.93, 0:3 = 7.30, a4 = 6.67. 

(79) 

Using these values equation (78) gives do* = 0.25 (14.3°). To second 
order (77) and (78) yield 

-6 .0 

-5.0 

-4.0 

- 3 . 0 -

-2.0 

-1.0 

0 

1.0 

2.0 

3.0 

First Order Solution 
Exact Solution 

- 50° 60° 70° 80° 90° 100° 110° 120° 130° 140° 150° 160° 170° 180° 
—I—\-U 1 ^ V ^ J ' ' ' ^ ! ' ! ' ! ! ! ' ' 

10° 20° 30 4 C r * * » = » 

+ €0i* = 17.96°. (80) 

Fig. 2 The first-order solution for the radial displacement compared to the 
exact solution with the first-order contact angle 6V and the exact contact 
angle 0* 

which compares quite favorably with the exact value of 18° [1]. 
With 0*, the first-order terms in the composite solutions (67) and 

(68) were plotted against the exact solution in Fig. 2. Even at the 
lowest order of the approximation there is good agreement between 
the exact and approximate solutions. 
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The motion of edge dislocations and slip on fault planes are important mechanisms in­
volving sub and through-surface slip. Here exact solutions for largely arbitrary in-plane 
slip in a half plane along zones normal to the surface are derived and the general wave-
front pattern described. For two examples of finite zones of uniform slip, the displace­
ments on the free surface of the half plane are examined. In the case of the slip zone pass­
ing through the half-plane surface, separate and prominent systems of surface waves are 
seen to be generated at the surface-zone intersection point. Data illustrating this and 
other behavior is presented. 

Introduction 
Edge dislocation motion has been viewed as a mechanism for ex­

plaining effective strength [1] and plastic effects [2] in crystalline 
materials. Similarly, slip along faults in the earth's crust has been 
treated as a source of shallow-focus earthquakes [3]. In a continuum 
approach, both processes involve the extension of slip zones, i.e., 
surfaces over which material points initially adjacent across the sur­
face undergo relative tangential motion. 

Calculation of the dynamic displacement fields in materials due 
to slip zone motion is therefore an important problem, especially on 
the material surface. Indeed, surface responses may provide the only 
experimental data available for comparison with theoretical calcu­
lations. However, dynamic displacement calculations often use so­
lutions for infinite media, and account for the material surface by 
imaging arguments or approximations [4-6]. Such approaches may 
be exact only for certain cases, such as two-dimensional antiplane 
strain [7] and may avoid the possibility that slip zones may reach the 
surface. 

As a first step in a more exact approach, this article considers the 
two-dimensional problem of slip occurring over zones normal to the 
free surface of an isotropic, homogeneous, linearly elastic half plane. 
Slip occurs in the plane and the zones will be allowed to travel through 
the surface of the half plane. In this first step, the slip magnitude and 
zone location will be specified, thus making the mathematics more 
tractable. However, these properties will be largely arbitrary. Hope­
fully, some insight into more difficult problems involving prescribed 
slip zone stresses, for example, can be gained by studying the present 
solutions. 

A general analysis leading to exact expressions for the displace-
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ments in the problem is outlined in the next few sections. The analysis 
is based on a recent treatment of wave propagation due to displace­
ment discontinuities [8]. The general wavefront pattern is then dis­
cussed and two examples of slip zone motion with bearing on edge 
dislocation motion and fault slip are considered. In one example, the 
slip zone remains below the surface. In the other, the zone moves 
through the half-plane surface. Some numerical results for the surface 
displacements generated by each type are given and discussed. 

Basic Problem 
In terms of the Cartesian coordinates x, y consider the half plane 

y > 0, where ca, Cb and 1/T are the dilatational and rotational wave 
speeds and shear modulus. For convenience the variable s = caX(time) 
is introduced. For s > 0 the half plane is completely at rest. For s > 
0, the tangential displacement discontinuity defined by V(y,s) is in­
duced along the positive y-axis where V is piecewise continuous and 
| V| is finite for finite y, s and grows at less than exponential order as 
|y I ->• oo or s -» °=. Because of antisymmetry with respect to x = 0, 
attention can then be focused on the quarter-plane x, y > 0 by in­
troducing the conditions 

u = lV(y,s), trx=Q (1) 

for s > 0 as x —• 0+ , where u, v sue the x, y- displacements. The 
stress-free half-plane surface requires that for s > 0 along y = 0, 

cxy, ay = 0 (2a,6) 

while the governing equations for x, y, s > 0 are 

Tm2(tTXiX + <rXy,y) = ", Tm2(axy,x + <ry,y) = v (3o,6) 

rm2ax = u>x + (1 - 2m2)u,y, raV, = viy + (1 - 2m2)u,x (4a,b) 

T(Txy = U,y + V,x, m = Cb/ca (5o,fe) 

Here( ),z = d( ) /dzand( ' ) = ( )iS. The solutions should be bounded 
above almost everywhere in x, y > 0 for finite s while 

s < 0: u,v = 0, u,v = 0 (6) 
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T r a n s f o r m So lu t ions 
The Laplace and Fourier sine and cosine transforms [9] 

g = Sog(s)e~psds; gs,gc = fog(x)(ampqx, cos pqx)dx (7o-c) 

over s > 0 and x > 0 are employed, where p is real and positive and 
large enough to insure convergence of (7a) while q is in general com­
plex. Application of (la.b) and (la,c) to (26), (3b), (4) and (2a), (3a), 
(5a), respectively, in light of (1) and (6) yields the transformed 
equations 

Is. 
2b2' 

Kb = -m2^-,K°b = 
i2b2R. 

••—Kb,K
a

b=4m2 — (23) 
R- R-

m2uc
yyy - p2a2dc + pg ( l - m2)vs. 

• m2p2b2i) s + pq(m2 — l)d'y 

ldV(y) 

dy 
, a = (1 + g2)1 '2 (8) 

The complex exponential and g-integration range (—<*>, °°) in (18) 
follow from (17a) and (116) by recognizing that Im (6s) = 0, Im (a) 
= 0. The inverse of (18) can be obtained by following the Cagniard-
deHoop [10] procedure. As outlined in [8], this scheme uses the 
Cauchy theorem to switch the q -integrations in (18) to Cagniard 
contours along which the resultant exponential factor for each term 
is recognized as the Laplace transform of the Dirac delta function. The 
result is that for x, y, s > 0 

> = Im C" \V(0,t)Lo+ f — (z, t)(Lf + Lr)dz 
J o I Jo "•• 

dt 

2 \ ml 
(24) 

= pqViy), b = (m-2 + q2)1'2 (9) 

for y > 0 while for y = 0, 

u.% + pqus - \ V(y), 0% - (1 - 2m2)pqu 0 (10) 

For p real and positive a, b are defined in the plane cut along Re (a) 
= 0, |Im (q)\ > 1,1/m, respectively, so that Re (a), Re (6) > 0. Solu­
tions to (8)-(10) which are bounded above in y > 0 are [8] 

wc = A + B • -A- + B-, vs a o a 
--A--B-A+ + -B+ 

q b b 

Lf = sgn (z - y)[KaqaH(s - t-r-)+ KbqbH(s - t - m^r-)] (25) 

Lr = KbqbH(s -t-na) + K%qlH(s - t- nb) 

+ Klq"Ms- t-r+) + Kb
bq

b
bH(s - t- r+) (26) 

L0 = K°aq°aH(s - t- rl) + K°bq°bH(s -t-f°+) (27) 

where the K-functions now depend on similarly sub and superscripted 
q's. These quantities are, in turn, functions of s — t representing 
Cagniard contours. In particular, where we replace s — t by n for 
brevity, 

AeP"y = ^-qTa+(0)-^tb+(0), A± = a+(y) ± o_(y) (12) 
R~ R-

(l la,6) ir2qb
b=(y + z)(m~2r2

+-n2)l'2-nx,r± = [x2+(y±z)2}1/2 (28) 

r\qb
b = inx + (y + z)(n2 - m-2r\)^2 (29) 

BePby = ^lTb+{0)-^ta+{0), B ± = b+(y) ± 6-(y) (13) 
R- aR-

R± = iabq2±T2, T = b2 + q2 (14) 

2(a+,a_) = - m V ( / ; , JQ V(z)e~P°\z^\dz (15) 

4(6+, 6_) = -m2T(S;, Si) V(z)e-Pb\*-y\dz (16) 

Here R - is a form of the Rayleigh function which has simple zeroes 
at q = ±i/m,R, THR = CR/CQ, where CR < cb is the Rayleigh wave 
speed. 

T r a n s f o r m Invers ions for x, y,s>0 

The inverse Fourier sine and cosine transforms are [9] 

for r+ < n < m~1r+ and n > m~lr+, respectively, where f+ = m~1r+ 
for x <m(y + z ) / ( l — m 2 ) 1 / 2 but otherwise r+ = x + (y + z)(m~2 — 
l ) 1 ' 2 . Similarly, for n > r+ 

r%qa
a = inx + (y + z)(n2-rl)V2 (30) 

*(*) = - f iqo+<x 

(gs sin pqx,gc cos pqx)pdq (17a,6) 

where the real constant go is chosen so that the integration path lies 
in the region of analyticity for gs, gc and convergence of (76,c). For 
(l la,6) we can choose go = 0. Upon performing the z-integrations in 
a±, b± by parts and formally writing the operation (7a), it is readily 
shown that operating on ( l ib ) with (17a) yields 

27ri3= ("° e-P1 ("° f f " — (z,t)(Kf + Kr)dz 
Jo J-™ [Jo dy 

+ V(0, t)K0\ e'P^dqdt 

+ C e-PlV(y,t) C ^-e'Pi'dqdt (18) 
Jo J—»b2 

Kf= sgn(z -y)(Kae-Pa\y-'\ + Kbe-Pb^-Z\) (19) 

Kr = (Kb
ae-Pbz + Ka

ae-Paz)e-Pay + (Kle~Paz + Kb
be-Pbz)e~Pby 

(20) 

K 0 = K°ae -P<>y + K°be -Pby (21) 

The definitions for qb and qa follow from (29) and (30), respectively, 
by replacing y + z with \y — z \. The definitions for q"a and qb follow 
directly from (28)-(30) by setting z = 0. The contours qb, q% are de­
fined as the q -solutions to, respectively, the equations 

ay + bz — iqx = n > 0, by + az — iqx = n > 0 (31a,6) 

where na and nb in (26) are given by 

na = m~Vi + r2, nb = m~xri + r\ (32) 

n=(xl + z2y^, r 2 = [(x0-x)2 + y2Y'2 ' (33) 

and for nb and na, respectively, XQ must satisfy 

mxor2, m_ 1xor2 = (x - x0)ri (34a,b) 

Finally, in (25)-(27), r+ and r+ follow from r+ and r+ by setting z = 
0 and H( ) is the Heaviside step function. Because Im (Lf, Lr, L0) = 
0 as x —>- 0 (24) clearly satisfies the displacement boundary condition 
in (1). By a similar process, the inverse of (11a) for x, y, s > 0 is 

V(0, t)L0+ ( —(z,t)(L f + Lr)dz 
o [ J o dy 

where in (25)-(27) the K-functions are now defined by 

dt (35) 

Ka = m2^-, K°a 
- 2 g 2 

i2bR- ' 

H~ 
Kb = -2m2q2 

y2 

bR-

Kb-
2b m2bR-

Ka = m\K°= 2qa 
2bR-' 

K° •~Ka,K
b = 2m2q~ (22) Kb

b=-
R-

:Kb -4m2q2 ,6T 

(36) 

(37) 
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source 

(a) (c) 

X 0 

(b) (d) 

Fig. 1 Wavefront patterns in the half plane 

When z/x, y/x -* 0 care must be taken in evaluating the integrals 
in (24) and (35) because the Cagniard contours collapse onto the 
positive Im (q)-axis. This necessitates deforming the contours about 
the Rayleigh pole due to R- in the integrand denominators, which 
results in special contributions to the solution. In the surface dis­
placement expressions presented later, these contributions will appear 
as Rayleigh surface waves. 

G e n e r a l W a v e f r o n t P a t t e r n 
Some general information about the wavefront patterns in the half 

plane can be obtained by examining the Heaviside function arguments 
in (25)-(27). The L/, L r-terms in (24) and (35) represent the integral 
sums of the disturbances due to all displacement discontinuities oc­
curring at a given x = 0, y = z and instant t > 0. As indicated in Fig. 
1(a), any one such discontinuity acts as a source which radiates di-
latational and rotational rays. For s > t these rays are of length s — 
t and m{s —t), respectively, thus defining the wavefronts shown in 
Fig. 1(a). The r- defined in (28) is the distance from the source to any 
other point x, y > 0 in the half plane. The Heaviside functions in (25), 
therefore, show that the Ka and Kb- terms in (24) and (35) represent 
the dilatational and rotational disturbances received for x, y, s > 0 
directly from the displacement discontinuity region. In seismology 
[11] these disturbances are called P and S-waves. 

As seen in Fig. 1(6), a dilatational ray eventually reaches the half-
plane surface and, in view of the stress-free surface conditions [12], 
is reflected as a dilatational and rotational ray. The dilatational ray 
leaves the surface at the same angle as the incident ray, so that the 
wavefront generated is the same as that which would arise from di­
latational rays traveling from an image point x - 0, y = — z in an un­
bounded material. The total distance traveled along the path from 
the source to the surface to a point x, y > 0 is the r+ defined in (28). 
Clearly, then, the K%-terms in (24) and (35) represent PP- waves, i.e., 
the dilatational surface reflection of P-waves. The rotational ray, 
however, does not leave the surface at the angle of incidence. It can 
be shown that (32) and (346) give the elapsed time rib/ca between the 
generation of the source point dilatational ray and the receiving of 
the rotational reflection at x, y > 0. Therefore, the Kg-terms in (24) 
and (35) represent PS-waves, i.e., the rotational surface reflection of 
P-waves. 

As seen in Fig. 1(c) by analogy with Fig. 1(6), the Kb and Kb
a-terms 

in (24) and (35) represent, respectively, SS and SP-waves, i.e., the 
rotational and dilatational surface reflections of 5-waves. However, 

the SP and S/SS- wavefronts no longer intersect at the half-plane 
surface when the angle of the former becomes perpendicular to the 
surface there [13]. Subsequently, the wavefronts separate and the 
head waves shown in Fig. 1(d) are generated. It can be shown that the 
points x, y > 0 confined within the resulting wedgelike regions must 
satisfy the relations mr+ < m(s - t) < r+, x > m(y + z) / ( l - m2)l/i, 
which are identical to those required when qb

b is defined by (28). Thus 
the Kt-term occurring for this qb in (24) and (35) represents the 
headwave contribution. 

As indicated previously, the parameters and variables for the K° 
and if j-terms follow from those for KI and Kb

b, respectively, by setting 
z = 0. Therefore, the discussions for these terms need be modified only 
by placing the source point at x, y = 0. Then, the K° and Kg-terms 
represent, respectively, dilatational and rotational disturbances ra­
diating from the origin x, y = 0, i.e., the corner of the quarter-plane 
of mathematical interest. The rotational disturbance may of course 
include head waves. 

Returning to (24), the nonintegral term represents the propagation 
of the displacement induced by the displacement discontinuity along 
x = 0 normally into the quarter-plane x > 0 as a rotational wave. The 
argument of the term shows that an instantaneously induced dis­
continuity produces jumps at the wavefronts. 

In summary, then, the 6 and a-subscripted terms in (24) and (35) 
represent, respectively, rotational and dilatational signals arriving 
at a location x, y > 0 due to the radiation of waves from points in the 
displacement discontinuity region. The Lf, or fundamental, terms 
represent signals received directly from the points while the Lr, or 
reflected, terms represent the signals received upon reflection by the 
half-plane surface. The Lo-terms represent signals received from a 
special point, the origin, x, y = 0. Finally, it should be noted that the 
aforementioned Rayleigh surface waves can be associated with the 
K^, Kb- terms and P,S- wave reflections at x, y = 0. These wave con­
tributions will be seen explicitly in the following two sections. 

In light of these observations, (24) and (35) show that the reflected 
and fundamental terms depend on the spatial gradient of the dis­
placement discontinuity and vanish when 

V(y,s) = V(s) (38) 

Equation (38) also guarantees that the nonintegral term in (24) is a 
plane wave. Thus a spatially uniform relative displacement produces 
only plane waves perturbed by cylindrical, head and Rayleigh waves 
due to the "corner" at x, y = 0. On the other hand, (24) and (35) show 
that the origin terms depend on the displacement discontinuity at the 
half-plane surface. Thus, if V(0, s) = 0 for all s > 0, then the origin 
terms vanish. Finally, it is readily shown that the fundamental terms 
and the nonintegral terms represent the complete solutions for y > 
0 to the present problems in the unbounded plane. 

H a l f - P l a n e S u r f a c e D i s p l a c e m e n t s 
For y = 0, (24) reduces to 

•KU = — (1 + d2) - - I V 0,s - — \ H \ s - — I 
2G \d ) \' mR) \ mR; 

("°V(0,t) 
Jo 

2aZT(iZ) 

+ Im 

m*xb(iZ)\R-(iZ)\2 

dV 

H{s - t -x)H\—+t -s\dt 
m I 

Jo Jo ay 
(z,t) [LaH(s -t-p+) 

+ LbH(s - t - p+)\dzdt (39) 

La = -^rq, Lb = -La, a = (Z*-lY'\ Z = ~ (40) 
R- x 

G = - (1 + d2) + - (1 + c2) - 1 - d2, c = (1 - ml)l'\ 
d c 

H-r (41) 

for x, s > 0. In (40) the L -functions depend on correspondingly sub­
scripted q's which are themselves functions of s-t. With s-t replaced 
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by n for brevity, the g's are defined by (28)-(30), where now the su­
perscripts are dropped and y = 0. Similarly, p+ and p+ follow from 
r+ and r+ by setting y = 0. The first term in (39) is the contribution 
obtained when, as y -* 0, the q°, q°-Cagniard contours are deformed 
around the pole at q = i/m.R. Analogously, for x, s > 0, y = 0 we find 
that (35) becomes 

irm% 

4m4dG 
VL-JL)HL_JL) 

\ mRl \ rjiRl 

m4*/3|fl_(iZ)|2 

1 

~ So" Vm) 

+ f" V(0,t) 

+ Re f" f 
Jo Jo 

4aZ2 

H(s - t -x)H\—+t -s\dt 

. „, -7^H\s-t \dt 
m* x P\R-{iZ)\2 \ ml 

i>y 
(z,t)[LaH(s - t - p+) 

where in this case 

r 2 b ? 2 

+ LbH(s - t - p+)]dzdt (42) 

R-
q, Lb = 

_^n2 

2bR-
q, fi = (Z2 - m'2)1'2 (43) 

In (42) the /-symbol denotes Principal Value integration when the 
zero of R- atZ = l/mR lies within the (-integration range. In (39) and 
(42) and La and Lj-terms represent the combined effects of, respec­
tively, the P,PP,PS and S,SS,SP-waves. The remaining terms rep­
resent the dilatational, rotational, and Rayleigh waves generated by 
the Lo- terms. It will be seen that an important Rayleigh wave con­
tribution also arises from the Principal Value integral in (42). 

The next section considers the two example problems. Both ex­
amples are essentially superpositions of the following problem: At s 
= 0 a uniform displacement discontinuity of unit magnitude instan­
taneously appears in an undisturbed half plane along a semi-infinite 
region of the y-axis defined by x = 0, y > ho > 0. Subsequently, the 
region is defined by x = 0, y > h(s) where h(0) = ho and h(s) must be 
at least piecewise smooth. The displacement condition in (1) assumes 
the form 

0 = iH\y - h(s)]H(s) (44) 

where ( ) denotes the solution to this particular problem. Then, for 
example, (39) becomes 

*0(h) = £ (1 + d2) (3 - l) H \-h is - —)W S - —) 
2G W / I \ mR]\ \ mR) 

- x)H\-+ t - s\dt 
\m 

+ r 4 ™ } , H(-h)His. 
Jo m^xbdZ^R-dZ)^ 

-t-Im CS\LaH(s-t- p+) + LbH(s - t - p+)]H{h)dt (45) 
Jo 

where 2 is replaced by h and the t -dependence of h is understood 
unless specified otherwise. For convenience, the implicit dependence 
of 0 on h(s) is expressed. 

T w o E x a m p l e s 
Consider a slip zone of finite length and uniform tangential relative 

displacement uo which instantaneously appears at s = 0 within the 
half plane and moves along the y-axis. If the locations of the zone 
edges are x = 0,y = h±(s), where h+(s) > h_(s) and/i±(s) are at least 
piecewise smooth, then by superposition the resulting surface dis­
placements u, v can be written as 

u = voii(h-) — voii(h+), u = vov(h~) — voO(h+) (46a,b) 

We consider two cases: In Case I the slip zone is of fixed length and 
moves into the half plane at a constant speed. Therefore 

h±(s) = h$ + ks, ht = h0 + A0 (47) 

where k, Ao, ho are positive real constants. In Case II, the same zone 
moves toward, and eventually through, the half-plane surface at a 
constant speed. Thus (47) can be adjusted by choosing k < 0. In Figs. 
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Fig. 2 Normal and tangential displacements at x = 1.0 on surface 

2 and 3 the surface displacements u, v are plotted versus s at the 
surface location x = 1.0 for both cases. Here m = (1/3)1/2, ho = 1.0, 
Ao = 0.1. In Case I,k = 0.2 while k = -0.2 in Case II. It is understood 
that values of x, s, ho, Ao, u, u, i>o are all multiples of the same arbi­
trary length unit, while k is dimensionless. 

Case II is plotted in Fig. 2, where the upper and lower sets of vertical 
dashes denote the first arrivals of waves associated with, respectively, 
the h- and h+-edges of the slip zone. As numbered from left to right, 
the dashes represent the 

1 P/PP/PS- wavefront. 
2 SP/head-wavefront (SS/SP- wavefront separation has 

occurred). 
3 S/SS- wavefront. 
4 Rayleigh wavefront due to P-wave reflection at x, y = 0. 
5 Rayleigh wavefront due to S-wave reflection at x, y = 0. 
6 Dilatational wavefront due to zone edge reaching x, y = 

0. 
7 Rotational wavefront due to zone edge reaching x, y = 0. 
8 Rayleigh wavefront due to zone edge reaching x, y = 0. 

Fig. 2 indicates that, in general, the tangential surface displacement 
u is of larger magnitude than the normal surface displacement v. It 
is noted that the wavefronts 6-8 signal prominent changes in u, v. In 
particular, finite discontinuities in v and infinite discontinuities in 
u occur at the Rayleigh wavefronts. The finite discontinuity follows 
from the first terms in (39) and (42). The infinite discontinuity can 
be extracted from the Principal Value integral in (42). It can be shown 
that for (47), A; < 0, 

TTU{h) • 
- 1 

-In s + -
mR 

(48) 
4mAm\dG ' 

as s -» (m^x — k~~1ho)+- The wavefronts 1-3 have a smaller effect 
on u, v. The Rayleigh wavefronts 4,5 are included in, respectively, the 
La, Lt,-terms in (45) and its u(h)-counterpart. By following the work 
of [8, 14], these wave contributions near the wavefronts can be ob­
tained for (47) as 
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•KUpih) ~ dx, •KVpin) ~ 
P G'(c) P 2G'(d) 

» f l ! ( « ~ T ^ S T (1 + d2)2x, rD§(h) 

(1 + d2) (49) 

4G'(d)d 

M(z) = rriR In 

M d ) 

'2G'(d) 
(1 + d2) (50) 

x2 + z2fe2(s) 

[(mfis - x)2 + z%g]i/z[(mBS + x)2 + 22fe2]i/2 

+ fez tan x 2mnzhos 

N(z) = mj? tan 1 2zh(s)x 

2%2(s) — x1 • m# tan 

z2h% + m i s 2 - 3c2 

2zhox 

(51) 

+ fez In 

z2hl + roj;s2 • 

(m^s - x ) 2 + z%o 
(52) 

(m^s + jc)2 + Z2/IQ 

m2cdG'(z) = mR{ml + fe2z2)[c2(l + m2d2) - cd(l + d2)] (53) 

where the superscript R denotes the Rayleigh contribution, the sub­
scripts denote the wave reflected at x, y = 0 while the ± notation on 
h(s), ho is implied and fe = -0 .2 . As indicated in Fig. 2, the Rayleigh 
contributions are finite at the wavefronts. It is also noted that they 
vanish at x, y = 0. 

In Pig. 3, short-time plots of u, u for Case II are presented with 
complete plots for Case I. It is seen that, even prior to the slip zone 
arrival at the half-plane surface, the u,v-magnitudes for Case II are 
generally larger. The wavefronts 6-8 do not occur for Case I and are 
thus omitted in Pig. 3. However, another vertical dash pair, denoted 
by 9, does appear for Case I. In light of Fig. l(c, d), the SP and SS-
wavefronts generated by S-waves from the slip zone as it moves away 
from the surface will eventually always intersect at the surface location 
x = 1.0. The dashes identified by 9 indicate the arrivals of the first 
signals of this event from the two zone edges. These arrivals seem to 
have a noticeable effect on u, but an effect can also be detected for 
v. Fig. 3 shows that, as in Case II, the u-magnitudes are generally 
larger than those for v. However, the degree of difference, especially 
as s grows, appears to be much greater for Case I. Finally, the con­
tributions near the Rayleigh wavefronts 4, 5 are again given by (49) 
and (50), where nowfe = 0.2. 

D i s c u s s i o n 
A general analysis for the two-dimensional dynamic problems of 

largely arbitrary tangential displacement discontinuities on planes 
normal to the surface of an elastic half plane has been outlined. Exact 
formulas for the in-plane displacements both within and on the sur­
face were presented, and used to discuss some general wave propa­
gation features of the solution. The results were specialized to examine 
the surface displacements for two types of instantaneously appearing 
uniform slip zones of fixed length. One type moved at a constant speed 
away from the half-plane surface. The second type moved at the same 
speed completely through the half-plane surface. The surface dis : 

placement behavior indicated that, not surprisingly, the displacement 
magnitudes are larger when the zone approaches the surface. In both 
cases, the tangential displacement magnitude is generally larger than 
the normal displacement magnitude. However, the degree of differ­
ence is greater when the zone moves away from the surface. More 
importantly, the behavior indicated that the passing of the slip zone 
through the surface generates separate and prominent wave distur­
bances. In particular, the Rayleigh wave disturbances cause both finite 
and infinite discontinuities in the surface displacements. Thus care 
is advised in using imaging arguments and approximations to study 
through-surface slip. 

The analysis was motivated somewhat by the possibilities for 
studying edge dislocation motion and shallow focus earthquakes due 
to fault slip through surface displacement measurements. Thus the 
two examples could be classified as dislocation pairs of constant 
strength or as fault slip regions. However, these examples were meant 
to be representative of, and not necessarily identical to, actual models 
of such mechanisms. 

It should be noted that the present general results can readily ac­
commodate many features not mentioned or emphasized here, such 

0 2.0 4.0 6.0 8.0 10.0 12.0 
s 

Fig. 3 Normal and tangential displacements at x = 1.0 on surface 

as non-uniform or supersonic slip zone speeds, non-uniform slip over 
the zones, zones which move from equilibrium, zones which enter the 
half-plane, oscillating zones or multiple zones. Perhaps the generality 
of the analysis will allow insight into solutions, perhaps approximate, 
for specified stress problems. Moreover, the analysis can be used to 
study in more detail the contributions of the various waves mentioned 
here for different types of slip zones. In summary, then, it is hoped 
that the present results provide a useful starting point for the problem 
of studying physically important slip mechanisms through the asso­
ciated dynamic surface disturbances. 
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Harmonic Wave Propagation in a 
Periodically Layered, Infinite Elastic 
Body: Plane Strain, Numerical 
Results1 

Numerical results are presented for the dispersion spectrum for harmonic wave propaga­
tion in an unbounded, periodically layered elastic body in a state of plane strain. Both 
real and complex branches are considered. The spectrum is shown to be multiple-valued 
and quite intricate in detail. Some analytical properties of the Floquet surface are also 
discussed. 

Introduction 
The problem of harmonic waves in plane strain propagating 

through an unbounded, periodically layered elastic body has been 
analyzed recently by the present authors [1]. This problem is of in­
terest due to its application to wave-propagation problems in layered 
composites and to the construction of acoustic filtering devices. In 
[1] we derived the dispersion equation for the layered elastic body and 
discussed some of the qualitative aspects of the dispersion spectrum, 
along with presenting a limited number of numerical results. In the 
present work we present a more detailed set of numerical results for 
this spectrum, evaluated over a limited range of wave numbers for a 
particular set of material parameters. Our purpose here is not only 
to illustrate the extraordinary complexity of the spectrum, but pri­
marily to provide a set of benchmark data for use in the construction 
and validation of approximate theories for wave propagation in 
layered solids. The need for such data is apparent from the relatively 
large number of approximate theories which have appeared in recent 
years, the authors of these theories quite often comparing the pre­
dictions of their theories to the exact plane strain solution for an un­
bounded body. However, as we discussed in detail in [1], existing 
formulations of the unbounded body solution, such as in [2], may well 
be lacking in physical significance, and, in addition, the intricate 
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Fig. 1 Geometry of layered solid 

coupling found to exist between real and complex branches has not 
been revealed so far. Hence it seems that a proper and detailed eval­
uation of this spectrum is in order. 

To consider the problem in more detail, we assume the body to be 
as shown in Fig. 1, consisting of periodically alternating layers of 
homogeneous, isotropic elastic layers perfectly bonded to each other 
along their interfaces. Any two adjacent layers in the body comprise 
a unit cell, and this unit cell is completely invariant under a lattice 
translation along the positive and negative y-axes. For each unit cell, 
the layers have elastic constants (X; /j,), (X'; /t'), thicknesses 2h; 2h', 
and densities p; p', respectively. The union of an infinite number of 
similar cells comprise the periodically layered, infinite, elastic 
body. 
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Fig. 2 Spectral lines corresponding to modes of opposite symmetry, at the 
ends of the Brillouin zones 

Let u, u, and w be the Cartesian components of displacement in the 
x, y, and z -directions, respectively. For plane strain motion, we take 
w = 0; u, u ^ 0. Then, as shown in detail in [l], application of the 
methods of classical elasticity and Floquet's theory of differential 
equations with periodic coefficients leads to the dispersion equation 
expressed in the form of an 8 X 8 complex-valued determinant ([1, 
equation (12)]. 

The dispersion equation relates two-nondimensional wave numbers 
T] = (2hky)liv and f = (2hkx)/ir to a nondimensional frequency fi = 
(2hw)/(ir-\/fi/p). Here ky is the wave number of the Floquet wave 
measured in they-direction, kx the wave number in the x -direction, 
and a) the frequency in radians per unit of time. Thus the dispersion 
equation implicitly represents a multiple-valued surface in fre­
quency-wave-number space, with frequency as a real parameter. 

Since the dispersion equation is in general far too complex to be 
evaluated analytically, numerical computations are required. This 
paper presents the results of such an evaluation for a limited range 
of wave numbers over the first two Brillouin zones. Some earlier nu­
merical results are given in [2]. The parameters used in this study are 
7 = 0.02, <r2 = 0.06, « = 4, j/ = 0.30, and v' = 0.35. Here 7 = fi/n', a2 = 
(p.p')/(p.'p), e = h'lh, and v and v' are Poisson's ratio for the layers with 
unprimed and primed constants, respectively. 

Real Branches 
It was shown in [1] that the dispersion equation for plane strain 

motion factors along the ends of the Brillouin zones, were r\ = n/(l 
+ e), (n = 0, 1, 2 . . .), into the product of two 4 X 4 determinants. 
These determinants were then shown to represent the dispersion 
equations for motion in which the u component of displacement is 
either symmetric or antisymmetric about the layer midplanes. For 
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Fig. 3 P and S surfaces in the f = 0 plane, with complex branches 

even values of n, the two factors correspond to motion in which the 
u displacement is either symmetric or antisymmetric about both layer 
midplanes in the unit cell ([1, equations (13)-(14)]. These cases will 
be referred to as symmetric-symmetric and antisymmetric-an­
tisymmetric motion, respectively. For odd values of n, one factor 
represents motion in which the u displacement is symmetric in the 
layers with unprimed constants and antisymmetric in the layers with 
primed constants (symmetric-antisymmetric motion, [1, equation 
(16)]. The other factor represents the converse situation, antisym­
metric-symmetric motion ([1, equation (17)]. The first four branches 
of each mode are shown in Fig. 2. As noted previously, these curves 
define the ends of the Brillouin zones on the dispersion surface. 

Similarly in the f = 0 plane, the dispersion equation may also be 
shown to factor into the product of two 4 X 4 determinants, one of' 
which represents a longitudinal (P) wave propagating normal to the 
layering and the other a shear (S) wave propagating normal to the 
layering, [1]. The spectral lines for these two cases are shown in Fig. 
3, along with the complex branches originating at the ends of the 
Brillouin zones. The surfaces which emanate from the longitudinal 
and shear wave spectral lines in the f = 0 plane will henceforth be 
called the P and S surfaces, respectively. The S surface will generally 
be the lower of the two. 

Fig. 4 shows the intersection of the S surface with planes of constant 
f over the first two Brillouin zones, plotted on an extended zone 
scheme. It is of interest to note that, while the derivative dQ/d?/ was 
always positive on the extended zone scheme in the antiplane strain 
case [3], this is not so in general in the plane strain case. In fact, dil/dri 
may change sign within a Brillouin zone, as may be seen by comparing 
the curves for f = 0.10 and f = 0.30 in the first Brillouin zone. This 
change in sign occurs between f = 0.26 and f = 0.27 and is illustrated 
in Fig. 5. The derivative dfi/dj; becomes positive again around f = 0.82 
and remains positive thereafter. A similar behavior occurs in the 
second Brillouin zone, where dfi/d?? becomes negative around f = 0.48 
and remains so for increasing f. 

It was noted previously that lines defining the ends of the Brillouin 
zones were given by the factored forms of the dispersion equation, i.e., 
symmetric-symmetric modes, etc. For conciseness, let SSI denote the 
spectral line for the first symmetric-symmetric mode, AS2 the second 
antisymmetric-symmetric mode, etc. This notation will be useful for 
labeling points on the ends of Brillouin zones. Then the S surface in 
the first Brillouin zone is found to be bounded in the r\ = 0 plane by 
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Fig. 5 Curves of constant f on the S surface for f = 0.26, 0.27 

AA1 to f = 0.33, by SSI to f = 0.82, and by AA1 thereafter. In the i\ 
= 0.20 plane, the bounding lines are AS1 to f = 0.04, SA1 to f = 0.82, 
and AS1 thereafter. The portion of the surface in the second Brillouin 
zone is bounded in the 77 = 0.20 plane by SA2 to f = 0.15, by AS1 to 
f = 0.44, by SA2 to f = 0.57, and by AS2 thereafter. In the r\ = 0.40 
plane, the surface is bounded by SS2 to f = 0.35 and then by AA2 
thereafter. 

Fig. 6 shows the intersection of the P surface with planes of constant 
f over the first two Brillouin zones. An especially interesting feature 
is the existence of a local minimum in the curve for f = 0.30 in the 
second Brillouin zone, at about r\ = 0.30. This minimum first appears 
at the left-hand end of the zone at f = 0.26 and moves from left to right 
within the zone with increasing f until it reaches the right-hand end 
of the zone at f = 0.32. From f = 0.32 to f = 0.77, dfi/d?) is negative 
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Fig. 6 Curves of constant f on the P surface 

over the entire second zone, but becomes positive again at f = 0.77 
and remains so for increasing f. 

In the first Brillouin zone, the P surface is bounded in the 77 = 0 
plane by SSI to f = 0.33, by AA1 to f = 0.82 and by SSI thereafter. In 
the 77 = 0.20 plane, the bounding lines are SA1 to f = 0.04, AS1 to f 
= 0.15, SA2 to f •= 0.44, ASl to f = 0.82, and SA1 thereafter. In the 
second Brillouin zone, the surface is bounded in the 77 = 0.20 plane 
by AS2 to f = 0.22, by SA3 to f = 0.29, by AS3 to f = 0.73, by SA3 to 
f = 1.25, by AS3 to f = 2.58, by SA3 to f = 2.82, and by AS3 thereafter. 
In the 77 = 0.40 plane, the surface is bounded by AA3 to f = 0.12, by 
SS3 to f = 0.18, by AA3 to f = 0.77, by SS3 to f = 1.25, by AA3 to f = 
2.58, by SS3 to f = 2.82, and by AA3 thereafter. 

Complex Branches 
We will now focus our attention on the complex portion of the 

spectrum, considering first the branches for which ?; takes on complex 
values. As shown in [4], these branches originate from points on the 
real spectrum at the end of the Brillouin zones and from other points 
on branches where dfl/[d Re (?/)] = 0. Along branches originating from 
the end of the Brillouin zones, the real part of 77 in general remains 
constant while the imaginary part varies. Complex branches will also 
arise from points on other complex branches where dfi/[c> Im (77)] = 
0. To avoid excessive detail, results are presented here only for the 
range 0 < f < 0.35 over the first two Brillouin zones. 

We consider first the left-hand end of the first Brillouin zone, in 
the plane Re (77) = 0. As the spectral lines SSI and AA1 move away 
from the origin (Fig. 2), simultaneously complex branches originate 
from these lines and run down to the Q = 0 plane. Fig. 7 illustrates 
these branches at f = 0.10, where again the imaginary axis has been 
rotated 90° onto the real plane for clarity. This situation continues 
to between f = 0.25 and f = 0.26, where an interesting phenomenon 
occurs. Here the branches are observed to touch each other at a point 
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Fig. 7 Real and complex branches originating from the left-hand end of the 
first Briilouin zone ( f = 0.10) 

along the curves and then with increasing f, to split and rejoin into 
branches having different endpoints. This process is shown qualita­
tively in Fig. 8. Here, and henceforth, we denote real branches by solid 
lines, complex branches upon which the real part of the wave number 
remains constant by dashed lines, and complex branches upon which 
both the real and imaginary parts vary by dashed and dotted lines. 
The branches which originally ran from SSI and AAl to the Q = 0 
plane are seen to split and rejoin into a single branch running from 
SSI to AAl and another which loops up from and back to the Q = 0 
plane. For f = 0.26, a short complex branch upon which both Re (if) 
and Im (?;) vary connects a local minimum in the SS1-AA1 branch to 
a local maximum in the branch originating and ending in the fi = 0 
plane. This is in accordance with the previously stated result that 
complex branches may also arise from portions of the spectrum where 
dfi/[d Im (?;)] = 0. The local minimum in the SS1-AA1 branch dis­
appears around f = 0.27, as shown in Fig. 9. The situation shown in 
Fig. 9 remains qualitatively unaltered through f = 0.35. 

Now consider the complex branches in the Re (rj) = 0.20 plane. Here 
the situation is considerably more complicated. Fig. 10 shows the 
branches for f = 0 (see also Fig. 3). Here the P and SV waves uncouple, 
leading to intersections between the complex branches. However, once 
f increases away from zero, the P and SV waves become coupled and 
the complex branches immediately split at their points of intersection 
and rejoin into different branches, accordilng to the process described 
earlier. Fig. 11 shows a qualitative sketch of the rejoined branches at 
f = 0.02. The intersections of the P and S surfaces with the f = 0.02 
plane are labeled accordingly. The local maximum in the AS1-SA1 
branch and the local minimum in the SA2-AS3 branch disappear 
between f = 0.10 and f = 0.15, and with them the complex branch 
connecting the two. Also, the AS1 and SA1 spectral lines intersect at 
f = 0.04, so the relative position of these two is reversed. 

At f = 0.15, the SA2 and AS1 spectral lines intersect, and a variant 
of the splitting and rejoining process is observed. Fig. 12 shows the 
branches before the intersection, at f = 0.14, and afterwards at f = 
0.16. The AS1-SA1 and AS3-SA2 branches are seen to merge and 
rejoin into an AS3-SA1 branch and an AS1-SA2 branch. 

The situation shown in Fig. 12 for f = 0.16 continues qualitatively 
unaltered with increasing f until a value of f between f = 0.25 and f 

Iffl(i)) 

Im (17) C» .26 
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Fig. 8 Intersection, splitting, and rejoining of complex branches between 
f =0.25 and f = 0.26 
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Fig. 9 Real and complex branches originating from the left-hand end of the 
first Briilouin zone (£ = 0.27) 
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Fig. 11 Qualitative sketch of spectrum for £ = 0.02 

= 0.26. Here an intersection, splitting, and rejoining of the AS3-SA1 
and the SA3-AS2 branches occurs, resulting in a local maximum in 
the newly formed AS2-SA1 branch. At the same point, a local mini­
mum is observed to form in the real branch on the P surface in the 
second Brillouin zone, and is connected by a complex branch to the 
local maximum in the AS2-SA1 branch. This process is sketched 
qualitatively in Fig. 13. 

As £ increases, the local minimum in the real branch moves from 
left to right through the second Brillouin zone until it reaches the 
right-hand end at about £ = 0.32. Now the derivative dfi/[d Re ();)] 

is completely negative on the P surface throughout the second Bril­
louin zone. A local minimum now forms in the complex branch orig­
inating from the right-hand end of the zone, and the complex branch 
which previously ran to the minimum in the real branch, now runs to 
this minimum. Pig. 14 illustrates qualitatively the situation for £ = 
0.29 and £ = 0.34. 

We will now briefly consider those branches of the spectrum for 
which £ takes on complex values. These branches originate from the 
real spectrum in the Re (f) = 0 plane, and from other lines in the real 
spectrum along which dfi/[d Re (f)] = 0. In general, the real part of 
f remains constant along branches originating in the Re (f) = 0 plane, 
while the imaginary part varies. Complex branches may also be ex­
pected to originate from points on other complex branches where 
dfi/[d Im (f)] = 0. 

Fig. 15 shows a qualitative sketch of the branches with complex f • 
along the end of the first Brillouin zone in the plane Re (rj) = 0.20 (see 
also Fig. 2). Here the dispersion spectrum uncouples into symmet­
ric-antisymmetric and antisymmetric-symmetric motion. A partic­
ularly interesting feature is the existence of a complex branch running 
from a local minimum in the real AS3 branch down to a point in the 
Q = 0 plane. 

We have restricted ourselves in this section to a discussion of those 
portions of the complex spectrum where only one of the two wave 
numbers (either r\ or J) takes on complex values, while the other re­
mains real. However, there exist portions of the spectrum upon which 
both wave numbers are complex-valued. These portions of the spec­
trum are shown to originate from points at which either dfl/d[Re (?j)] 
= dfi/d[Re (f)] = 0 or dfi/d[Im (TJ)] = dfi/d[Im (0] = 0. They describe 
in general a five-dimensional surface in frequency-wave-number 
space. 

As an example, consider the point 7; = 0.20, f = 0 at the end of the 
first Brillouin zone. From this point there arises a surface upon which 
both Im (17) and Im (J) vary, and upon which Re (rj) and Re (J) may 
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Fig. 13 Qualitative sketch of spectrum for f = 0.25, 0.26 
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Fig. 14 Qualitative sketch of spectrum for f = 0.29, 0.34 

vary as well. Fig. 10 shows a section of this surface in the Im (f) = 0 
plane, while Fig. 15 shows a section in the Im (?;) = 0 plane. 

Discussion 
It is evident from the numerical results presented in the last section 

that the dispersion spectrum for plane strain motion is quite com­
plicated. This complexity makes the task for properly interpreting 
the spectrum a difficult one. By proper interpretation of the spectrum 
we mean the selection of those portions of the spectrum for which 
energy is propagated in the positive coordinate directions, and which 
can be reached from the zero frequency plane by a path along every 
point of which energy is propagated in the positive coordinate direc­
tions. 

For real wave numbers, the selection of portions of the spectrum 
for which energy is propagated in the positive coordinate direction 
corresponds to the selection of portions of the spectrum for which the 
components of the group velocity dO/[d Re (f)] and dfi/[d Re (?;)] are 
both positive. The interpretation of the antiplane strain spectrum [4] 
is thus straightforward, since both these derivatives are always posi­
tive (or zero) on the extended zone scheme. 

In the plane strain spectrum, however, dfi/[d Re (£)] and dfi/[d Re 
(r;)] have been shown to change signs several times within a Brillouin 
zone, indicating the presence of saddle points and critical points of 

, more complicated nature. The interpretation problem is further 
complicated by the fact that any portion of the dispersion surface may 
be reached by one of a number of different paths by traveling along 
different real and complex branches. 

Perhaps the major difficulty which remains to be resolved before 
the plane strain spectrum can be successfully interpreted is the de­
termination of the portion of the complex branches of the spectrum 
which correspond to energy propagation along the positive coordinate 
axes. The criterion for making this determination along real portions 
of the spectrum has already been stated. However, for complex por­
tions of the spectrum, no corresponding criterion exists. 

r, =.20 

Im(£) 
Fig. 15 Qualitative sketch of real and complex branches for r\ = 0.20 

For these reasons, a proper interpretation of the plane strain 
spectrum cannot be given at this time, pending a more detailed 
analysis leading to a resolution of the difficulties mentioned. The 
interpretation must therefore be deferred to later studies which in­
volve the application of Morse theory for the study of critical 
points. 

In addition, there are a number of other problems connected with 
this subject, which have not yet had a satisfactory answer. It is well 
known that for fhe Floquet exponent nir/d < ky < (n + l)ir/2, n = 
0 ,1 , 2 , . . . , the two linearly independent solutions for the potentials 
<l>(x, W,' t) and \j/(x, yn; t) are quasi-periodic or "almost-periodic" in 
the sense of Bohr. At the end points of the Brillouin zone, one of the 
solutions is periodic with period (half period) d when n is even (odd). 
For a second-order ordinary differential equation with periodic 
coefficients, such as equation (5) of [1], it can be shown that when ky 
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= mr/d, the second independent solution is a sum of a periodic part 
and a linearly varying part, and as such it is aperiodic. These solutions 
and their explicit forms still remain to be determined in the case of 
plane strain problems. The ability to solve initial-boundary-value 
problems depends upon a detailed knowledge of the properties of 
these solutions. 

It is also knowp [5] that there exists coincidence of frequencies for 
suitable values of parameters. It can be shown that if F(Q, £/,) = 0 (k 
= 1,2) is the dispersion equation, which is a function of one real and 
two complex variables, then the slope of the surface at the point of 
coincidence is given by 

dtt l , 

df* J'nn 

and the second derivatives are not independent but satisfy the con­
dition 

(FahFa(2 - FaaF(l(2)* - (F*m - FailF(lh)(F
2

m - F^F^) = 0. 

At the point of coincidence, the two linearly independent solutions 
for the potentials </> and \p are both periodic. However, the qualitative 

nature of the displacement field has not been examined so far. The 
problem of coexistence in the theory of ordinary differential equations 
with periodic coefficients has a long history and was only recently 
explained fully. An understanding of similar phenomenon in the 
present context requires further study. 
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The Elastostatic Axisymmetric 
Problem of a Cracked Sphere 
The problem of a cracked sphere is solved with the use of Boussinesq stress functions. Two 
coordinate systems—oblate spheroidal for representing the crack surface and spherical 
polars for the spherical surface—are used to satisfy boundary conditions. Integral repre­
sentations and transformations of harmonic functions are used to relate stress functions 
in the two coordinate systems. This procedure leads to a system of algebraic equations 
which is solved, for axisymmetric tractions on both the surfaces. Graphical results are pre­
sented for one specific loading case. 

1 I n t r o d u c t i o n 
The motivation for solving the elasticity problem for a cracked 

sphere was the need of this solution in order to solve the problem of 
a cracked spherical inclusion in a dissimilar matrix. This cracked 
inclusion solution is presented in the companion paper in this issue 
of the JOURNAL OF APPLIED MECHANICS on Pages ?. It is often 
found in testing of metallic materials with brittle inclusions that the 
latter fracture at a relatively low load level, and this fracture event 
is the source of detectable elastic wave motion (see Bianchetti, 
Hamstad, and Mukherjee [1]). It is of interest to solve the cracked and 
uncracked inclusion problems in order to determine the amount of 
elastic energy released by the fracture event. 

The two-dimensional analog of the cracked sphere problem has 
been solved by Brdogan and Gupta [2], but the techniques used there 
are not applicable to the spherical geometry. The cracked sphere so­
lution is obtained here by the superposition of two other solutions: 
one is the solution for a penny-shaped crack in an infinite medium 
and the other is the solution for an uncracked sphere. The solution 
of the crack problem exists in the literature in several different forms, 
but none of these forms was found to be suitable for use in the su­
perposition scheme for solving the cracked sphere problem. For this 
we heed the solution for arbitrary axisymmetric normal and shearing 
tractions applied to the crack faces. Furthermore, this solution must 
have a mathematical representation that permits the evaluation of 
the normal and shearing tractions on the spherical surface of interest. 
Such a solution is derived in Section 2 for the crack in an infinite 
medium in terms of oblate spheroidal coordinates. Sack [3] has also 
solved the problem of a crack in an infinite medium using oblate 
spheroidal coordinates. However, the solution obtained in [3] contains 
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incorrectly defined Legendre functions of the second kind. Also, 
Sack's transformation of harmonic functions from oblate spheroidal 
coordinates to spherical coordinates leads to functions that are not 
harmonic, therefore, they cannot be used as Boussinesq potentials. 
Furthermore, the problem considered in [3] is restricted to uniform 
pressure distribution on the crack faces. For our purposes we need 
nonuniform pressure and shear distributions on the crack faces. 

The axisymmetric solution for the uncracked sphere is given by 
Sternberg, Eubanks, and Sadowsky [4] in terms of interior spherical 
harmonics. In order to use this solution in the superposition scheme 
for solving the cracked sphere problem it is necessary to evaluate the 
normal and shearing tractions on the crack face of interest. Trans­
formations are obtained between spherical and oblate spheroidal 
coordinates which enable us to make the needed traction calculations. 
Superposition of these two solutions leads to the cracked sphere so­
lution in series form. 

One particular loading is considered and stress distributions are 
calculated on the equitorial plane outside the crack for various ratios 
of the crack and sphere radii. The stress-intensity factor is also 
computed, and its dependence on this ratio is also graphically illus­
trated. 

2 Crack in a n Inf in i te M e d i u m 

1 Coordinate Systems and Separable Solutions. The axi­
symmetric problem of a penny-shaped crack is solved here using 
Boussinesq stress functions referred to oblate spheroidal coordinates 
defined as follows: 

x = a V ( l + %2)(1-V2) c °s < 

y = a V ( l + £2)U - V2) sin < 

z = a£?j 

(1) 

where 0 < f < =>, —1 < ?/ < 1. 
The surfaces £ = constant (positive) are oblate spheroids of thick­

ness 2 £a along the axis, and of equitorial radius aV£ 2 + 1 • The sur­
faces 7] = constant are hyperboloids of one sheet, asymptotic to the 
cone of angle cos - 1 r\ with respect to the z-axis. The surface £ = 0 is 
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a disk of radius a in the x, y plane, with center at the origin. The de­
generate surface TJ = 1 is the positive z-axis and likewise ?j = —1 is the 
negative z-axis; also the surface t) = 0 is the x, y plane except for the 
part inside the disk of radius a, centered at origin. 

The separable solutions $(0)ff (?))X(£) of Laplace's equation in 
oblate spheroidal coordinates are determined by 

d 2 * 

d0 2 

dm 

+ m2* = 0, 

di) [ dtj 
+ n(n+ 1)H--

d_ 

n + af + n(n + 1)X = 

m2H 

1 - 7 / 2 ' 

m2X 

(2) 

1 + f2 

The solutions are products of the following type: 

sin m<j> 

cos m<j> 
X Pn*(v) 

X asm. (3) 

where P™ and Q™ are the Legendre polynomials and Legendre 
functions of the second kind, respectively. Because of axial symmetry 
only the terms with m = 0 are considered. Regularity requirements 
at r) = ±1 and £ ->- °° exclude the use of Pn{i^) and Qn(v)- Thus the 
required solutions for the exterior of an oblate spheroid are 

U(l v) = Pn(v)Qnm- (4) 

Additional harmonic functions \pn are generated from these by ob­
serving that if 4>n is harmonic then so is grad z • grad cf>n. In oblate 
spheroidal coordinates such ipn(t,, TJ) are related to $n(£, >?) by 

1 
iMfc v) • 

£2 + 1 Mn , , l-V^Wn 

a [ £2 + TJ2 d£ £2 + TJ2 d7) 

Substituting (4) and (5) into 

2yau = V<j> 

2juu = V(z^) - [4(1 - v)\pk] 

referred to oblate spheroidal coordinates (see [6]), we obtain the first 
Boussinesq solution (generated by 4>n) and the second Boussinesq 
solution (generated by ipn): 

First Boussinesq Solution [Fn] 

(5) 

(6) 

(7) 

2jxu 
• V ?><t>n 

£ 2 + n2 i>rj (8) 

T<"> : 

1 

a2 

1 A 

IP + lU2<l>n ( 

/(? + 1)(1 - v2) 

Z(V
2-l)d<t>n i 77(1 - 7)2) d0„ 

(£2+772)2d£ (£2 + r;2)2 dij 

(£2 + TJ2) 

- X 
&4>n V d<l>n £ i»Pn 

dfd?? £ 2 + T J 2 d£ £ 2 + TJ2 drj 

1 (9) 

a2(£2 + »/2) 

X ( 1 - TJ2) -1-
d7j 2 £ 2 + 7? • drj 

1 

£2 + TJ2 d£ 

w " a2(£2 + yf) 

Second Boussinesq Solution [Gn] 

d0„ d(f>n 
t TJ 

<»> * / I E 
1 * 

df„ 
a£^„ + a£jj —— - 4(1 - j/)a£^„ 

077 

ar)\pn + O£TJ - — - 4 ( 1 - v)ar\\pn 

3? 

(10) 

^ a \£2 + v2) *t2 

, ff2n (» ) 2 - l ) 
a (£2+7)2)2 

(1 - 2P) 11 +¥ 
a V[z2 + r,2 

a (e + V2) U2 + *)2 I. d7) 

^ ' 
l V ^ + D d - D 2 ) 
a (£2 + T,2) 

X £77-77^-77 
d^d?; [£2 + 7)! 

e ; + (1 - 2I-) 
d7) 

•€ ^ 
f2 + TJ1 + (1 - 2i/) a^l 

df J 

(11) 

T<») : 
1 / 1 - 7)2 

a \£2 + 7)2/ d7)2 

a(£2 + 7,2) 

^2(1 + ?) 

I (?2 + V2) 

(1 + B») 

+ 2(1/ - 1 ) ( 1 - 7)2) 

^2 |(i + f)W_g__Jl 
la(£2 + 7)2)l£2 + 7,2 / 

T ( " ) = • 

a,(£2 + TJ2) 
n h k 

The displacement component u^ and the stress components a^ and 
<r,0 which vanish identically by virtue of assumed symmetry are 
omitted here. 

2 The Axisymmetric Problem of an Arbitrarily Loaded 
Crack. Consider a penny-shaped crack of radius a in the x, y plane 
of an infinite medium and centered at the origin. Furthermore, assume 
that this crack is loaded with general axisymmetric surface tractions 
given by 

cr4f(0, TJ) = /(TJ), (74l,«), 77) = g(V). (12) 

In order to satisfy these boundary conditions at the crack face we need 
to evaluate from the first and second Boussinesq solutions the ex­
pressions for <7jj and <7j, at the crack face £ = 0. Using (4) and (5) in 
(9) and (11), respectively, we find 

[Fn]: 

<4?'(0,J7) 
n(n+ 1) 

' aV(2ra + 1) 
[nP„+i(77) + (n + l)P„-i(i?)]Q„(i0) I 

fffeftO, V) 
(13) 

"aV(2n + l) 
[(n - 1)P'„+1(TJ) + (n + 2)P'„_1(7/)]Q'„(iO) 

[G„] 

»(0, TJ) 

2(i/ - l)n(ra + 1) 

o ¥ ( 2 n + 1) 
[nPn+i(v) + (n- l)Pn~i(v)]QndO) j 

(2T- - l ) v T • 7 ) « 
(14) 

a2773(27l + 1) 

[(n - 1)P'„+I(T,) + (n + 2 ) P ^ 1 ( T / ) ] Q ' „ ( I O ) / 

The form of these expressions suggests that in order to satisfy the 
boundary conditions at the crack face £ = 0 we should expand the 
following functions into Legendre-Pourier series: 

vaf(v) •• : £ /„*>„(„), - 7 = = 
rt=0 V I ~ 7) 

g(v) = E gnPn(»?) 
n = l 

in which /„, gn are determined by 

In + 1 r 1 

2 J - i 

(15) 

(16) 
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(2n + l ) ( / i - 1)! 
J * J /3vT^g(i?)P'„(7?)di; (Cont. 

(16) 

) 
2(/i + 1)! 

We also observe from (13) and (14) and the definition of Pn(v) that 
the stress quantities 0$ from both [Fn] and [G„] are regular in the 
region exterior to the crack only for even re (except for n = 0) while 
the cr̂ "1 are regular in the same region for odd re. The other terms 
possess singularities at r\ — 0, which is the entire 2 = 0 plane except 
for a disk of radius a, and must therefore be omitted. In order to ac­
complish this it is useful to define solutions [An], [Bn] by 

[An] = n(n - l)[Fn] 

[B„] = re(re - 1)[G„] 

which will omit the singular solution for n = 0 and will aid us in ob­
taining the coefficients of superposition by recursive computation. 
We now assume the solution in the form 

(17) 

IS]- •• £ an[An] + bn[Bn] 
n=0 

(18) 

The boundary conditions at f = 0 supply a system of equations for the 
coefficients of superposition an, bn. Upon substitution of (13) and (14) 
into (17), with the use of (15), we obtain 

V-0 ^yo,fro ^0 A. f^ 
T/<O,£=O ° 

Fig. 1 The geometry of the crack 
v= 

vv 
y 

Fig. 2 

IMAGINED SURFACES 

The superposition of solutions S1 and S2 

£ fnPn = £ [0„ + 2{v - 1)6„] 
ra=0 n=0 

[»2 (^2 -D r p . , . 1WJ , Q» («o ) l 
— r [reP„+i + (n + l)P„_i] 

£ gnK = £ K + (2!/ - l)fj„] 

fre(/j — 1) 
[(re - l)P'n+l + (re + 2 )P ;_J 

(2n + 1). 

&(»<)) 1 

(19) 

(2n + 1) 

Equating coefficients of the same degree Legendre polynomials on 
both sides, we get 

, (n - l)8[(n - l ) 2 - l]QB-i(»0) 
In ~ ~ ~ a » - l a2(2re -1) 

2(v l)n(n - l)3(n - 2)Q„_i(iO) 

(n - l)(n - 2)2Q'n-1(iO) 

aH2n - 1) 

a2(2n - 1) 

l ) (n - l ) (n - 2)2Q;_1(iO) 

bn~ 

(2v-

a2(2n + 3) 

aH2n-l) 

(n + in(n+l)2-l}(n + 2)Qn+1(iO) 

n(n + D(n + 3)Q'„+1(iO) 

n(n + l )2(n + 2)22(j- - l)Qn+i(iO) 

ra(ra + 1)(« + 3)(2« - l)Q'„+i(iO) 

n = 1,2,.. . 

6 n - i 

bn+i. 

(20) 

For the problems of practical interest the tractions on the two crack 
faces are equal in magnitude and opposite in sign. This means that 
f(rf) and g(ri) are even functions of r\. I t follows that the Legendre-
Fourier expansion for rpf(r]) in (15) contains only odd degree Legendre 
polynomials while that for (T) 3 /V1 - v2 )s(v) contains derivatives of 
only even degree polynomials. Thus /„ = 0 for even integers n while 
gn = 0 for odd integers re. It further follows that a^n, &2n determined 
by (20) depend only on /„ while a2n+i, &2n+i depend only on gn. These 
equations must be solved recursively. Nevertheless it is possible to 
write them in explicit form once the series has been truncated at a 
suitable integer re = N. It is useful to write the resulting system 
symbolically in matrix form as 

[Ah]{aj} + [Afjjlbj] = U 

[Alj]\aj\+[Atj]\bj\ = \gi\ 

i = 1,2, ...N. (21) 

Also we may represent the solution of these equations by 

1,2, ...N (22) {oil = HWj) + Kite;)' 
M = Him + Kite-i. 

which formally completes the solution to the crack problem. 
An alternate formulation of the crack problem rests on the known 

symmetry of the solutions and the fact that certain displacement 
components in the plane 77 = 0 must vanish. We can demonstrate that 
the solution just obtained satisfies these properties. In particular, 
consider the solution for the case g(ij) = 0, that is, when the crack is 
opened by nonuniform pressure only. It can easily be shown by use 
of (4) and (5) in (8) and (10) that u„ = 0 at 7/ = 0. 

3 T h e P r o b l e m of a C r a c k e d S p h e r e 
The axisymmetric elastostatic problem of the cracked sphere is 

treated here by employing the axisymmetric solution for a sphere 
under tractions together with the solution given in the previous section 
for the tractions applied to the surface of a penny-shaped crack in an 
infinite medium. In order to superpose these two solutions we must 
make use of appropriate transformations, which allow us to pass from 
spherical polar to oblate spheroidal representations and vice-versa. 

1 Statement of the Problem. We consider a homogeneous 
isotropic elastic sphere of radius ro which possesses a circular crack 
of radius a centered at the center of the sphere, oriented perpendicular 
to the symmetry axis and lying in the x, y plane. Assume the spherical 
surface is loaded with the general axisymmetric tractions 

o>r(/o,P) = s(p) = L snPn(p) 
n=0 

oro(ro,p) t(P)=p L tnP'n(P), 
n=\ 

(23) 

where the coefficients of the Legendre-Fourier expansion s„, tn are 
determined as in (15). The surface of the crack is free of tractions, i.e. 
(see Fig. 1). 

0 (24) o-H(o, r?) = o-{,(o, n) 
This problem is solved by superposing solutions as depicted in Fig 
2 and demanding that 

tr)([h, k] + / = 0, o-y/i, k] + g = 0 at J = 0, 

h + (T2rrlf, g] = s, k + a%\f, g] = t a t / -ro, 
(25) 

Where superscript " 1 " denotes the uncracked sphere solution, for 
arbitrary initially unknown tractions represented by h, k and su­
perscript " 2 " denotes the crack solution, given in the previous section 
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for arbitrary initially unknown tractions represented by / and g. 
These four unknown functions are determined by the four equations 
in (25), which result from the superposition 

forms (see [5, Appendix B] for the derivation of this transforma­
tion). 

[S] = [Si] + [S2]. (26) 

2 Tractions on the Imagined Crack Face From the Un­
cracked Sphere Solution. Let the spherical surface be loaded with 
arbitrary axisymmetric tractions, 

rnPn(p) 

where a is the crack radius, i = 

- E «P*(u)P»(»f) 

-1 , and 

(35) 

6%= f\«Pk(T)dT 

ffJUm. p) = hip) = E hnPnip) 

0rt>(ro,p) = kip) = p E knP'„ip) 
re-1 

(27) 

Then the uncracked sphere solution as given by Sternberg, Eubanks, 
and Sadowsky [4], using solid spherical harmonics as Boussinesq 
potentials, has the form 

The oblate spheroidal form of the solid spherical harmonics is then 
used in (6) and (7) referred to their oblate spheroidal form [6]. This 
computation yields the oblate spheroidal form of [C„] and [Dn]. 
Substitution of these transformed Boussinesq stress functions into 
(28) enables us to determine the tractions at the imagined crack faces 
£ = 0. 

[ S 1 ] " E cn[Cn] + dn[Dn], 

where [Cn] are given by 

2/iu^ = nr^Pn, 2/w4n) = -prn~1P'n 

M : nin - l)rn~2Pn 

4tf = r"-2[P'„_! - nin - 1)P„] 

4 ? ) = p r » - 2 ( l - « ) P ' n 

while the solutions [Dn] are given by 

2ixu<f) = nrnin - 3 + 4v)Pn-i, 

2/tu£n) = -prn(n + 4 - 4i»)P'n_i 

<T<;> = nrn~l[nin - 3) - 2v]Pn-i 

4tf = r"-M(n + 4 - 4v)P'n - n[(n + l ) 2 

(28) 

(29) 

(30) 

r<"> 

+ in + 1) + 1 - 2v]Pn-i\ 

•• r"-1[ni2n + 1)(1 - 2v)Pn-1 -in + 4 - 4v)P'„]l 

(3D 

(32) 

<r<?> = - p r " - i [ ( n + D 2 - 2(n + 1) - 1 + 2v]P'„_1. 

In the equations (30) and (32) we observe that the solutions [Co], [Cx], 
and [Do] correspond to vanishing stresses throughout the sphere, thus 
these solutions represent rigid displacement. Equilibrium requires 
that the tractions in (27) satisfy 

hi - 2fei = 0 (33) 

and the coefficients c„, dn in (28) are determined in terms of hn, kn 

by 

1 [jn2 + 2n - 1 + 2v)hn + jn+ l)(n2 - n - 2 - 2v)kn] 
rn-2 
^0 2(n - l)[n2 + n + 1 + (2n + l)v] 

n = 2, 3 . . (34) 

hn + nkn 

2r%\n2 + n, + 1 + (in + l)v] 

n = 0 , 1 . 

The coefficients Co, c\, and do are taken to be zero to eliminate arbi­
trary rigid displacements. 

In order to find the tractions at the imagined crack surface in the 
uncracked sphere we must transform the solutions [C„] and [Dn] into 
oblate spheroidal coordinates. This we do by first transforming the 
interior spherical harmonics rnPn(p) into their oblate spheroidal 

<4(0, ij) = - r E 
V n=0 

Cn E [«l( l , q)Pq+l(v) + «2(n, q)Pq-l(v)} 
q=Q 

+ dn E [5i(n, q)Pq+2(v) + h(n, q)Pqin) 
q = 0 

<4,(0, i;) 
»T n=0 

+ 83(n, g)P,-2(»))] 

n / 

cn E [ea(n,q)Pq+i(v) 
{ «=0 

(36) 

+ u(n, q)P'q-M) 

+ dn E [84(1, g)P',+2 + 5B(". q)P'Q + &e(n, q)P'Q-2] 
q = 0 

where 

ei(n, q) = Ti(n, <?)q, £3(", <?) = T2(n, q)(q - I), 

tiin, q) = Ti(n, q)(q + 1), e4(n, q) = T2(n, <7)(<7 + 1), 

&i(n, q) = T3(n, q)(q2 + 3q + 2) - (n - 3 + 4»)«i(ra + 1, q + 1), 

82(1, <?) ! T3(n, 9)(4(?3 + 6q2 - 1) 

(2<7 - 1) 

53(n, q) '• 

(n - 3 + 4i/)e2(i + 1, <7 + 1). 

TS(n, q)(2q* - q2 + 3q) 

(2q - 1) 

84(n, q) = Ti(n, q)(q2 + q) - (n - 3 + 4v)ca(n + l,q + 1), 

d6(n, q) = Tt(n, q)(2q2 - 3) - (n - 3 + 4i/)e4(n + 1, q + 1), 

T4(ra, g)(2g3 + 5<j2+3<7) 
h(n, q) = -

nin, q) 

(2q - 1) 

q(q + l )a"-2egP,( t0) 

T2(n, 9) = 

•rs(n, q) = 

(2g + l ) i " 

q"-2egp;(io) 
in(2q + 1) 

2(p -l)(2ra + l)a"-1ggPg(i0) 

T4(JI, q) 

i2q + 1)(2(? + 3)i" 

(2v - l)(2ra + l)q"-1en
qPq(tO) 

(2<7 + 3)(2q + l)£n 

Equations (36) can be written symbolically in matrix form as 

crhiO, V) = \Pniv)\\(l*li}\ci\ + [Pk]\di}))\ 

(37) 

"Uiv) =^-T^-\P'n(n)}\([yni)\ci\+ [tni]\di\)\ 
•q" 

(38) 

By the use of (34), we may substitute for c; and d; in terms of hi, fc;, 
the coefficients of the unknown prescribed tractions on the spherical 
surface. But we find it more convenient to work with the coefficients 
of superposition c;, d;. 
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3 Tractions at the Imagined Spherical Surface From the 
Solution for a Crack in the Infinite Medium. The axisymmetric 
solution for a crack in an infinite medium was given in the previous 
section in a form that is useful for our purposes. For normal and 
shearing tractions on the crack face given by f(rj) and g(ri), respec­
tively, with Legendre-Fourier expansions given by (15) the solution 
[S2] is given in the form 

[S2] = E an[An] + bn[Bn] 
n=0 

(39) 

with a„, bn determined in terms of/„, gn by equation (20). 
In order to determine normal and shearing stresses at an imagined 

spherical surface, we must transform solutions [An], [Bn] used in (18) 
into spherical polar coordinates. This is accomplished with the aid 
of the following transformation for exterior oblate spheroidal har­
monics (see [5, Appendix B] for the derivation of this expression) 

Pniv)Qn(iO 

2"(ra!)2 " la\2m+n+i 

in which Mm are the coefficients of the series for the hypergeometric 
function 

n + 1 n + 2 3 liX\z] 
, ;n + - , — 

2 2 2 U 

defined by 

ab ab (a + l)(b + 1) x2 

F[a,b;c,x] = l + ~x + ' - + . . . 
c c (c + 1) 2! 

I + M{aMx + M2
aMx2 + ... (41) 

and 

X = z + i(x cos u + y sin u) 

This spherical polar form (40) of the exterior oblate spheroidal har­
monics is then used in (6) and (7) referred to their spherical polar 
form. This computation yields the spherical polar form of [An], [Bn], 
Substitution of these Boussinesq stress functions into (39) enables 
us to determine the tractions at the imagined spherical surface r = 
r0. 

ffrr(ro,P)= E E k / l ( m , Jl)P2m+n(P) 
ra=0m=0 

+ bn\f2(m, n)P2m+n(p) + Mm, n)P2m+n+2(p)]} (42) 

<J%(ro, P) = P E E Wnfiim, n)P'2m+nip) 
n=0 m=0 

+ b„[/2(m, n)P'2m+n(p)+ f3(m> n)p'2 2(P)]} 

where 

fiim, n) = n(n - l)G(n)Mm(2m + n+ l)(2m + n + 2) 2 m + n + 3 
r0 < 

(2m + n + l)(2m + n + 5 - Av) , , 
f2(m,n) = - — — 7 7 ; fi(m, n), 

fzim, n) •• 

(4m + In + 3) 

[(2m + n + 2)(2m 4- n + 5) - 2v] 

(4m + In + 3) 
fi(m, n), 

fiim, n) = n(n - l)G{n)M"m(2m + n+2) „2m+n+3 
(43) 

, , ' (2m + n+ l)(2m + n + 5 - 4 j / ) 7 , 
/2(m, n) = — fiim, rc), 

(4m + n + 3) 

/3(m, n) 

[(2m + n + 1 ) 2 + 2(2m + n + 1) - 1 + 2y](2m + n + 1) 

(4m + n + 3)(2m + n + 2) 

X /i(m, n) 

Gin) = [2"(rc!)2]/;n+1(2rc + 1)! 

Upon collecting coefficients of Pn(p) and P'„{p) in (42) and arranging 
them in matrix form, we find 

<Tl(ro,p) = \Pn}\([ali]\ai}+[Pli]\bim 

<T2ro(ro,p)=P{P'n\\([y2ni]\ai\ + [ » ) ) ) (44) 

By use of (22) we may substitute for a;, 0; in terms of/„, gn, the coef­
ficients of the unknown prescribed tractions on the crack face, to 
obtain 

(45) 

(46) 

al(r0,p) = (PB||([«il,-][«y + ffiilHWA 

a%(r0, P) = p\P'Mhli\H\ + [&\H\Vj\ 

+ (hUH] + [Ji-MlMftll 

4 Superposition of the Two Solutions. The superposition 
given in (25) determines f(r)), giy),hip), kip) so that the prescribed 
boundary conditions at the crack face, and the spherical surface are 
satisfied. The conditions at the crack face given in the first and second 
of (25), with (38) and (12), (15) yield 

I/V.I = -Kdfc) - [ 0 * 1 
\Sn\ = - WJIci} - [&]!<*,•), 

The conditions at the surface given in the third and fourth of (25) with 

(22), (44), (45), and (46) yield 

+ \(H)w}k] + [^m\])i-i8L] 

+ (h$][«M + imWikM-yU + [FinWi] 
+ KW1H1 + [JSMM-flU 

+ [GtoJHdil = | t„ | (47) 

where [/], [J], [F], and [G] are defined, from (27)-(31), as follows: 
4r(ro,p) = [PnWni}\ci}+[Jni}\di\\ 

<rk(ro,p) =p\P'n}{[F„i]{ci} + [Gni]\di\ (48) 

These equations determine the coefficients c;, d,- for given prescribed 
traction coefficients |s„) and {£„). The tractions prescribed on the 
spherical surface of solution S 1 are then determined by using (30) and 
(32) in (28). Likewise the functions /(?;), g(ri) which represent tractions 
on the crack face are obtained from (46) and (15). 

The implied computations were carried out in [5] for several par­
ticular loadings on the cracked sphere. In each case the series were 
truncated with sufficient accuracy after 22 terms. Here we present 
results only for the case of 

Radial Tensile Tractions Near the Poles. In this case the ap­
plied tractions were chosen as 

o>r(ro, p) = s(p) = 

Oro(ra,p) = t(p) = 0 

(1 + cos 50)/2, 0 < d < 36° 

144° < 6 < 180° 

0, otherwise 

(49) 

While this loading is somewhat artificial and of little physical rele­
vance it represents a crude approximation to the problem of con­
centrated loads at the poles and therefore allows comparison with the 
results of Rosenthal and Sternberg [8] in the limit of a small crack. 
Comparisons of this type are needed in order to test the suitability 
of the solution derived here for numerical computations in the case 
of more general loading. We also derive, in the context of this example, 
asymptotic results needed for calculating stress-concentration factors 
from our solution. The results are summarized in Figs. 3 and 4. In Fig. 
3 the normal stress on the equitorial plane is shown for the four values 
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Fig. 3 Normal stresses on the equator plane for tensile tractions near the 
poles (r0 = 2, v = 0.25, (To = Total load/ir/o) 

of afro = 0,0.05,0.6,0.875. For a/r0 = 0, the sphere has no crack and 
the normal stress distribution varies only slightly from the results for 
concentrated radial loads applied at the poles given by Rosenthal and 
Sternberg [8]. For the other values of a/ro the normal stress vanishes 
on the crack face, is unbounded at the crack tip, and monotonically 
decreases with the radius outside the crack. As the crack radius ap­
proaches that of the sphere the tensile stress at r = ro becomes un­
bounded. This trend can be seen in Fig. 3. 

The stress-intensity factor for the cracked sphere is calculated on 
the basis of the results derived for the crack in the infinite medium 
since in the superposition the solution S 1 is everywhere bounded and 
a singularity occurs only in S2. Consider a point A on the plane t] = 
0 at a distance 5 from the crack tip (Fig. 1). The value of the coordinate 
£ at this point is 

i> 
'25U/2 

and the stress-intensity factor is defined as 

. K,. = lim &)***„& 0). 

(50) 

(51) 

Using (9) and (11) in conjunction with (4), (5) and (15), we obtain from 
(18) 

<r„,(S,0)= £ \an + 2((K - l)6„) 
n(n — 1) 

Q,.u£) ? 3 _ , ^ P„(0). (52) 

in which an, bn are determined by (20). By use of the Legendre 
equation and recursion relation for Qn(i£) we obtain the following 
asymptotic expression, for all even re: 

- j i -Q„W) p 

= G(n) i£- 2 + 0 ( l ) as £ ^ 0 (53) 
in which G(n) is obtained from the recursion relations for Qn(i%). 
Therefore 

*„(£. 0) = t K + 2(v - l)bn\ n{n " 1 ] 

n=0 a* 

X [ G ( n ) ^ - 1 + O(l)]P„(0) as ? - * 0 (54) 

iTO.2 

a/r0 

Fig. 4 Variation with a/r0 of the increase in the stress-intensity factor for 
radial tensile tractions near the poles (r0 = 2, v = 0.25) 

In the particular case when the crack in the half space is opened by 
uniform pressure p 0 the series terminates at re = 2 and the quantity 
G(2) equals —3/2, so that in this case 

o2 + 2(v -,l)b2 = -p0a2/3Tr. (55) 

Use of (55) in (54) in conjunction with (50) and (51) yields the 
stress-intensity factor for the case of a uniformly loaded crack in an 
infinite medium in agreement with known results. In the case of the 
sphere the stress-intensity factor is obtained from (54) and (51) with 
in, bn, determined from the values of c„ and dn obtained from (47) 
and their use in (46) and then (22). For the loading in (49) the 
stress-intensity factor K\ is plotted as a function of o/ro. As can be 
seen K\ is monotonically increasing with a/ro and becomes unbounded 
as a/ro ~" 1-

Other loading cases considered in [5] include a radial compressive 
ring load near the equator and the case of uniform radial tension on 
the spherical surface. In both of these cases the crack face is trac­
tion-free. The case of a pressurized crack with a traction-free spherical 
surface is also considered in [5]. This problem differs from the uniform 
radial tension case only by a uniform uniaxial stress state, but the 
computations used were entirely different. The agreement of the re­
sults gave added confidence in the numerical procedure and degree 
of accuracy. These results are omitted here for the sake of brevity. 
Readers interested in these solutions are referred to [5]. 
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The Elastostatic Axisymmetric 
Problem of a Cracked Sphere 
Embedded in a Dissimilar Matrix 
The axisymmetric elastostatic problem of a cracked sphere embedded in a dissimilar ma­
trix is solved by using the solution for a spherical cavity in an infinite medium together 
with the axisymmetric solution for a cracked sphere given in the companion paper in this 
issue of the JOURNAL OF APPLIED MECHANICS, Pages 538-544. Numerical results are 
presented for (a) interface stress for various composites (b) dependence of the stress-in­
tensity factor on the material parameters and ratios of crack to sphere radii, (c) the dif­
ference in the elastic strain energy for a cracked and uncracked composite. 

1 I n t r o d u c t i o n 
The aim of this investigation is to calculate the amount of energy 

released when a crack forms in a spherical inclusion when the dis­
similar matrix is loaded in uniaxial tension at points remote from the 
inclusion. The fracture of such brittle inclusions has been observed 
by Bianchetti, et al. [1], and these fracture events release energy in 
the form of elastic wave motion that can be detected by electrome­
chanical transducers attached to the specimen. The nondestructive 
testing technique known as "acoustic emission" is used to observe the 
motion. In order for this technique to be useful in the characterization 
as well as location of such "mini earthquakes" the procedure needs 
to be calibrated. Such a calibration process will be aided by an esti­
mate of the energy released in an event that is subsequently de­
tected. 

The basic elasticity problem to be solved is that of the cracked 
spherical inclusion. In [2], the problem of a cracked sphere with ar­
bitrary axisymmetric tractions on its surface was solved. This solution 
is used here in conjunction with the solution for the opposite tractions 
applied to a spherical cavity in an infinite medium to solve the com­
posite problem of a cracked spherical inclusion. The geometry and 
coordinate systems employed are defined in [2], and this reference 
will be used here as if it were part of the present paper to avoid un­
necessary repetition. 

2 C r a c k e d S p h e r e E m b e d d e d in a D i s s i m i l a r M a t r i x 
1 Statement of the Problem. Consider the sphere, with elastic 

constants v',fi', of radius ro containing a penny-shaped crack of radius 
a lying axisymmetrically in the x-y plane with the crack faces trac-

1 Now at Bell Laboratories, Whippany, N.J. 07981. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OF APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Department, 

ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1980. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
September, 1979; final revision, January, 1980. 

tion-free. Suppose this cracked sphere is embedded in a dissimilar 
matrix with elastic constants v", \i", and assume a biaxial stress state 
exists at distances remote from the sphere. Then the regularity, in­
terface, and boundary conditions are given by 

o-'rr(r0,p) = a 

and 

(r0,p) ur(r0,p) = ur(ro,p) 

o-'r»(ro,p) = <r"rt)(ro,p) u'0(r0,p) = u"0(ro,p) 

ff'tt(0,7)) = <T{,(0,77) = 0. 

(1) 

(2) 

(3) 

First assume that the interface stresses in (2) have the following 
Legendre-Fourier representations: 

o-rr(r0,p) = o-rr(r0,p) = s(p) = £ snPn(p) 

o'ro(ro,p) = a"ro(ro,p) = t(p) = p £ tnP'n(p) 
n = 0 

p : 

(4) 

In these expressions x, y, z represent Cartesian coordinates, r, 8, ip are 
spherical polar coordinates and £, r\, </> are oblate spheroidal coordi­
nates defined in (1) of [2]. 

Next the displacements u "r, u "0 must be obtained from the solution 
for a spherical cavity in the infinite medium v", JX" loaded at infinity 
as in (1) and at the surface r = r0 as in (4). Also u'r, u\ in (2) are ob­
tained from the solution of the cracked sphere presented in [2]. 

2 The Spherical Cavity Solution. Consider the axisymmetric 
problem of a spherical cavity in an infinite medium defined by the 
boundary and regularity conditions 

o>r(',o,p) = h(p) = Y. KPn(p), 

oVot'W) = k(p)= p Y. k„P'n(p), 
n=i 

(5) 
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and 

T h e Legendre -Four i e r coefficients hn, kn in (5) are given in t e rms of 

h(p) and k(p) by 

arAro,p) = s(p) - T2p
2 - T l P

2 

( 6 ) = E s„Pn(p) - ^ (Ti + 2T2)P0(p) + - (Ti - T2)P2(p) 
n = 0 3 3 

/ in 
2re + 1 

J ] 1 h(p)pn(p)dp, 

(2re + 1) (n - 1)/ p i , 
£„ = ——— I ph(p)Pn{p)dp. 

2 (re + 1)/ J - i 

= E s„Pn(p) 

&rs(ro,p) = U p ) + ( T i - T 2 ) p p 

(7) = P E i„P;(p) + i (Tx - T2)P2(P) 
n = l o 

The solution of this problem is given by Sternberg, Eubanks, and 
Sadowsky [3] and has the following form: 

[ S ] = E cn[Ca] + dn[D„] 
n=0 

where [C„] are given by 

^ = - ^ ^ ^ ' - ^ 

„>_ (»+D(n +2) 
J rr . „ * n 

: P E tnP'n(p) (15) 

(8) 
The displacement components from the homogeneous state S° are 

u°r(ro,p) 
r0(Tt + 2 T 1 ) ( 1 - 2v») 

&fi"(l + v") 
Po(p) + 

ro(Ti - T2) 

3fi" 
P2(p) 

(9) " s O w ) = p 
_ r o ( T 2 - r i ) „ , 

6/i" 
P2(P) (16) 

and the corresponding displacements from the asymmetric state S 

07« 
(n) . (n + 2) 

p P n 

4?> = — [P'n+i ~ (n + l)(n + 2)P„] I 

T<") = - -

while t h e solut ions [Dn] a re given by 

( n ) (ra + l ) ( r t + 4 - 4tQ 
2/tuy" = — P„+ 

2^tu 
w _ P(n~3 + 4v) 
» ..-4-1 ^ " + 1 

tr<?> = (n + l)[(re + l)(re + 4) - 2v] 
P n + l 

T<5> : (n,2 + 2n - 1 + 2v)p: 

4?' = —h K? + i^"2 - » + 1 - 2")p"+i 

TW , 

- (re - 3 + 4i>)P'„] 

: ̂ — [(1 - 2i/)(n + l)(2re + l)P„+i + (re - 3 + 4i/)P'„] 

(10) 

2ii"ur(r0,p) = £ [O n c„+^ n - i (5 n _i}P„(p) 

2M"u„(r0,p) = p E [ X A + Y „ _ A - i ] P ; ( p ) (17) 

where 

(n+1) 
,.n+2 
' 0 

Vn = 
(re + l)(ra + 4 - 4v") 

,.n+2 ' Yn=-
(re - 3 + 4v") 

(11) and cn, dn are the coefficients of superposition determined by (13) 
with hn, kn replaced by sn, tn of (15). With the use of (14)-(17) and 
(13) we can express the displacement components at the spherical 
surface from the solution S" in terms of coefficients s„, tn of the Le-
gendre Fourier expansion of the interface tractions as 

o » •/ i r ° ( T l + 2T2)(1 - v") 
2/u"tirCo,p) = — Po(p) 

(12) 

2(1 + v") 

ioro(ri-r2)(i-»") 
(7 - 5v") 

P2(P) 

+ E (Ensn + Fntn)Pn(p) 

2fi"ue(r0,p) =p — — P2(p) 
(7 - 5i>") 

Appl ica t ion of t h e b o u n d a r y cond i t ions (5) a t r = r 0 in (8) a n d use of 

(10), (12) give a system of linear algebraic equat ions for t h e coefficients 

of superpos i t ion in t e r m s of hn, kn. T h e solut ion of th i s sys tem 

yields 

[(re2 - 2 + 2v)hn - n(n'1 + 3re - 2v)kn] n+3^ 
C"~ 2(re + 2)[re2 + re + 1 - (2re + l)v] r° ' 

+ P E (GnSn + Hntn)P'n(p) 
n=0 

(18) 

4 Interface Displacements From the Cracked Sphere Solu­
t ion. T h e solut ion to t h e cracked sphere p rob lem is p resen ted in [2]. 

Recall t h a t the desired solution 5" was obta ined there by superposi t ion 

of two solut ions S1 a n d S 2 

re = 0, 1 , . . . , 

[hn - (n + l ) fe n j rg + 1 

dn-i = J re = 1,. . . 
2[re2 + re+l-(2re+lM 

[S>] = [Si] + [S2 
(19) 

(13) 

3 Interface Displacements From the Spherical Cavity So­
lution With Biaxial Loads at Infinity. Let S° represent the ho­
mogeneous stress-state solution corresponding to (1). Then the de­
sired exterior solution S" is given by 

where S 1 and S2 are the solutions for an axisymmetrically loaded 
uncracked sphere and a crack in an infinite medium, respectively. The 
interface displacement components corresponding to the solution S 1 

are 

IS'] = [S°] + [S] (14) 

2M 'uKr0,p) = E [t/jicl + V ; + i d ; + j P n ( p ) 

2n'ul(r0,p)=p T, [Xyn+Yl
n+1dn+1}P'n(p) 

(20) 

where S is the solution outlined in Section 2 that satisfies the 
boundary conditions 

where cn and d^+1 are the coefficients of superposition determined 
by (34) of [2] and 
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Ul
n = nrr\ VI = nrn

Q{n - 3 + 4v') (21) 

K - -r%-\ Yl
n = r"0(n + 4 - 4,/) 

Likewise the interface displacements corresponding to S 2 are 

2fi'u?(r0,p) = E E K/i (m,re)P 2 m +„ + cn{f2(m,n)P2m+n 
n=0 m=0 

+ fi(m, n)P2m+n+2\] 

P E E K7i(m,n 

+ c„|72(m,re)P2m+„ + Ts(m,n)P'2m+n+2(p)}] (22) 

2/a'u?(r0,p) = P E E K7i(m,n)P'2 m +„(p) 
n=0 m=0 

where 

/i(m,re) = -n(n - l)G(n)M"m - r 2 m + ^ F (2m + re + 1), 

(2m + n + 5 - 4»')(2m + re + 1) , , , 
f2(m,n) = /i(m,n), 

(4m + 2re + 3) 

(2m + re + 5 - 4/)(2m + re + 2) , , , 
/3(m,re) = fi(m,n), 

(4m + 2re + 3) 

/i(m,re) = -n(n - l)G(n)Mn
m m „2m+n+2 ' r0 

, , , N (2m + n + l ) [ 2 m + re+1 + 4 ( 1 - K ' ) ] 7 , , _ , 
/2(m,n) = fAm.n), 

(4m + 2re + 3) 

7 , , (2m + re + l)[2m + re + 2 - 4 ( 1 - » ' ) ] - , 
/3(m,re) = — /i(m,re). 

(4m + 2re + 3) 

(23) 
G(n) and Mn

m are defined in (41) and (43) (all of [2]). The equations 
(22) can be expressed as 

2 ^ ( r 0 , p ) = E E lWl
nmamPn(p) + WlmbmPn(p)\ 

n=0 m=0,l 

1.0 

08 s . 

0.6 — 

0.4 

0.2 

"£ 

-0.2 

-0.4 — 

-0 .6 

-0.8 — 

-1.0 

^ \ 

— 

a-ff 

l I I 

a/r0 
0.5 
0.75 
0.8 
0.95 

1 1 1 

\ s / ~ X / \ 

^ 4 r > \ 
P\-\i 
/ / \ ^ 

' i i h V! 
1 s \ •J' 
/ / V̂  

\ / / / \ 

\ / / 
V / / 

i i i i i 
9 0 ° 

Fig. 1 The interface stresses lor various values of alra (v1 = 0.4, v" = 0.2, 
fr = 0.5, r0 = 2, T, = 1, T2 = 0) 

2 f * o , p ) = P l E [WL,amP'n(p) + WimbmP'n(p)] (24) 
ra=0 m=0 , l 

In these equations m is even or odd according as n is even or odd, re 
> m. With the aid of (22), (46), and (47) (all of [2]) the equations (24) 
can be expressed in terms of the coefficients of the interface tractions 
sn, tn. This computation yields the form 

2n'u2
r(ro,P) = E E [AnmSm (p) 

2ll'u1(r0,p) = P E E [CnmSm + Dnmtm]P'n(j>) ( 2 5 ) 
n=0 m=0 

From (20), (25), and (47) of [2] we finally write the displacements 
corresponding to the solution S' on the surface of the cracked sphere 

5/er0(T2 - Tx)(l - v") (27) 
{Cont.) 

2n'u'r(r0,p) = E 
n = 0 

Jnsn + K-n*-n + E \AnmSm + Bn^rltm) 
m=0 

Pn(p) 

2jj.'ut(r0,p) = p E 
n = 0 

LnSn + Nntn + 2_. w n m ^ m + *-)nmtm) 
m=0 

K(P) 

(26) 

With these results and (18), the displacement continuity condition 
(2) yields the following system of algebraic equations for the coeffi­
cients of Legendre-Fourier expansion of the interface tractions: 

(Jn-kEn)sn + (Kn-kFn)tn+ E [A 
m=0 

kroiTi + 2T2) (1 - v"\ 10fci-o(T1 - T2)(l - v") 
I t>nO H — — ~ 0n2 

(7 - 5l>") 

where k = n'lp" re = 0 ,1 , 2 , . . . 
It is clear that s„, tn determined by these equations depend on 

elastic constants v', v", and the ratio k = fi'/fi". Thus the same is true 
of the interface tractions in (4) and the entire stress field. 

3 N u m e r i c a l R e s u l t s and D i s c u s s i o n 
The calculations implied by (27) were carried out for several com­

posites in which v' and v" were varied from 0.2 to 0.4 and k = fx'l\x" was 
varied from 0.5 to 2.0. These composites were subject to the far field 
loading T\ = 1, T2 = 0. Figs. 1-4 show the interface stresses o'rr(ro, p) 
and cr'ro(ro, p) for a/r0 = 0.5,0.75,0.9, and 0.95. For each of the com­
posites we find that these interface tractions vary only slightly from 
the case of uncracked sphere if a/ro < 0.5. The effect of the crack on 
the interface stresses becomes appreciable if a/ro > 0.75. 

Fig. 5 shows the variation of the stress-intensity factor K\ with a/ro 
for various composites. Bogy [4] has shown for plane problems that 
the power of the stress singularity at the crack tip, when the crack 
terminates at the interface varies and depends on the intersection 
angle and the two Dundurs [6] composite parameters defined by (for 
plane strain) 

tl'tt-

M'd" 

- v") -

- v") + 

- 2v") -

M"(l - v') 

V) 

-2v') 

1 + v", (7 - 5K") 

(Ln-kGn)sn + (Nn-kHn)tn+ E [C + Dnmtm] (27) 
m=0 

(28) 
2/t'(l - v") + 2/u"(l - V) 

Here we record the values y of the power of the singularity in the plane 
problem, when the crack terminates at the interface at a right angle, 
for the six composites shown in Fig. 5. Cases 1-3 correspond to the 
situations where y > —0.5 while in Cases 4-6 y < —0.5. Guided by the 
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Fig. 2 The Interface stresses for various values of a/ra (v' = 0.2, v" = 0.4, 
k = 0.5, r0 = 2, 7, = 1, T2 = 0) 

Fig. 3 The interface stresses for various values of a/r0 (v' = 0.4, v" = 0.2, 
fc = 2, ro = 2, T, = 1, r2 = 0) 

plane problem we therefore expect that the stress-intensity factor 
should tend to zero in Cases 1-3 and to infinity in Cases 4-6, respec­
tively, as a/ro —• 1. This trend is seen in Fig. 5 for the present spherical 
problem also except for the Case 3 where the stress-intensity factor 
appears to increase rather than decrease near afro = 1. No explanation 
for this unexpected result was found, except the possibility that the 
singularity is different for the spherical geometry than for cylindrical 
and plane geometry, even when the crack intersects the interface at 
a right angle in each case. 

4 Energy Calculations 
In this section we calculate the change in the elastic energy due to 

the presence of the crack in the spherical inclusion. It is easy to show-
that this change is given by 

AE : - - f Tfu'idA, (29) 

where the integral in (29) is taken over the area of the crack, and where 
T" are the tractions on the imagined crack surface in the uncracked 
inclusion, and u\ are the displacements at the crack surface in the 
cracked composite. 

1 Determination of Displacements at the Crack Surface. At 
the crack surface we have 

u'f(0,7)) = u\(r,z) at 2 = 0, 0 < . J J < 1 , 0 < r < a (30) 

From (19) 

u'Ar.O) = ul(r,0) + u*(r,0). (31) 

However, Uj(r,0) = 0 since the tractions in [S1] are symmetric with 
respect to the plane z = 0 so that 

(32) • u > , 0 ) = u2
2(r,0) 

From (6), (7), (17), and (18) (all of [2]) we have 

2\x'u!z{r,z) = £ \ann(n - 1)V$„ 
n=0 

+ bnn(n - l)[V(z^„) + 4 ( P ' - l)^nk]) • k (33) 

where <j>n and \f/n are defined in (4) and (5) (of [2]). At z = 0 the dis­
placement u'2(r, z) becomes 

2p'«',f>,0) - f; 2 ( i / - l ) b „ n ( i . - l ) ^ ^ P ' I , ( i , ) | t . o 

n_J__=L__p' = L (»' - Dbnn(n - l)in+1 

n=o ^ / l n\ 
r 2 + 2 ° 

Pn(v) (34) 

where [Qn(i£)/£]f=o must be evaluated as the limit £ —>• 0 with £ > 0 
and T(n) is the Gamma function. Also r and i) are related by 

r2 = a 2 ( l - ?)2). 

In obtaining (34) we have used 

o„ + (2v' — l)bn = 0 (n even). 

(35) 

(36) 

which can be obtained from (19) of [2] for the case when er̂ , = 0 (crack 
is opened by normal stress only, so that gn = 0). 

2 Tractions at the Imagined Crack Face in the Uncracked 
Composite. Denote the uncracked composite solution by [Su]. This 
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-1.2 

^"Ofl 

90° 

Fig. 4 The interface stresses for various values of a/r0 (''' = 0.2, v" = 0.< 
k = 2,r0 = 2,Ti = 1, T2 = 0) 

Fig. 5 Variation of the stress-intensity factor, for various composites, with 
aJr0(r0 = 2); see Table 1 

spherical surface of the uncracked spherical inclusion. By the use of 
(34) of [2] with hn, kn replaced by sn, tn in (37), the coefficients cn, dn 

in (28) of [2] determining the solution inside the uncracked sphere 
are 

Case 
No. v' 

1 0.325 
2 0.2 
3 0.4 
4 0.2 
5 0.4 
6 0.036 

v" 

0.25 
0.4 
0.2 
0.4 
0.2 
0.454 

Table 1 

/i'/106 

psi 

1 
2 
2 
4 
4 

10 

T h e va lue of y 

ju'Vio6 

psi 

10 
4 
4 
2 
2 
1 

a 

-0 .8 
0.454 

-0 .2 
0.2 
0.454 
0.7 

P 
-0 .2 
-0.227 

0.5 
-0.05 

0.091 
0.0 

- 7 

0.3 
0.38 
0.49 
0.53 
0.60 
0.69 

solution is a special case of that given by Sternberg, Eubanks, and 
Sadowsky [3] or Hashin [8]. It is also a special case of the solution 
presented here when a/ro -* 0. In this case Anm, Bnm, Cnm, Dnm in (25) 
are zero and (27) yields the result 

k 
So = Tx 

1 + v", k + 2(1 - 2i/)/(l + v'). 

s2 = -5f tTi( l - v")(7 - 5J/")(7 + bv')\l(k + 4) + 5v'(k - 8))/A 

A = 2/z2(7 + bv')2 j25(i/")2 - 55i/ - 28) 

+ (7 - 5i/")213626 - 3470/ - 3700(i/)2]/16 

-fe(7 + 5w')(7 - bv')\Zlbv"v' + 518 / - 182j/" - 273) 

s n = t„ = 0, n = 1 and ra > 2 (37) 

for the Legendre-Pourier coefficients for the interface tractions at the 

< ? 2 : -kTtil - v")(1 - 5v")(7 + hv')\l(k + 4) + 5v'(A - 8)j/A 

2 \1 + v"; 

1 

(1 + V) 
(38) 

k + 2(1 - 2y')/(l + v'), 

where A is defined in (37), and all other c„, dn are zero. Use of this 
result together with (30) and (32) (of [2]) yields the following for the 
tractions on the equatorial plane: 

o-fo(r,7r/2) : 

ff&(r,7r/2) : 

; 2 [ c 2 - ( l + »')<*!], 
0. (39) 

With the help of (37) and (38) we can see that ff«9(r, ir/2) is uniform 
throughout the equatorial plane. We denote 

a1o(r,ir/2) = p0(v', v",k). (40) 

Since the imagined crack surface occupies a part or all of the equa­
torial plane, depending upon the ratio d/ro, the tractions on the 
imagined crack face are also given by (40). 

Substitution of (40) and (34) into (29) yields 

AJS = -irapo £ 
re=0 

bnn(n - \)W ~ l ) i ' " + 1 r ( l + n / 2 ) y 7 

where we have used 

r 
li'T - + -

2 2, 

P'nT\dr) = 1 (n even) 

(41) 

(42) 

Expression (41) reduces to previously known results for the special 
case of a crack in the infinite medium (fi', v') subject to uniform ten­
sion Ti at infinity. To show this recall from (55) of [2] and (37) that 
in this case 
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0 . 9 -

<x> 0.6 

0.3 

Fig. 6 Energy released (alter normalization) versus a/r0(fo = 2) (or various 
composites; see Table 1 

a2 = (1 - 2v'JTia2i/3ir 

b2 = TtaH/3-K 
} 

and all other an, bn are zero. Use of this result in (41) yields 

AE 
8a3Tf(l - / ) 

(43) 

(44) 

which agrees with Sneddon and Lowengrub [7]. 
Calculations implied in (41) have been carried out for several 

composites. Figs. 6 and 7 indicate the energy released normalized with 
respect to the energy released by a crack of the same radius in the 
infinite medium. Fig. 6 shows the normalized energy released versus 
a/ro(ro = 2). It can be seen here that this quantity is insensitive to the 
value of the ratio a/ro except for a/r0 e* 1. It is possible to obtain a 
good estimate for this quantity (except for a/ro — 1) by considering 
the limiting case a/ro ~* 0. From (41) and (44) we obtain 

AEN--
Q,-KH"(V' - l)po 

' 8 a V ( l - " " ) T ? 

X±bnn(n-l)i^Tin/2 + M (45) 

r(i + n/2 

where AEjy is the energy released after normalization. When the ra­
dius of the crack is small compared to the radius of the inclusion it 
follows from arguments similar to Saint-Venant's principle together 
with (25) and Fig. 2 (both of [2]) that 

<£!/,*?] <* 0, 4eU,S]^0 

and 

hip) =* s(p), tip) =* kip) 

Therefore from (25) of [2] 

(47) 

(48) 

where c|f[s,t] and fff,[s,t] represent the normal and shearing stresses 
on the imagined crack surface when the spherical surface in [S1] of 
(19) is loaded with tractions sip), tip). It follows from (40) that 

<r«{[s,t] =* -poiv',v",k), a\,[s,t] =* 0. (49) 

In order to obtain the solution [S'] in (19) we must superpose on [S1] 
the solution [S2] subject to the boundary conditions (49). For this case 
we find from (20) of [2] that 

1 1 

/"^S^^v"--^ 

1 " ' 
1 A 0.2 

1 B 0.2 
C 0.4 

1 

v" 

OA 
02 
0.2 

1 1 1 1 
/i" = I0xl06 PSI 

AE = ENERGY RELEASED 
o =1.99 
' 0 = 2 0 

^ \ B ^ 

"~\£ ^ ^ - ^ _ ^ -^.^ 

i i l l 

-

~^ 

_ 

0 2 4 6 8 
k • fi'/)±M 

Fig. 7 Energy released (after normalization) for various composites (a/r0 

= 0.995, r0 = 2) 

"2 — (1 — 2v)poa2i/3ir. (50) 

All other an, bn are negligible. Substitution of (50) into (45) yields 

plii"il - v') 
lim AEN • 
a^O TWil - v") ' 

(51) 

The stress poiv', v", k) is given by (37)-(40). The computation im­
plied by (51) was carried out and agrees with Fig. 6 at a/r0 = 0 (it ac­
tually agrees to plotting accuracy for 0 < a/ro < 0.75). In fact the ex­
pression (51) provides a good estimate of the energy released'even 
when the inclusion is completely fractured. From Fig. 6 it also follows 
that the amount of energy released increases essentially as a3 for the 
composite as it does for a crack in an infinite medium. 

Fig. 7 shows the dependence on k = fi'/fi" of the energy released 
from the composites when the inclusion is almost completely frac­
tured, (a = 1.99, ro = 2). As expected no energy is released when k = 
0. It sharply increases to a maximum near k = 1, then it decreases 
asymptotically to zero. This limit would be expected to differ from 
zero if the corresponding computations were made for a/ro = 1. Notice 
also that when k = 1 the curve for v' = v" passes through the value 1 
as it should for the crack in an infinite medium because of the nor­
malization. 
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Elastodynamic Analysis of an 
Edge Crack 

Introduction 
Among the crack configurations that are usually considered in 

fracture mechanics, the surface-breaking crack is of distinct practical 
interest. The simplest configuration is the two-dimensional normal 
edge-crack of depth d in an elastic half plane. For a broad class of 
static loads the stress-intensity factor for the normal edge-crack was 
analyzed by Koiter [1], and in a different manner by Sneddon and Das 
[2]. In the present paper we investigate elastodynamic fields for the 
edge-crack configuration. 

The cracked half plane is subjected to a class of time-harmonic line 
loads which are applied to its free surface. The elastodynamic problem 
of a half plane subjected to a time-harmonic line load applied normal 
to the free surface is known as Lamb's problem [3]. It is well known 
that sufficiently far from the point of application Rayleigh surface 
waves dominate the elastodynamic field near the free surface. Con­
sequently, in this paper we only consider the elastodynamic stress-
intensity factors generated by surface motion. 

It is assumed that the faces of the crack do not interact with each 
other. Thus the crack never completely closes. This is a realistic as­
sumption if the crack is actually a thin slit of finite width, or if a static 
prestress is applied which tends to hold the crack in an open position. 
In the latter case the solution sought in this paper is an elastodynamic 
perturbation (caused by time-harmonic surface motion) on this static 
prestress. 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Chicago, 111., November 16-21,1980, of THE AMERI­
CAN S O C I E T Y OP M E C H A N I C A L E N G I N E E R S . 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1, 1980. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
August, 1979; final revision, February, 1980. Paper No. 80-WA/APM-6. 

The elastodynamic response of the cracked half plane is analyzed 
as the superposition of the fields in the uncracked half plane and the 
fields generated by appropriate surface tractions on the faces of the 
crack in the cracked half plane. The resulting boundary-value problem 
for the cracked half plane is decomposed into two problems for the 
quarter plane, which represent the symmetric and antisymmetric 
motions relative to the plane of the crack, respectively. These two 
boundary-value problems are reduced by integral transform tech­
niques to two uncoupled singular integral equations, which are solved 
numerically using a collocation scheme due to Erdogan, Gupta, and 
Cook [4]. The stress-intensity factors and crack opening displace­
ments are then easily calculated from the solutions of the singular 
integral equations. , 

Mode-I and Mode-II dynamic stress-intensity factors at the crack 
tip and the corresponding crack opening displacements due to several 
combinations of line-loads applied to the feee surface are computed 
and plotted versus the frequency. One significant feature of these 
results is the existence of maxima at regularly spaced frequencies. It 
appears that these frequencies correspond to resonant modes of vi­
bration of the crack faces due to constructive interference of surface 
motions on the crack faces. 

Formulation 
The two-dimensional geometry of a homogeneous, isotropic, lin­

early elastic half plane containing a normal edge crack of length d is 
shown in Fig. 1. The origin of a Cartesian coordinate system is located 
at the mouth of the crack. 

The cracked half plane is subjected to time-harmonic excitation. 
In this paper the steady-state fields in the vicinity of the crack tip are 
investigated. By virtue of linear superposition the dynamic response 
of the half plane can be analyzed as the superposition of the fields in 
the uncracked half plane and fields in the cracked half plane generated 
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Fig. 1 Half plane containing a normal edge-crack 

by appropriate surface tractions TX and Txy on the faces of the crack. 
The fields generated by surface tractions can, however, conveniently 
be decomposed in symmetric and antisymmetric fields relative to the 
plane x = 0. Consequently the solution sought in this paper is 
equivalent to the sum of two problems for the quarter plane x > 0, y 
> 0. These problems are the symmetric problem defined by the 
boundary conditions on x = 0 

rxy = 0. 

TX = TQ{y)e-'at, 

H = 0, 

0 <y < co 

0 < y <d 

d < y < co 

(1) 

(2) 

(3) 

and the antisymmetric problem defined by the boundary conditions 
on x = 0 

T * = 0 , 

Txy = < r 0 ( y ) e - ^ ( , 

v- 0, 

For both the symmetric and the antisymmeric problem the boundary 
conditions on y = 0 are 

0 <y < °° 

0 < y < d 

d < y < x 

(4) 

(5) 

(6) 

o, 0, x > 0 (7,8) 

In addition it is required that the elastodynamic fields generated by 
these crack-face excitations represent outgoing waves, and that the 
singularities at the crack tip are consistent with an integrable 
strain-energy density. 

In the sequel the term exp (—icct) which is common to all field 
variables is omitted. Since the deformation is in plane strain the rel­
evant stresses in terms of the displacement derivatives are 

, £>u dv 
(\ + 2fi) — +\ — 

dx dy 

l&u dv 

dy dx, 

, civ du 
Ty = (X + 2/t) + X 

dy dx 

The displacement equations of motion are 

d2u , a 2 u d2v 
C L 2 — T + e r ^ - — + ( e L

2 - c T
2 ) — — : 

oxA oy z oxoy 

(cL
2-CT

2) 
d2u d2D d2u 

—-+CT2—^+CZ/—J = ~W2V 
oxdy dx z oy^ 

(9) 

(10) 

(11) 

(12) 

(13) 

where 

CL' (X + 2fi)/p CT* v-lp 

In equations (9)-(13), X and ft are the Lame elastic constants and p 
is the mass density. 

I n t e g r a l E q u a t i o n s 
In this section we derive the governing equation for the symmetric 

problem defined by equations (l)-(3) and equations (7)-(13) in some 
detail and we state the corresponding governing equation for the 
antisymmetric problem. 

Suitable solutions to the displacement equations of motion have 
been given in reference [4]. They are 

2 rm 

u»(x,y) = - I [£kL-2Ae-a>-y-2aTkT-2Ce-«Ty]sin(£x)d£ 
•K JO 

2 / -» 
+ - I [aLkL-2Be-aLX + 2^kT-2De-"Tx] c o s (£y)df (14) 

IT JO 

2 r°° 
oHx, y)=- S [aLkL-2Ae-°"-y - 2^kT~2Ce-aTy} cos (&)d£ 

IT JO 

IT JO 
L-2Be-"i-x + 2aTkT~2De-aT*] sin (&)d{, (15) 

where kh and kr are the wave numbers of longitudinal and transverse 
waves respectively, 

kh = IJO/CL, kr = W/CT 

and A, B, C, and D are undetermined functions of the transform 
variable £, while the functions CLL and ar are given by 

"L = (£2-feL2)1 / 2 , Z>kL and 

«L = - ; ( fcL 2 -£ 2 ) 1 / 2 , H<kL (16) 

a T = (ij2 - kT
2)m, £>'kT and 

a T = -i(kT
2 - £2)1'2, £<kT (17) 

where ^ is real. This choice of branches for a^ and ay, namely, that 
Re (« i ) and Re (OLT) be positive and that Im (ai) and Im (a j ) be 
nonpositive on the contour of integration, insures the existence of the 
integrals in equations (14)-(15) as well as the satisfaction of the re­
quirement of outgoing waves stated in the previous section. The stress 
components TX

S, Txy
s, and ry

s corresponding to equations (14)-(15) 
are easily calculated from equations (9)-(ll) and they will not be given 
here. 

Application of the symmetry boundary condition (1) leads to the 
following algebraic relation: 

(ar2 + P) 
B=-(kL

2/kT
2)(aT \K'Dt 

Othk 
(18) 

while the application of the free surface boundary condition (8) leads 
to 

c = (^2/^2)^TaA' (19) 

with D and A still undetermined. Now define D in the following 
manner [6]: 

D= C b(s) sin (&)ds. 
Jo 

(20) 

Substituting equations (18) and (20) into equation (14) and evaluating 
at x = 0 , the following expression is obtained for the normal dis­
placement on x = 0: 

ws(0; , y) = - f b(s)ds C " t 1 sin (£s) cos (£y)d£. (21) 
•K JO Jo 

The inner integral in this expression is a representation of a gener­
alized function and may be evaluated as, reference [5], 

£ _ 1 sin (£s) cos (fy)d£ = - H(s - y), 
o 2 

where H(s — y) is the Heaviside step function. This result reduces 
equation (21) to 

" s ( 0 , y ) = f b(s)ds 0<y<d 
Jy 

0 d <y < co (22) 

and hence boundary conditions (3) is automatically satisfied for any 
choice of b(s). It is also seen that b(y) is proportional to the tangential 
derivative of the crack-opening displacement in the x -direction and 
hence has the physical meaning of the dislocation density. 

Using equations (18)-(20) and applying the remaining free surface 
condition (7) yields an integral relation involving A and b(s) of the 
form 
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- f °F(£)A(£)cos (£x)d£ 
IT JO 

= f " G(x, £)d£ C b(s) sin (^s)ds (23) 

where F and G are known functions. Taking the Fourier cosine furthermore, 
transform of this expression with respect to x yields the following 
explicit expression for A in terms of b{s): 

rd(kL2/kT
2)(ciT2 + ¥){Fie~aLS + F2e-^s + F3]b(s)ds m = J Q 

Hi -fo-V(2-*2)+4/3L
2H, 

'Ht = 4f2, 

H3 V(2 - *2). 

(21 d) 

(21 e) 

(27/) 

(27g) 

where 

4«L«T?2 - («T2 + £2)2 

Fi = -aL-z[kT2(2kL2 - fcT
2) + 4aL

2£2] 

F2 = 4f» 

Fz = aL-'ikT2mLi-kT2). 

(24a) 

/?L = ( ^ - l ) i / 2 , ^ = ( ^ _ x2)i/2 

The following dimensionless variables have been used: 

f = £/&L, -D = cod/cL = fc.£,d, S = s/d, Y = y/d, x = CL/CT-

(21 h) 

The governing singular integral equation given as follows for the 
antisymmetric problem defined by equations (4)-(13) is obtained in 

(246) an exactly analogous manner as that for the symmetric problem. The 
.„ , % unknown dislocation density a(s) is proportional to the tangential 

1 derivative of the crack-opening displacement in the y -direction and 
(24d) must satisfy, 

Having now expressed A, B, C, and D in terms of b(s), the normal 
stress on x = 0 may be written as 

xs(0,y)=—£- f b(s)ds C 
•KRT JO JO 

• [(2aL
2 + kT

2)(aT
2 + £ 2 ) e - a « ' - iaLaT^2e-aTy\[Fie-'"-s + F2e~a^ + F3]d£ 

4aLC(T^2 — (&T2 + £ 2 ) 2 

+^h Cb(s)ds r 
•KRT JO JO 

( « r ' + ^ - 4 t t L « ^ g . n ( g 8 ) c o g ( € y ) d g (25) 

The integrand of the second term in equation (25) is 0(1) as £ -> 
°° and hence, as it stands, the integral does not converge. However, 
if the first term of the asymptotic expansion of the integrand for large 
£ is subtracted from the exact form, the resulting integrand is 0(£~2) 
as £ -> «> and the integral will converge. The term which must then 
be added to equation (25) has as its inner integral 

rm.dS+ rm 
Jo S - Y Jo S+ Y 

+ Ka(Y,S) dS 

s; sin (£s) cos (ay)dj^ 

which may also be evaluated by employing Fourier representations 
of generalized functions, reference [5], and is found to be 

1 / 1 1 
• + • 

2 \s - y s+y, 

2/nU2 - 1) 

where \f/(S) is related to a(s) by 

ip(S) = a(Sd) 

and where Ka is given by 

L / S T ^ - ^ - * 2 ) 2 

a0(Y), 0 < y < l (28) 

(29a) 

Carrying out the steps previously indicated and applying the - (x
2 - l)Ka(Y, S)D~1 = C 

>undary condition (2) and normalizing the variables s and y with 4 Jo 
spect to the crack length 
uation: 

r^idS+ c\(s) 
Jo S-Y Jo 

boundary 
respect to the crack length d yields the following singular integral 
equation: 

1 

4/3Tf 

+ - (1 - x2)] sin (JDS) cos (fDY)df 

S + Y 
+ KS(Y,S) x; 

2M(*2 - 1) 

where <p(S) is defined as 

ip(S) = b(Sd) 

and KS(Y, S) is given by 

( l - * 2 ) K s ( Y , S ) D - i 

f(2i-2-x2)2-4r2&^r 

f0(X), 0 < Y < 1 (26) 

[(2f2 - x 2 ) 2e-^f ly - 4 / 3 r f c r 2 e - f e ° Y 

4faM2 ~ m 2 ~ x2)2 

X [G ie-<»iDS + Gie-PrDS + Ga]d^ (29fe) 

(27a) 

X' + 2 . ( x 2 - l ) 

X 

fft. 
X sin (D{S) cos (D$Y)d£ 

• [(2f2 + *2 - 2)(2f2 - * 2 )e- fa D y - 4 f c g r r 2 e - ^ O Y ] 

4frA-f2-(2f2-*2)2 

while oo(Y) is defined by 

a0(Y) = o-o(Yd) 

The functions G\, G2, and G$ are defined as 

G i = - f 2 

G2 = -/3r"2(r - *2f2 + h 

Gs = - ! 0 r - V 

(29c) 

(29d) 

(29e) 

(29/) 

N u m e r i c a l A n a l y s i s 
The singular integral equations given by equations (26) and (28) 

are solved numerically by employing the collocation scheme discussed 
in reference [7]. This collocation scheme is based on expansions in 

X \Hie-PiDS + H2e~PTDS + ^3]df, (276) terms of Chebyshev polynomials. 
_ By the inroduction of the nondimensional variables 

while TO(Y) is defined by 
s = 2S - 1, y = 2Y - 1 (30) 

?o(Y) = T0(Yd). (27c) t , . t . t . , ,, . . , . .. . . . . 
the integral equation.for the symmetric problem, equation (26), may 

The functions Hi, H2, H3 are defined by be written as 
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r±w d f f + pi(6( 
J-lS — V • / - ! 

s) 
is - y (1 + s) + (1 + y) 

1 

+ X s(y,s)]ds 

2ju(«2 - 1) 
TO ; ( l + y) K y < l (31a) 

where 

5(s) = <p (1 + s) • (i + s) (316) 

Ks(y,s) = -Ks i ( l + y ) , i ( l + s) 

It is expedient to introduce a function 6( ) by 

b~(s) = b(s)(l - s)-VHl + s )" 1 ' 2 . 

Now, using the Gauss-Chebyshev formula for x = 1 given by equations 
(7.55)-(7.56) of reference [6], the following system of m - 1 equations 
for m unknown values of b(s) follows: 

ir m -
- £ b(Si) 
m i=\ 

where 

1 

st-yj ( l - r s ; ) + ( l + y , ) 
+ Ks(Sj,Si) 

2/i(x2-l) 
TO 

1 m — 1 

% - i 

yr-

2m 

HI 

(33a) 

(33b) 

(33c) 

Since b~(s) represents a dislocation density it must be square root 
singular at the crack tip s = 1, (s = d), hence the factor (1 — s)~1/2 in 
equation (32) appears. The factor (1 + s)~m appears to impose the 
same singularity at the crack mouth s = — 1, (s = 0) which is physically 
unreasonable. However, if b(s) vanishes at s = - 1 in such a way as to 
cancel the (1 + s ) _ 1 / 2 factor then b~(s) will approach a finite value at 
s = —1. Therefore, since b(—1) must be zero, the mth unknown, b(sm), 
is assumed to be zero since sm is the closest of the s; to — 1. This as­
sumption is in fact true asm-*>». Eliminating this unknown yields 
m — 1 equations for the m — 1 remaining unknowns. The kernels 
Ks(yy,§i) are evaluated numerically in the complex £ plane. The de­
tails of this integration are given in the Appendix. The linear algebraic 
system given in equation (33a), where the sum is taken only to m — 
1, is solved using Gaussian elimination for m — 1 values of 6(s;). 

Now, it is easily seen upon examining the boundary conditions 
(l)-(6) for the symmetric and antisymmetric problems, that only the 
symmetric problem contributes to Mode-I crack deformation and only 
the antisymmetric problem contributes to Mode-II deformation. 

Therefore, the Mode-I stress-intensity factor at the crack tip may 
be expressed as 

Ki •• lim ( y - d ) 1 / 2 | T * s ( 0 , y ) | = 
Md1 /2(«2 - 1) 

|b (D| . (34) 

The normal crack-opening displacement is also easily expressed in 
terms of b(s) as 

Aw (y) = f 1 b(s)(l + s ) - 1 / 2 ( l - s ) - 1 ^ -
J2Y-1 

(35) 

The integral equation for the antisymmetric problem, equation (28) 
may be treated in an analogous manner by letting 

* 
fl 
- (1 + s 
12 

= a 
\d J 
- 1 + s) 
[2 , J 

= o(s)(l + s)-! / 2 ( l - s )~ 1 / 2 (36) 

Then a linear system for m - 1 values of a (s) is obtained just as in the 
symmetric case. The Mode-II stress-intensity factor is then given 
by 

I A u 

1 Ad 

t .00 

2.00 

0.00 

Fig. 2 Normal crack-opening displacement versus y/d for 3 values of the 
(31c) 

dimensionless frequency 

(32) 

I Ad 

Fig. 3 Tangential crack-opening displacement versus y/d for 3 values of 
the dimensionless frequency 

Kn = lim (y - d ) i / 2 | T x / ( 0 , y ) | = ^ ^ -1} | a ( l ) | (37) 

and the tangential crack opening displacement by 

Au (y) = - -*2 f 1 o(s)(l + s ) - i / 2 ( l - §)-V2dg. 
2 JlY-1 

(38) 

As a check of the kernels Ks and Ka and their evaluation, a con­
vergence analysis of the collocation scheme was performed. For the 
range of frequencies treated in this investigation, a value of m — 1 = 
14 was found to be sufficient in order to achieve an accuracy of 3-4 
percent. As a further verification of the analysis the crack loading 
represented by 

To(y ) 
H sin (kLy) 

D 
co(y) 

H sin (kTy) 

xD 
(39) 

was considered for small D and xD. In the static limit these loads re­
duce to a linear loading on the crack faces. Numerical results for K\, 
K\\, Au,,; and Auy from the present analysis with the foregoing loading 
for k^d = 0.05 were compared to results from reference [2] for the 
static problem of linear normal and shear loading. Agreement of better 
than 0.5 percent was obtained for the stress-intensity factors and 
crack-opening displacements at the mouth of the crack. 

In order to obtain the results described in the next section, the 
following general forms of crack-face loading which correspond to the 
tractions induced by an arbitrary surface disturbance in a semi-infi­
nite medium are considered for numerical computations. 

2-2xz,2 + * r 2 

To(y) = -2fiAkRdi 

aoiy) = ~ixAkRd 

2 - x r 2 
-e-<*R2-*L2)1/2y - e-(*fi2-*r2)1/2y 

(2-

(1 2)1/2 ' 
-(AB*-*l2)l/2y 

(40) 

. e-(kR2-kT2)l'2y] 

(41) 

where kg is the wave number of Rayleigh surface waves, XL = ^LI^R 
and XT = kr/kg. The linear system in equation (33a), where the sum 
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Fig. 4 Crack-opening displacements at the mouth of the crack versus the 
dimensionless frequency; kLd= D 

2.0, 1 

1.6 • I X T 

Md'/2IA| ,,2- - / ^ 

0.8 - J \ f \+S 

0.4 -I 

0.0 I , 1 1 1 1 1 
0 I 2 3 4 5 6 

Fig, 5 Mode-I normalized dimensionless stress-Intensity factor versus the 
dimensionless frequency; kLd= D 

is only taken up to m — 1, was solved for a Poisson's ration of V3 and 
a frequency range corresponding to D = 0.1 to D = 6.0, using the ex­
pression in equation (40) for r0(y). The corresponding linear system 
for the antisymmetric problem with tro(y) given in equation (41) was 
also solved over the same frequency range for a Poisson's ratio of 

Vs. 
It should be noted that the dimensionless constant A in equations 

(40) and (41) is unspecified. Its value depends on the particular surface 
loading configuration which causes the surface disturbance. In the 
following section results are presented for crack-opening displace­
ments and stress-intensity factors normalized with respect to this 
arbitrary constant A. To obtain the results for a particular surface 
loading configuration one need only multiply the computed results 
by the appropriate value of A. It is also noted that the crack-face 
loadings are proportional to the dimensionless frequency, khd, and 
as a result these loadings go to zero as the dimensionless frequency 
goes to zero. 

Results 
Figs. 2 and 3 show the crack-opening displacement versus yld for 

a few values of the dimensionless frequency. When o>d/c£ increases 
the wavelength decreases, and the variation ol the crack-opening 
displacement with y shows the formation of waves on the crack faces. 
The crack-opening displacements at the mouth of the crack (denoted 
by subscripts "cm") have been plotted versus D in Fig. 4. In this figure 
the peaks at certain frequencies suggest resonance effects of surface 
motions on the faces of the crack. The normalized nondimensional 
stress-intensity factors K\l(pd1/21A \) and KuKixd1/21A | ) have been 

j 
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2.0 1 

Kn '-5- j 1 
Md'/2lA| j I / * N 

0 . 5 - 1 \ T 

0.0 i t , , , , 1 
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kLd 

Fig. 6 Mode-II normalized dimensionless stress-intensity factor versus the 
dimensionless frequency; kLd= D 

Fig. 7 Loading configurations; each arrow represents a line load of strength 
r exp (—to / ) applied in the indicated direction at the points (-x1t 0 ) or ( x f , 
0 ) to the left or right of the crack, respectively 

plotted versus D in Fig. 5 and Fig. 6, respectively. Again, there are 
distinct peaks at resonant frequencies. 

Note that the results presented in Figs. 2-6 are absolute values or 
amplitudes of the corresponding complex-valued quantities. 

It should be noted that the results presented in Figs. 2-6 are for 
crack-face loadings of the general form given by equations (40) and 
(41), where A is an arbitrary constant. These results may now be used 
to assemble solutions to a family of corresponding time-harmonic 
loadings of a cracked half plane by appropriate choices of A. 

We consider here the six loading configurations shown in Fig. 7. For 
each case a time-harmonic line load of strength T per unit length, 
whose position and direction are indicated, is applied to the surface 
of the half plane. It is assumed that HRX\ » 1, and hence only the 
surface motions due to these loads interact with the crack. The 
loadings shown in Figs. 7(a) and (b) induce traveling surface waves 
propagating toward the crack. The other four loads, shown in Figs. 
7(c)-(e), induce standing waves all along the free surface of the half 
plane. 

By virtue of linear superposition the field in the cracked half plane 
subjected to external loads consists of the sum of the field in the 
loaded uncracked body and the field in the cracked body when the 
crack faces are subjected to appropriate surface tractions. Normal 
crack-face loadings generate Mode-I deformations with symmetric 
displacement fields. Tangential crack-face loadings induce Mode-II 
deformations with antisymmetric displacements. The loadings shown 
in Figs. 7(a) and {b) cause both Mode-I and Mode-II deformations 
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Table 1 Definition of A for various loading cases; Ajj : 

OJ/CK, where CR = velocity of Rayleigh waves 

Loading A 

/N 

i (T/4/X)BH exp (ikRXi) 
(T/4/j.)Bv exp (ikRXi) 
(T/2v)BH sin (kRXi) 

i (T/2n)BH cos (kRXi) 
- (T/2lx)Bvcos(kRxi) 
i (T/2ii)By sin (kRxi) 

and the solution to these loadings must be composed as the sum of 
solutions to a symmetric and an antisymmetric problem. Due to 
symmetry about x = 0, the loadings shown in Figs. 7(c) and (e) will 
cause only Mode-I deformations, and their solutions are obtained from 
appropriate symmetric problems or normal crack-face loading. On 
the other hand, the loadings shown in Figs. 7(d) and (/) yield only 
Mode-II deformation and their solutions are obtained from appro­
priate antisymmetric problems of tangential crack-face loading. 

The previous observations imply that the appropriate stress-in­
tensity factors for the six loading configurations shown in Fig. 7 may 
be obtained from the single pair of curves shown in Figs. 5 and 6 for 
the normalized nondimensional stress-intensity factors. Each loading 
configuration induces known stresses at the position of the crack faces, 
of the general form given by equations (40) and (41). The amplitude 
constant A for each loading is given in Table 1. The coefficients BH 
and By are defined by 

BH = (1 - XT2)G, B v = - i ( l - XT 2 ) 1 / 2 (2 - *T
2)G (42) 

where 

G = (l 2) l /2 ( 2 _ X T 2 ) [ ( 4 _ X T 4 ) ( 1 _ X L 2)1/2 ( 1 _ XT,2)l/2 

- 2(2 - 2xL
2 + XT2)]'1 (43) 

These coefficients are functions of Poisson's ratio only. The stress-
intensity factors for the loadings shown in Fig. 7 can thus be obtained 
by multiplying the results of Figs. 5 and 6 by the factors A listed in 
Table 1. 
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APPENDIX 
The kernels given in equations (27) and (29) must be evaluated 

numerically to solve the integral equations, equations (26) and (28). 
The choice of possible integration contours in the complex £-plahe 
for the kernel integrals are governed by the behavior of their inte­
grands as | £| -* o° and by requiring that 

and 

Re(aL)>0, R e ( a r ) > 0 

Im (aL) < 0, Im (aT) < 0 

(44) 

(45) 

for £ on the integration contour. Assuming the branch cuts shown in 
Fig. 8 for aL and ar and requiring that (44) be satisfied everywhere 
in the £-plane, it is found that £ must either lie in the 2nd or 4th 
quadrants or on the real axis in order that (45) be satisfied; therefore, 
the integration contour must lie in the 4th quadrant or on the positive 
real axis. Furthermore, due to the presence of the factor sin (£s) cos 
(£y) in the first integral of both equations (27) and (29), Im (£) must 
be zero as |£| -» <*> on the integration contour. 

The contour, made up of Ti, r 2 , r 3 , and T4 shown in Fig. 8 satisfies 
the aforementioned requirements and is chosen in order to avoid the 
numerical difficulties associated with the pole at £ = kR in the inte­
grands of the second integrals of equations (27) and (29). 

The choice of ?ji was made on the basis of convergence properties 
of the numerical quadrature used to evaluate the integrals on F^. An 
optimum value, which is independent of frequency, was found to be 
?7i = 1.5. A value of £i* was chosen sufficiently large that the pole at 
£ = kR caused minimal convergence difficulties in the numerical in­
tegration. £i* was usually taken to be approximately 1.5 kR. 
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Measurements of Mixed-Mode 
Crack Surface Displacements and 
Comparison With Theory 
The problem of a finite-width tension specimen containing a crack oriented at various an­
gles to the load axis is attacked from experimental and theoretical viewpoints. Displace­
ments of an electro-machined slot, 12.5 mm long and oriented at angles of0°, 15°, 30°, 45°, 
60°, and 75°, are measured using a laser-based in-plane measuring technique. Various 
width specimens, ranging from a crack-length/width ratio of 0.167 to 0.794, are tested. A 
boundary-integral equation method is extended to deal with the presence of a sharp 
crack. Agreement between the two approaches is generally good except near the tips of 
the cracks. 

1 I n t r o d u c t i o n 
The general problem of mixed-mode crack extension has received 

relatively little attention compared to that devoted to single-mode 
problems. The main effort of investigators to date has been toward 
development of a criterion of fracture for a combination of Mode-I 
and Mode-II deformation. It has been proposed that this criterion 
should be a functional relationship between Mode-I and Mode-II 
stress-intensity factors which can be equated to the strain-energy 
release rate or strain-energy density at fracture. Practical application 
of such a criterion is limited by a lack of knowledge about this func­
tional relationship for specific materials, geometries, and loadings. 
Thus mixed-mode fracture mechanics has reached the level at which 
classical fracture mechanics was 15 years ago—the level at which it 
is imperative that an effective method be developed for determination 
of the relationship required for implementation of the fracture cri­
terion. Crack surface displacements have proven to be quite useful 
in Mode-I fracture analysis in that they are directly related to the 
strain-energy release rate and the stress-intensity factor. It is felt that 
similar relationships can be developed for the mixed-mode case; it 
is the purpose of this paper to study the crack surface displacements 
under mixed-mode loading by both experimental and theoretical 
methods. 

The stress-freezing photoelasticity technique has been extremely 
successful in determining stress-intensity factors in various compli-
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cated three-dimensional geometries. However, an investigation into 
mixed load stress-intensity factors [1] discovered that the remote 
stresses exerted a measurable effect much closer to the crack tip than 
had been expected. This required that the fringe pattern be magnified 
by nearly two orders of magnitude in order to obtain valid fringe data. 
The errors resulting from such high magnification leave one with little 
confidence in the results. The experimental technique described in 
this paper makes measurements of crack opening displacements di­
rectly across thin slots electro-machined in metal specimens. The data 
obtained are easy to compare with theoretical calculations. 

The theoretical method employed here is an "indirect" form of the 
boundary-integral equation (BIE) method which includes the effect 
of the crack in the kernal of the integral equations. Various forms of 
the BIE method have been applied to two-dimensional crack problems 
[2-7] with excellent success. The form of the method employed here 
is discussed further in [6-8]. 

The measurement technique is briefly described in Section 2. More 
detail can be obtained from the NASA report [8]. The theoretical 
approach is described in Section 3, and finally the experimental and 
theoretical results are compared and discussed. 

2 E x p e r i m e n t a l T e c h n i q u e s 
The crack opening displacements were measured with the inter-

ferometric strain-displacement gage (ISDG) technique. This non-
contacting method has a very short gage length which permits accu­
rate measurement of the displacement of the crack surfaces at several 
positions along the crack—even very near the crack tip. The principles 
and various applications of the ISDG are well documented, but for 
this research a particularly easy-to-use measuring system was de­
veloped. In addition, new techniques were developed to permit 
measurement of displacement parallel to the crack. 

2.1 The Interferometric Strain/Displacement Gage. The 
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Fig. 1 Schemallc of the ISOG

basic principles of the ISDG are illustrated in Fig. 1. Two very small
indentations are pressed into the surface of a specimen; these are lo­
cated one on each side of the crack. When coherent light impinges
upon the indentations, it is diffracted back at an angle ero with respect
to the incident beam. Since the indentations are very close together,
the two diffracted beams overlap, resulting in interference fringe
patterns on either side of the incident laser beam. Movement of the
two indentations relative to each other causes a movement of the two
fringe patterns; this fringe motion is easily related to the displacement,
by

Dd =~ (Llm1 + Llm2) (1)
smero 2

where>.. is the wavelength of laser light, Llml and Llm2 are the fringe
motions of the upper and lower fringe patterns, ero is defined in Fig.
I, and Dd is the relative displacement of the two indentations. It is
necessary to average the two fringe motions together to eliminate rigid
body motion in a direction parallel to the load application. Reference
[9] describes the ISDG in more detail.

Since a large number of measurements were planned for this series
of experiments, it was important to havea convenient data acquisition
system, and a measurement system for monitoring the motion of the
two fringe patterns was developed. This consisted of two phototran­
sistors (one for each pattern) which monitored the intensity of the
fringe patterns as they moved. The output was a sinusoidal-shaped
voltage signal. The signal from each fringe pattern was fed into an
analog circuit that triggered a one-shot monostable multivibrator
which produced a pulse every time the incoming voltage was in­
creasing and exceeded a certain tevel. The pulses from the two signals
were combined into a summing circuit which simply incremented the
voltage output every time a pulse was received. This output was fed
to the vertical channel of an X -Y plotter; the signal from the specimen
load cell was applied to the other channel. The final data were then
a plot of load versus displacement from which the slope could be taken
to yield the crack surface displacement per unit load. The optics,
physical arrangement, and electronics of this instrument are described
in reference [10].

2.2 Specimens. The specimen material was type 2219 aluminum,
3.2 mm thick, furnished by NASA-Lewis. The specimens were ori­
ented so that the rolling direction was paralled to the loading direc­
tion. Tests were run on the material to obtain the following elastic
properties: elastic modulus = 70 ± 1 X 103MPa, Poisson's ratio = 0.33
± 0.D1.

The specimen geometry is shown schematically in Fig. 2. The slot
in the center of the specimen was nominally 12.5 mm long X 300 mi­
crometers wide. These slots were electromachined in the specimens.
Six specimens were tested with angular orientations of 0°, 15°,30°,
45°,60°, and 75°. In addition six different widths ofthe specimen were
tested; the width was varied by machining down the tested specimen
after each series of experiments. Note from Fig. 2 that displacement

558 / VOL. 47, SEPTEMBER 1980

2b

Fig. 2 Schematic of the specimens

'1

Fig. 3 Pholomlcrograph of a set of Indenlatlons; lhe slolls 290 mlcromelers
wide

measurements were made at five positions along the slot-at the
center, at two quarter points, and at the ends of the slot. The inden­
tation at the "ends" of the slot were actually located about 650 microns
from the slot tip. The slot tip was a very smooth semicircle. In other
words, the indentations at the ends of the slot were actually slightly

,more than four radii away from the end of the slot.
Fig. 3 is a photomicrograph of a set of indentations and the speci­

men slot. The slot in that picture is 290 micrometers wide. Note that
the indentations are close enough to the edge ofthe slot that one can
reasonably assume that the crack surface displacements is being
measured.

2.3 Data Reduction. The specimens were loaded in an Instro~
screw-driven testing machine. The test procedure was to apply a very
slight preload to the specimen and then set a maximum load value on
the test machine. While the specimen was cycled several times be­
tween the maximum and minimum load, the positions of the laser and

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s 

i 

CO 

— THEORY 

— ! 3 % 

O FRONT 

D BACK 

— I — 
0.2 

— I — 

0.8 

a / b 
Fig. 4 Calibration plot comparing the measured displacements at the center 
of the 0° specimens with theoretical values; measurements were made on 
the front and back of the specimens 
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specimen 
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e 

Slot 

Fig. 5 Schematic of the tab arrangement for biaxial displacement mea­
surement 

Fig. 6 Boundary-value problem involving region weakened by a sharp 
crack 

the phototransitors was adjusted so that the fringe pattern remained 
bright at the phototransitor during the entire load cycle. The maxi­
mum load was chosen small enough that no plastic deformation oc­
curred at the ends of the slots during the entire series of experi­
ments. 

After the adjustment had been completed, the data record was an 
X - Y plot of load versus displacement taken as the load was increasing. 
It had been determined early in the course of the experiments that 
the difference between loading "up" and "down" was negligible. The 
scale on the displacement plots was calibrated using the measured 
value of the angle «o in equation (1). The resulting curves were 
"stair-step" in appearance because of the limited sensitivity of the 
simple measuring curcuit. A straight line was drawn through this plot 
and the slope of the line computed. The total relative uncertainty of 
the slope measurement was 3 percent; 1 percent from the load cali­
bration, 1 percent from the human element in drawing the straight 
line through the plot, and 1 percent in the measurement of the angle 

To assure that the measurement system was giving accurate results, 
the data for specimens with a horizontal slot (9 = 0°) were compared 
with that predicted from the existing solution [11]. Measurements 
were taken on both the front and the back of the specimen as it was 
mounted in the test machine to see if there was any bending or mis­
alignment in the machine. The results are presented in Fig. 4 for the 
various widths of specimens—ranging from a crack length to specimen 
width ratio of 0.17 to 0.79. Fig. 4 shows that the ISDG works satis­
factorily for slots of this size. 

2.4 Biaxial Measurement. Special arrangements have to be 
made for measurement of displacement parallel to the slot. This is 
accomplished as shown schematically in Fig..5. The small tabs were 
cut from a Pt-Rh alloy sheet, 250 micrometers thick. The nominal size 
of the tabs was 250 microns square for the small tabs, while the tab 
across the slot was 750 microns long. These tabs were glued to the 
specimen with Eastman 910 adhesive, and then the indentations were 
applied. This arrangement turns out to be a suitably small displace­
ment transducer considering the fact that the slot is over 1200 microns 

tf 

Vz, 

Fig. 7 Auxiliary boundary-value problem 

long. However, the application of the tabs is a fairly delicate proce­
dure. Note that the measurements on the front of the specimen, as 
shown in Fig. 4, were made using the two smaller tabs. 

3 Theoretical Approach 
Consider the plane linear-elastic region R of Fig. 6, bounded by 

contour B and containing a crack of length 2a. The boundary contour 
B is subjected to a specified traction, denoted by t. It has been shown 
[2-7] that this problem can be treated quite effectively by "bound­
ary-integral" techniques and, in this section, one such technique [6-8] 
will be applied to the problem of interest in this paper. 

We begin by considering the "auxiliary" problem of Fig. 7, i.e., an 
infinite plane containing the crack of length 2a, with a layer of body 
force p* applied along contour B. KHij:q (Z, Z0) and /;,<, (Z, Z0) are the 
ijth stress component and the ith displacement component, respec-
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tively, at point Z caused by a unit load in the g-direction applied at 
point Zo, then by superposition the solution to the problem of Fig. 7 
can be written as 

oijiZ) = J?BHij:q(Z, Z0)pq*(Z0)ds(Zo) 

ui(Z) = jfBIi:q(Z, Z0)pq*(Zo)ds(Z0) 

(2) 

where s is a coordinate measured along B. The notation employed here 
implies summation over repeated indices. If the solutions to the 
problems of Figs. 6 and 7 are to be identical within R, then the stress 
field given by equation (2) must satisfy 

aij(Zi)nj(Zi) = ti(Zy) (3) 

as Z approaches Z\ from the inside of R, where rij(Zi) is the;'-com-
ponent of the outward-directed unit vector normal to B at point Z\. 
Inserting equation (2) into equation (3) yields 

iPi*(Zi) + njiZi) f Hij;q(Z1, Z0)Pq*(Z0)ds.(ZQ) = ti(Zx) (4) 

where the singularity which occurs when Z\ = ZQ has been extracted 
and the integral is thus to be interpreted in the principal-value 
sense. 

An approximate solution can be obtained by discretizing the 
boundary and the boundary values and converting equations (2) and 
(4) into linear algebraic equations. A simple scheme would be to divide 
B into N intervals of length AS/,, k = 1,. . ., N, and to integrate the 
traction of Fig. 6 and body force layer of Fig. 7 over interval AS/;, 
denoting the results as 

Pik-

Pik* 

f tid 

- f P, 
(5) 

where i = x, y; k = 1 , . . . , N. If the resultant loads of equation (5) are 
then located at the center point of interval ASk, equations (2) and (4) 
are converted to 

iPuHZi) + £ Hij;q(Z1, Z0)Pqk*(Z0)nj(Zl)ASi = Pil(Z1) (6) 

where i = x, y; j = x,y;l = 1,. . ., N, and 

aij(Z)= ZHij:q(Z,Zo)Pqk*(ZQ) 
k=i 

ui(Z)= £ Ii:q(Z,Z0)Pqk*(Z0). 

(7) 

In equations (6) and (7), Z\ is to be interpreted as the center point of 
boundary interval / and Zo as the center point of boundary interval 
k. 

Once the 2N X 2N system of equations (6) is solved for Pik*, i = x, 
y, k = 1 , . . . , N, the stress and displacement components at any point 
Z in R can be found by simple summation, i.e., equations (7). 

The influence functions in equations (6) and (7) can be written in 
terms of the complex potential functions, 0 and \p, associated with the 
region of Fig. 7 subjected to a point load PkHZo) = Pxk*(Zo) + 
iPyk*(Zo) applied at the point Zo [12]: 

Hxx:q(Z, Zo)Pqk*(Z0) = RW(Z, Zo) - Zr(Z, Z0) - t'(Z, Z0)} 

Hyy:q(Z, Z0)Pqk*(Zo) = R\2<p'{Z, Zo) + Z4>"(Z, Z0) + f(Z, Z0)} 

Hxy:q(Z, Z0)Pqk*(Zo) = I[Zr(Z, ZQ) + f(Z, Zo)} 

h:q(Z, Z0)Pqk*{Zo) = —R[aqh(Z, Zo) - Z<t>'(Z, Z0) - f(Z, Z0)} 
2/u 

Iy-q(Z, Zo)Pqk*(Zo) = — I[a</>(Z, Zo) - Zqi'iZ, Z0) - ^(Z, Z0)] 
2fi 

(8) 

where ot = (3 — I>)/(1 + v) for plane stress and a = 3 — 4c for plane 
strain, JX is the shear modulus, v is Poisson's ratio, and Z = x + iy, ZQ 
= xo + iyo- It is clear that the complex potential functions can be 
written as 

,t>{Z,Zo) = <t>(<{Z,ZQ) + <t>*(Z,Zo) 

t(Z,Zo)=t°(Z,Zo) + t*(Z,Zo) 

where <f>° and \p° are the complex potential functions associated with 
an infinite plane, with no crack, subjected to the point load, i.e., 

Pk*(Z0) 

0) 

W, Zo) 

*°(Z, Zo) 

2ir(a + 1) 
In (Z - Zo) 

PkHZ0) 
a -—;—— In (Z • Z0) + 

Pk*(Zo) Zo 
(10) 

27r(a + l) 2ir(a + 1) Z - Z0 

and <t>* and ip* are the complex potential functions associated with 
the problem of an infinite plane, containing the crack, subjected to 
a traction along the crack faces equal in magnitude and opposite in 
direction to the traction generated along an imagined crack in the 
problem of </>°, i^°. It is shown in [7] that, if we introduce the mapping 
function 

z = «(0 = | ( f + )̂ (ID 

we can determine that 

P*(Z) • 

Pk*(Zo) 

2vr(a + 1) 
In r o - f a In 

t o - ? 

+ 
PkHZo) 

27r(a + 1) 

**(Z) = <h*(?) 

ro 
P-Zot+1 _ ( t ; 2 - Z o t i + l ) ? 

? 2 - Z o ? + l T t i ( t o - t i ) ( ? - t ; ) 

PkHZo) 

27r(a + 1) 

?(?2 + 1) 

?2 • g p ? + l fc2-Zori + l ) ? 

?2-z0?+i n(ro -n)($-n) 
1 a 

l - ? 2 I f - r o I-to, 

t o - ? PkHZo) 
ln- ct In 

- 1 

r o - f 
27r(a + 1) I t0 r0 

ftf + 1) f(Z0 - ZoXf2 - 1) t i 2 - Z o t i + l 

I - ? 2 ( ? 2 - Z o ? + l ) 2 ( t o - t i ) ( ? - t i ) 2 

provided that Z ^ Zo, where 

ro,,' = %[Zo ± (Zo2 - 4)1 '2] 

to,; = V2[Zo ± (Zo2 - 4)i/2] 

and a = 2 for convenience. If Z = Zo, we have 

<t>HZo) = 0i*(t,-) 

(12) 

(13) 

PkHZo) 

+ 

2ir(a + 1) 

PkHZo) 

, r0-ti . t o ­
rn a In -

r0 t0 

t ; 2 - 2 J ; t o + Z o t o - l Zoto — 1 

tHZo) 

2ir(a + 1) 

iiHti) 

PkHZo) 

(ti ~ to)2 

t ; 2 - Z 0 t ; + l r ^ - Z o r . + l 
- + 2w(a + 1) It,-2 - ZoU + 1 ri(r0 - n)(ti - n) 

t i ( t ; 2 + l ) / 1 

1 - U2 \tj - r0 U- U 

+ 
PkHZo) 

In 
to — U 

to 
a In 

r o - k 

2ir(a + 1) 

tiiti2 + 1) 2(£0
2 - Z0 t0 + D' 

ro 

(14) 
1 - U2 (ti - to)3 

The method is now applied to the problem of interest, shown in Fig. 
8, i.e., a rectangular region, containing a centrally located sharp crack 
of half-length 6.40 mm and subjected to a uniaxial tension of 1 MPa. 

560 / VOL. 47, SEPTEMBER 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5-75 mm 

3.2mm 

3« E 

% = 0.794 

Fig. 8 Locations of field points for BIE computations 
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Fig. 9 Comparison of experimental and theoretical results for alb = 0.291; 
open symbols are experimental data 

Plane stress is assumed and v = 0.33, E = 70 X 103 MPa. The following 
36 cases are treated: W = 7.62 cm, 4.37 cm, 3.05 cm, 2.34 cm, 1.90 cm, 
1.60 cm; and 6 = 0°, 15°, 30°, 45°, 60°, 75°. For all cases, the dis­
placements ux and uy in the x and y -directions, respectively, are 
computed at the 6 field points shown in Fig. 8. The results for crack 
opening displacements at the center point, quarter point and end 
point and for relative transverse displacement at the center point can 
then be readily determined fron 

^center - ("y) l ~~ ("y)2 

Strans = ( " l ) l _ (Ux)i 

l5quart = (Uy)s ~ (Uy)i 
(15) 

Send = ("y)5 _ (Uy)e-

Results are presented in the next section where comparison is made 
with the experimental results. 

For implementation of equations (6) and (7), the boundary is di­
vided into N = 60 divisions, 10 on each of the loaded sides of length 
AS; = W/10, and 20 on each of the unloaded sides of length AS; = 
3 W/20. The solution of equations (6) was obtained via the Crout al­
gorithm with equilibration and partial pivoting. Since a crack half 
length of a = 2 was assumed earlier, the problem was first scaled ac­
cordingly and the solutions were subsequently scaled back. 

4 Results and Conclusions 
The results for displacements perpendicular to the crack are pre-

t 0.3 

°- 0.2 

Fig. 10 Comparison of experimental and theoretical results for alb - 0.794; 
open symbols are experimental data 

Table 1 Comparison for alb = 0.291 (displacements in microns) 

Loct. 

e 

0° 

15° 

30° 

45° 

60° 

75° 

Center 

BIE 

.386 

.360 

.292 

.196 

.098 

.025 

IDG 

.405 

.377 

.295 

.215 

.105 

.024 

Transverse 

BIE 

.000 

.092 

.162 

.189 

.165 

.096 

IDG 

-

.015 

.165 

.182 

.128 

.046 

Quarter 

BIE 

.320 

.299 

.241 

.160 

.077 

.017 

IDG 

.349 

.330 

.271 

.182 

.094 

.023 

End 

BIE 

.083 

.075 

.054 

.025 

-.003 

-.023 

IDG 

.197 

.172 

.148 

.095 

.034 

.011 

Table 2 Comparison for alb — 0.794 (displacements in microns) 

Loct. 

e 

0° 

15° 

30° 

45° 

60° 

75° 

Center 

BIE 

.600 

.574 

.462 

.311 

.159 

.040 

IDG 

.623 

.620 

.499 

.337 

.163 

.033 

Transverse 

BIE 

.000 

.099 

.169 

.212 

.197 

.118 

IDG 

-

-

.168 

.219 

.198 

.096 

Quarter 

BIE 

.509 

.483 

.378 

.245 

.118 

.026 

IDG 

.546 

.540 

.431 

.275 

.116 

.041. 

End 

BIE 

.135 

.123 

.078 

.032 

-.003 

-.024 

IDG 

.362 

.294 

.199 

.121 

.107 

-
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Fig. 11 Comparison of experimental and theoretical results for transverse 
displacements; open symbols are experimental data 

sented in Figs. 9 and 10 for two selected crack-length/width (alb) 
ratios. The measured values are designated as open symbols while the 
displacements computed from the boundary integral equation tech­
nique are represented by filled symbols. These data are also presented 
in Tables 1 and 2. The complete set of data for all six crack-length/ 
wide ratios is available in reference [8]. 

Figs. 9 and 10 show that the agreement between the BIE technique 
and the experiments is in general quite good except at the end points. 
The fact that the two techniques don't agree for displacements near 
the crack tips is understandable. The BIE computations are for a 
sharp crack; whereas the IDG measurements were made on a finite 
slot. Note that the IDG values are larger—much larger at the end 
points. The difference between the modeled crack and the actual slot 
is not very significant away from the end points. Another reason for 
the greater disagreement at the end points is that the measured dis­
placements are smaller and thus more susceptible to experimental 
error. 

Transverse displacements at the center of the slot are plotted in 
Fig. 11 and tabulated in Tables 1 and 2. Attempts were made to make 
IDG measurements at 6 = 15°, but the displacements were so small 
that the data were useless. However, for larger angles the agreement 
is quite good. This agreement demonstrates that the elaborate tech­
nique of gluing tabs across the slot didn't distort the measure­
ments. 

Examination of Tables 1 and 2 shows that the end displacements 
were negative for angles of 60° and 75°. In fact, the BIE technique 
gave the same negative values for 60° and 75° for every crack-
length/width ratio investigated. This negative displacement implies 
that the sharp crack surfaces cross each other—a physical impossi­
bility. Certainly allowing these negative displacements influences the 
displacements at the quarter points and at the center of the crack. 

The results of this extensive research program show that the the­
oretical and experimental techniques (both of which were developed 
in the course of the work) are valid for establishing crack surface 
displacements. The choice of method for future problems will depend 
on how easily the geometry and applied loads can be modeled. Where 
external loads can be accurately predicted and the geometry is rea­
sonably simple, the BIE method is more appropriate. For more 
complicated situations, the IDG is an accurate, easy-to-use experi­
mental technique. 
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Fracture Criteria of Fibrous 
Laminated Composites Under 
In-Plane Multidirectional Loading 
A study on the validity of various fracture criteria of angle-ply-laminated composites is 
presented for in-plane loading. Special emphasis is given to the vectorial presentation 
of the 3-integral as a suitable candidate for fracture characterization of composites under 
general combined loading. The combined loading which is composed of a simultaneous 
tension, shear and in-plane bending in any desired proportion, has been produced in a 
highly computerized fashion by a specially devised apparatus at the U.S. Naval Research 
Laboratory. The fracture data of several angle ply laminates of carbon/epoxy composite 
(T300/5208) result from prescribing the foregoing three combined radial loading until 
fracture. Aided by numerical stress analysis {finite-element program) the data points are 
cast into more well-known descriptions; namely, crack-opening displacement versus 
crack-sliding displacement. Mode-I stress-intensity factor (Kj) versus Mode-II stress-
intensity factor (Kn) and energy-release' rate vector Jx versus Jy. The main outcome is 
that the data displayed on the J-integral plane have a highly distinctive nature of align­
ing the data points along straight lines, thus a clear discrimination between the fracture 
properties of different angle-ply laminates can be characterized by only two parameters. 
The ability to infer fracture conditions in subcomponents from tests on small coupons is 
assessed. 

Introduction 
The applicability of structural materials is limited in many cases 

by their ability to resist propagation of flaws (or implanted notches). 
The toughness value associated with such a property, so widely doc­
umented in isotropic materials, cannot apparently be similarly ob­
tained in fibrous-reinforced composites. The reasons are not merely 
the technical difficulties of observing and controlling crack extension, 
but primarily because the modes of fracture in a general angle-ply 
laminate are coupled (i.e., both opening and sliding modes take place 
simultaneously under pure tensile loading, etc.). Neither analytical 
expressions nor experimental observations yet enable one to relate 
the remote applied load to the conventional stress-intensity factors 
when the process of fracture is a little more complex than just a coli-
near crack extension. Clearly there are particular cases in fracture of 
composites where modes of fracture are separated, so that linear 
fracture mechanics approach is transferable (i.e., reference [1, 2]), 
notably in unidirectional reinforcement [3,4] but not without reser­
vations [5,6]. By recognizing the coupling effect between the different 
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Department. Manuscript received by ASME Applied Mechanics Division, 
October, 1979; final revision, March, 1980. Paper No. 80-WA/APM-9. 

modes it was felt that the most reliable situation by which fracture 
data should be produced is by activating all possible modes of fracture; 
namely, by applying simultaneously the most general in-plane 
loading; tension, shear, and in-plane bending. Therefore, an experi­
mental effort is focussed here to produce fracture data on fibrous 
composite materials subjected to different proportions of the previ­
ously mentioned three combined loading. 

A computer controlled machine was designed at the U.S. Naval 
Research Laboratory to meet this demand. The global features of this 
machine resemble the computer-aided mechanical testing machine 
reported by Wu and Jerina [7] for testing thin-walled tubes, but in­
corporates more independent loading modes with more automation 
in the overall procedure. The three load-displacement histories of the 
three loading modes are continuously recorded, and the associated 
dissipated energy absorbed in situ by the specimen is computed on 
real time and displayed on a T-V screen.1 The fracture initiation was 
defined as the point where abrupt dissipation of energy consumed by 
the loading specimen was begun. The meaning of dissipative energy 
is explained later. The collection of such fracture data at each 
angle-ply laminate of T300/5208 (30°, 45°, 60°) is analyzed in dif­
ferent ways in order to reveal the most convenient parameters for 

1 At preselected small time increments during the test (say, a few miliseconds) 
measurements of loads and displacements at each actuator are continuously 
recorded and stored. This information is used on-line to compute the current 
dissipated energy (equation (1)). It is only a technical matter to display it 
graphically (as in Pig. 4) for visualization of the specimen behavior up to total 
failure. 
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Fig. 1 Grips arrangement and loading conditions produced by in-plane 
loader 

fracture characterization: (a) crack-opening displacement versus 
crack-sliding displacement; (6) Mode-I stress-intensity factor (K{) 
versus Mode-II stress-intensity factor; and (c) energy-release rate in 
x -direction (Jx integral) versus energy-release rate in the y -direction 
(Jy integral). The main outcome is that the data displayed on the 
(/-integral plane has a distinctive nature, not obtained in the previous 
presentations, of aligning the fracture data along straight lines. The 
importance of having a fracture locus as a straight line is dis­
cussed. 

A Brief Description of the Test and the Analysis 
Procedure 

The in-plane loader machine is used to test small prenotched 
coupons (1 in. X 0.5 in.) of graphite/epoxy (T300/5208) of angle-ply 
laminates with various angles. The specimen is fixed by a clamped 
grip at one edge and free to displace and rotate (in a plane) by a 
"floating" grip along the second edge, as shown in Fig. 1. The three 
degrees of freedom of this latter edge are controlled by the shown three 

do, to I di.f, 

•//?//////////)//;. v////////////'//. 

DEQ 

I—Ad) d0 

DE, {[h^tU^)]} 
"•1*0 

DE'DE0+DE,+ DEi 

i «0,1, 2 
i»/,2, n 

Fracture initiation 

Fig. 2 Fracture initiation as indicated by the global displacement R at which 
a sharp increase in the total disslpatlve energy, DE, is observed 

(hydraulic) actuators, such that any desired combination of shear, 
tension, and bending is readily available via a computerized program 
which drives the actuators accordingly. Once the combined load is 
preselected the test proceeds by maintaining the proportionality2 

between the three combined loading until total separation of the 
specimen takes place. This proportional displacement loading path 
is described as a radius vector (r) in the displacement space with the 
coordinates do, di, and di, originating at the crack tip (see Fig. 1 for 
more details). During the displacement controlled loading, the asso-

1 Any other history of loading can essentially be programmed as well. 

-Nomenclature. 

a = angle-ply (included angle) of fibrous 
composite laminate with respect to notch 
direction 

aij = components of elastic compliances 

A, B,C,E = coefficients defined in equations 
(9) and (10) 

Co, ci = geometrical parameters of the spec­
imen 

\d] = (do, di, d%i = displacement components 
(shear, tension and rotation, respectively) 
at the notch root which are related directly 
[via (4)] to the applied boundary dis­
placement 

normalized crack opening dis-
Dx 

Dy 

placement [equations (7) and (8)] 
[E] — matrix of structural stiffness 
l/l = (/o. fi, fi) - boundary tractions (shear, 

tension, and rotation) which result from 
the boundary displacement 

Jx., Jy = components of J-integral (13) 
Ki, Kn = stress-intensity factors for Mode-I 

and Mode-II 
R = generalized displacement magnitude at 

failure (Fig. 3). 
n = distance from crack tip 
Si, S2 = roots of the characteristic operation 

(12) 

Si, 6i, r = polar coordinates of displacement 
vector with origin at the notch tip (Fig. 
3) 

\t\ = (to, ti, £2) = traction components (shear, 
tension, and rotation) at the notch tip re­
lated directly to the boundary tractions 
[via (equation 3)] 

juj = (ux, uy) = boundary displacement at the 
edge of the gripped specimen 

ux(ri), uy(ri) = displacements at point r; 

w = strain-energy density 

coz = bending displacement produced by 
rotation of the grip 
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TOTAL FRACTURE 

d, • DISPLACEMENT 

FRACTURE INITIATION 

FORCE 

Fig. 3 A schematic description of the so-called "proportional loading" used 
in the tests. The displacement loading path (do, d i , d2) and the associated 
force path (Jo, ' 1 . (2), represent the physical situation pre and postfailure (i.e., 
fracture initiation) of the specimen. 

ciated forces (to, t\, t^3 are recorded versus the displacements so that 
the change in the three compliances is simultaneously obtained as 
shown in Fig. 2. It was observed that the three forces do not decrease 
at the same time. When the composite starts to fail not all the com­
pliances necessarily decrease simultaneously, and load-carrying ca­
pacity may still be sustained even if some kind of damage starts to 
grow. After a while, as shown in Fig. 3, the increases in the displace­
ments gradually release the loads and substantial damage is seen. A 
suggested measure to decide upon the critical load at which failure 
starts is to view the variation in the dissipative energy consumed by 
the coupon during its loading process. The total energy imparted to 
the coupon/machine system namely, the elastic one and all other ir­
reversible dissipations which may possibly occur, is integrated on-line 
during the test, which is Jo'tjddj. By subtracting the recoverable 
elastic energy4 1/2 tjdj and summing up the contribution of the three 
loadings, one gets the net energy dissipated in the process by the 
following expression: 

3 / rdj 1 
DE = £ tjUdj - - (tjdj: 

l 

i 

i 

= 1 

= 2 

= 3 

—•shear 

-* tension 

-»• rotation 
(1) 

(i.e., in-plane bending) 

It appears in our experiments that the sum of the three contributions 
as stated in equation (1) shows at a certain point a quite distinctive 
increase in the dissipative energy. A typical case is shown in Fig. 4. 
Consequently, we identify the load associated with this point as the 
"fracture load." The conjugate critical displacements of the moveable 
grip are used as boundary conditions for numerical stress analysis of 
the coupon at its fracture load. Various fracture surfaces are then 
extracted from such results as shown in Fig. 6. 

3 The forces /o, /1, fi measured by the actuators are transformed for compu­
tational convenience, to a traction vector (t0, Ci, t2) located at the crack tip as 
explained later (equation (3)) and therefore associated to the displacement 
vector of the tip {do, d\, d%). 

4 Assuming that in unloading the strain resumes zero value in linear 
fashion. 

MATERIAL T300/5208 

a =75° 

9,= 90° 

0 5 10 15 20 
DISPLACEMENT MAGNITUDE r (MILS) 

Fig. 4 Reproducibility of fracture initiation for three different combinations 
of loads. These graphs are taken from the T-V display during the on-line ex­
perimental results. 

Fig. 5 Finite-element mesh used for stress analysis of the specimens at 
fracture initiation 

Presentation of Fracture Data 
The subject of this paragraph is to organize the fracture data 

gathered on small coupons into several forms more conceivable by 
designers. The computational procedures which follow are based on 
the displacement boundary conditions associated with the condition 
"at failure" as defined previously. The detailed stress and displace­
ment fields throughout the coupon are resolved by finite-element 
structure analysis (Beaubien [8]) whose mesh is shown in Fig. 5. As 
mentioned before, the laminate appears to initiate failure without 
preceding substantial nonlinearities5 as revealed by the abrupt 
step-rise in the dissipative energy. Consequently, one can establish 

5 This, however, is not entirely true when compressive loading or bending 
in the direction which causes crack closure are used as the loading path. Our 
work excluded such cases. 
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a priori the structural stiffnesses [E] for each angle-ply laminate of 
the notched coupons under the three possible displacement loading 
ux,uy, and wz . It reads 

(2) 

Values for [E] used in this work are tabulated in Appendix A. For 
simplification and convenience the generalized forces {/] which result 
from the prescribed displacements \u\ are transformed to the notch 
tip location and denoted by \t] according to 

/o 

A- -

A 
Eox 

Sym 

EQy E()Z 

Ely E\z 

E%z 

\f\=[Tf]{t\ [Tf] 

1 0 0 

0 1 0 

ci - co 1 

where c (c0, c i) is the location of the load |/| with respect to the notch 
tip. Similarly the displacement \u] is also transformed by [Tu] to the 
notch tip coordinate and denoted there by \d] as shown in Fig. 1 and 
Fig. 2. The geometrical relation is 

\u\=[Tu]\d}, [Tu] 

1 0 - c i 

0 1 c0 

0 0 1 

(4) 

It can be readily shown from (3) and (4) that the transformation 
matrices for forces and displacements are connected by 

[Tu]-1 = [Tf] (5) 

hence, the general Constitutive Equation for the coupon specimen 
emerges from (2)-(4) by the following expression: 

\d\ = [Tf]T[E]-i[Tf]lt\ (compliance = [Tf]T[E\-i[Tf\) (6) 

The experiments are continuously monitored by \t\ and \d). Therefore, 
equation (6) serves as a computational device to find out the relative 
compliances (three independent compliances) of the testing machine, 
so vitally important'for precise evaluation of experimental data. The 
so-called failure surfaces on the d space are plotted in a polar form6 

in Fig. 6. The fracture data on these surfaces compose the tests per­
formed on 30°, 45°, and 60° deg of included angle (with respect to the 
notch). The smooth connectivity between fracture points at different 
proportions of shear, tension, and rotation is highly manifested. This 
can partially be attributed to the automatic man-free nature by which 
specimens are loaded and gripped in the testing machine. 

Various Fracture Criteria 
The goal in applying fracture mechanics concepts in composite 

materials is to reduce the numbers of independent parameters re­
quired to characterize their fracture properties. The experimental 
tests which depend on three different loading conditions, convey 
fracture data (Figs. 5 and 6) which are inherently three-dimensional 
in nature. In the following we will attempt to reduce the dimension­
ality of the experimental data of Fig. 6 from three to two by consid­
ering approaches which have been used successfully in the past to 
characterize fracture properties of isotropic materials. 

Crack Opening Displacement. The concept of "crack opening 
displacement" is based on the premise that the displacement asso-

6 In polar form the variables d0, dy d2, are related to the three polar coordi­
nates r, Oi, 02, by 

r = (do2 + di 2 + rf2
2)1/2 

0i = t a r r 1 (di/do) 

02 = t an - 1 [d2/(d0
z + di2)] 

\ / FRACTURE 
\ / / INITIATION 

(3) 3 
I 

Fig. 6 Failure surfaces in polar coordinates of T300/5208 composite as 
produced by various loading paths; each circular black dot represents ex­
perimental failure at a given path; note the clear distinction between failure 
surfaces of different angle-ply laminates 

ciated with the notch (or with the whole flank) at incipient fracture 
constitutes a material property and therefore can be used by a de­
signer as fracture criterion. The question whether this holds true in 
composites subjected to combined loading is considered in the light 
of our experimental data. 

For this purpose we define a normalized displacement vector (Dx, 
Dy) along N discrete points along the two flanks of the notch by 

DXW £>v0'> 
1 N Mi) 

(7) 

As seen in equation (7) the displacement of the flank is weighted by 
the corresponding distance ( l / V n to the tip of the notched and av­
eraged throughout the flanks. Evaluation of equation (7) is repeated 
for each mode of loading (J = 0, 1, 2 corresponds to the three dis­
placement loading ux, uy, co2 shown in Fig. 1). As a result the total 
opening displacement Dx and Dy (unprimed) is obtained by adding 
the contributions of all the acting loading modes as expressed by 

DXM £>*(1) DXW 

Dy<°> DyW DyV> 
(8) 

The critical crack opening displacement is resolved from (8) by using 
the values of ux diz at "incipient failure." The results shown in 
Fig. 7 are quite scattered without a clear topological structure required 
for fracture characterization. Consequently we felt that equation (7) 
is not a well-suited parameter for fracture criterion of angle-ply 
composite under combined loading. 

Stress-Intensity Factors. By assuming that the notch tip is sharp 
and the composite is homogeneous, an analytical near-tip elastic so­
lution [9] is valid and consequently used to evaluate the stress-in­
tensity factors (Ki and KJJ) at the critical loads \f\c in all tested 
combinations for the various angle-ply laminates. It is the purpose 
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Fig. 7 Critical crack-opening displacement versus crack-sliding displace­
ment of several angle-ply laminated composites 
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Fig. 8 Critical stress-intensity factors (K, versus Ku) of several angle-ply 
laminated composites 

Table 1 Elastic 

Angle-ply 
T300/5208 

included angle 
p s i - 1 

a 

30° 
45° 
60° 

compliances of T300/5208 laminates 

a n 

48.7 
60.3 
82.1 

^ [10-''] 

112 022 066 

-23.4 3.20 6.45 
-43.0 2.96 4.74 
-65.0 2.60 3.73 

Table 2 The roots of equation (12) 

of this analysis to see whether the critical stress-intensity factors can 
characterize the fracture behaviors of our composites. 

The relation connecting the normalized opening of the crack (Dx, 
Dy) to the stress-intensity factors (K\, Kn) in composites are coupled 
and can be generally described by the following: 

(9) 

The coefficients A, B, C, E are readily inferred from the analytical 
work of Sih and Leibowitz [9]. These coefficients consist of material 
elastic properties Atj and the roots S,- and S 2 of the characteristic 
equation (12) by the following: 

Dx 

Dy 

1 

Vvr 

A B 

C E 

'Ki 

Kn 

A = Im 

Im 

S1P2 - S2P1 

Si — S2 

Si(72 - S2<7i 

S1S2 

, S = Im 

, E = Im 

P2 - Pi 

Si — S2 

9 2 - 9 1 

Si — S2 

(10) 

where 

Pi = a u S i 2 + 012, P2 = auS2
2 + a i 2 

Ol2>Sl2 + 022 Oi2S22 + 022 
( i i ) 

The values of ay- used in the experiments are tabulated in Table 1. The 
characteristic equation for the symmetric case used in our tests is 

Si S 2 

30° 
45° 
60° 

0.75i 
0.94J 

1.7 + 0.52J 

3.42t 
2.36i 

-1.7 - 0.52; 

a n S 4 + (2a 12 + a66)S
2 + a22 = 0 (12) 

Using the coefficients aij from Table 1 we get the complex roots shown 
in Table 2. 

The values of K\ and Ku are obtained from the inversion of equa­
tion (9) where the data of (Dx, Dy) are evaluated at incipient fracture. 
Results are plotted in Fig. 8. The relatively high values of the apparent 
toughness of the composite shown in this figure, particularly for a = 
60° might have several hypothetical explanations. Since the blunting 
of the notch by matrix separation is most pronounced in 60° angle, 
a relatively high stress level for fracture is likely to result. Here again 
the data of Fig. 8 is not readily expressible as a convenient fracture 
surface (although the data seems to be a little bit more grouped along 
a preferred direction) and therefore, we decline to characterize frac­
ture by critical stress-intensity factors for combined loading condi­
tions. 

The J-Integral Vector. The two components of the energy re­
lease rate Jx and Jy in a form of path-independent integrals, elabo­
rated and propounded by Budiansky and Rice [10], are applicable to 
homogeneous bodies which can be unisotropic and nonlinear in gen­
eral. Their values represent the amount of the potential energy which 
would be relaxed when a traction-free crack would extend (differen­
tially) in the x and y -directions, respectively. The integrals to be 
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Fig. 9 Critical energy release rate ( J , versus Jy) for several angle-ply 
laminated composites; the appearance of fracture data of different angle-ply 
laminates in multidirectional loading as straight lines (i.e., only two independent 
parameters for each laminate) is notable 

evaluated counterclockwise along arbitrary contour T surrounding 
the notch are 

(13) 
Jx = (conx — Tii>Ui/bx)ds 

Jy = (omy — Tidui/dy)ds 

where to is the strain-energy density (i.e., Jaijdeij), T; is the traction 
vector on T (i.e., T; = Oijnf) and ds is an element of the path Y. Now 
Jx and Jy are evaluated numerically by equation (13) at incipient 
fracture of our coupons, the raw data of which was gathered by the 
in-plane loader as explained in our previous cases. The display of the 
fracture points for various angle-ply laminates in Jx, Jy plane is shown 
in Fig. 9. 

It appears quite clear in this figure that the data points align 
themselves along straight lines; each line corresponds to a different 
angle-ply laminate. The main importance of such an outcome is that 
the distinction between the fracture properties of different angle-ply 
laminates (and probably between different composites as well) is 
reduced to just two parameters as for example the slope of the line 
and the value of Jx at the intersection with Jy - 0 line. In passing, it 
is worth reiterating that this last parameter (Jx -value at Jy = 0) is 
strictly the critical energy release rate for a notch which extends 
"self-similarly" (i.e., colinearly with its original position). The physical 
interpretation of such situations is that this single parameter coincides 
with the classical fracture toughness parameter G\c, or alternatively 
with the critical stress-intensity factor Kic. Most of the fracture study 
of composites up to date was restricted to such particular cases where 
only one characteristic fracture property was tested, either by classical 
means (i.e., [1, 2]) or by employing the J concept [6, 11, and 12]. 

Summary and Discussion 
Reduction of dimensionality from three independent coordinates 

to two in describing fracture data of composite materials in multi-
loading case was studied. While functional relation in two-dimensional 
description was unsuccessful for crack-opening displacements and 
stress-intensity factors parameter, a straight line relation appears 
to dominate data when parametizing fracture by the corresponding 
critical J vector. Consequently, a clear discrimination between the 
fracture properties of different angle-ply laminates is achieved in 
terms of merely two parameters; the slope of the line and its inter­
section with the Jx -axis. As mentioned earlier this distance is identical 
to the well-explored toughness G\c, because Jy is zero only if the crack 
is propagating in a self-similar fashion. To such situations the con­
ventional term G\c is applied. Indeed, values of G\c obtained in Fig. 
5 are very close to those reported by Konish, Swedlow and Cruse [6] 
for the case of "crack running along the fibers" in their three-point 
bending tests. The slope of the fracture lines may be considered as 
a new parameter for fracture characterization but no profound 
physical interpretation has yet been attached to it besides recognizing 
its important role in indicating the amount of deviation from colinear 
crack extension. The smaller the slope the less tendency for the crack 
to branch away from its original position is expected. Such a trend is 

validated by our experiments where smaller slopes are associated with 
fracture of laminates composed of smaller angle-plies along which the 
crack was propagating. 

It is still an open question whether the two-parameter fracture 
characterization of angle-ply composite suggested here is valid for 
loading conditions beyond the testing spectrum experienced by us. 
For example, two resulting deformation fields near a notch might 
differ one from the other in their details and still might yield the same 
values of J integrals. Therefore, fracture prediction of subcomponents 
via the experimental tests on small coupon necessitates the insurance 
that the laboratory tests from which the fracture locus is drawn, are 
performed on as wide combination of loadings as possible. This calls 
for numerous laboratory tests as a prerequisite for practical fracture 
prediction. Indeed, this is the main factor underlying the highly au­
tomotive and efficient nature of the multiloading test machine at the 
Naval Research Laboratory (NRL). 

If structural subcomponents are subjected to proportional loading 
and prediction of fracture from an already detected flow is sought, 
one may take advantage of the fracture-data line by checking how far 
the radius vector J(JX, Jy) (emanating from the origin) which is 
evaluated on the subcomponent with the working load, can radially 
be elongated until its intersection with the experimental fracture line. 
This portion of the line between the current value of J and intersec­
tion point indicates the amount of the additional working load 
(squared) which might initiate failure in the structure. It is needless 
to say that the ultimate goal is to experience such a predictor on 
substructure (which is underway at NRL) before this approach is 
comprehensively assessed. 
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APPENDIX A 
The matrix of influence coefficients [E] of the cracked specimen 

(i.e., [E] [u\ = j/1 as extracted from the finite-element solution. 
Material T300/5208, units [lb/in.] for unit thickness 

"18013.94 11.09 4645.92" 
[£]«=30° = 11-10 28282.69 7633.72 

4645.83 7674.33 3500.02 

[El 
22272.80 

22.18 
L 5743.23 

22.18 
31626.13 
8388.92 

5743.24 
9116.33 
4441.10 
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25959.74 
3978. 
6693.66 

39.78 
37880.17 
9896.17 

6693.72 
9900.68 
5166.18 

[E]a 

Note: The small deviation from symmetry of the foregoing matrices 
is the result of the numerical nature of the stress analysis (finite ele­
ments). 

APPENDIX B 
The matrix of influence coefficients [D] for the crack-opening 

displacement vector (Dx, Dy, nondimensional) 

Dx«» DXW> Dx<® 
[D] 

/y» zy« Dyw 

Material T300/5208 

a = angle-ply (included angle with respect to the notch). 

a = 30° 

0.601 E - 1 

0.214 E - 2 

-0.064 E 

0.994 E • 

0.250 E - 1 

-0.384 E-2 

a = 60° 

0.736 E - 1 -0.780 E - 3 0.322 E - \ 

-0.600 E-l 0.991 E -I 0.372 E - 2 

APPENDIX C 
The matrix of influence coefficients [J] for the J-integral vector 

0 = shear displacement 

Jxm Jxa) J*i2) 1 = tensile displacement 

J y
( 0 ) </y(1> =/x<2) 2 = bending displacement 

Material T300/5208, units [(in.-lb)/in.2] 

a = 30° 

161.62 309.44 10.51 

5.54 4.12 10.83 

a = 45° 

237.30 361.99 15.15 

10.97 5.30 12.27 

= 45° 

0.667 E - l -0.478 E - 3 0.285 E - 1 

-0.713 E - 3 0.981 E - l -0.417 E - 2 

a = 60° 

320.82 455.38 19.93 

15.00 6.57 10.54 
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Numerical Modeling of Dynamic 
Crack Propagation in Finite Bodies, 
by Moving Singular Elements 
Part 1: Formulation 
An efficient numerical {finite-element) method is presented for the dynamic analysis of 
rapidly propagating cracks in finite bodies, of arbitrary shape, wherein linear-elastic ma­
terial behavior and two-dimensional conditions prevail. Procedures to embed analytical 
asymptotic solutions for singularities in stresses/strains near the propagating crack-tip, 
to account for the spatial movement of these singularities along with the crack-tip, and 
to directly compute the dynamic stress-intensity factor, are presented. Numerical solu­
tions of several problems and pertinent discussions are presented in Part 2 of this paper. 

Introduction 
A concise summary of the present status of the theories of dynamic 

crack propagation can be found in a recent article by Freund [1]. 
Several analytical solutions of the linear elastodynamic equations for 
crack propagation in unbounded plane bodies have appeared earlier. 
These include the works of: Yoffe; Cragg; Broberg; and Baker, for 
Mode-I (plane-strain opening mode) crack propagation; and the works 
of: Eshelby; and Achenbach, for Mode-Ill crack extension. All the 
aforementioned works are summarized and referenced in a paper by 
Freund [2], who considered the problem of a half-plane crack, in an 
elastic solid subject to time-independent loading, which is initially 
at rest and, at a certain instant, begins to move with either a constant 
velocity [2] or a nonuniform velocity [3]. The studies in [2, 3] were later 
extended [4] to consider stress-wave loading. However, as is usually 
the case, to study dynamic crack propagation in finite bodies of ar­
bitrary geometry, it is necessary to formulate consistent numerical 
methods, which may capitalize on the insights, into the field behavior 
near propagating crack-tips, gained through the analytical solutions. 
A critical appraisal of several and varied numerical solution tech­
niques in dynamic fracture mechanics was made in a 1978 paper by 
Kanninen [5]. Most of the dynamic finite-element methods, for fast 
crack-propagation analysis, reviewed in [5] use the conventional finite 
elements with simple polynomials for assumed displacements, and 
do not account for the singularity in strains near the crack-tip. Fur-
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ther, in these methods, the dynamic crack propagation was simulated 
by a "gradual" release of the restraining nodal force at a finite-element 
node which represents the "current" crack-tip. The dynamic stress-
intensity factor is then extracted from the displacement field or from 
the work done in releasing the nodal force. It was concluded in [5] that 
the foregoing "node-release" techniques were not sufficiently accu­
rate. 

Since the appearance of [5], Bazant, et al. [6], have presented a 
calibrated, nonsingular, crack-tip element procedure for the dynamic 
analysis of running cracks. In the procedure of [6], the finite-element 
grid moves undeformed with the crack-tip. However, the procedure 
of [6] has two serious limitations: 

(i) It is restricted to finite bodies whose surfaces and/or bimaterial 
interfaces are parallel to the direction of crack propagation. 

(ii) More importantly, it cannot be applied to bodies having finite 
dimensions in the direction of crack propagation. 
On the other hand, Aoki, et al. [7], presented a finite-element proce­
dure wherein the singular nature of stress/strain near the propagating 
crack-tip is accounted for a priori. However, in [7], only when the 
crack-tip has reached close to the boundary of the singular element, 
the entire singular element is shifted, as a rigid body, to a new location. 
The numerical details of the procedures are still somewhat sketchy 
in [7]. Finally, King and Malluck [8] reported a procedure of simu­
lating crack propagation similar to that in [7], except that the singular 
element used in [8] has, built within it, a large number of eigenfunction 
solutions corresponding to a stationary crack. In an attempted sim­
ulation of the well-known problem of Baker, the procedure in [8] 
produced spurious oscillations, of large amplitude, in the solution for 
dynamic stress-intensity factor, as compared to the analytical solu­
tion. Based on these results, it is suggested in [8] that the procedure 
in [8] may not be feasible for simulating large scale fast fracture. 

In Part 1 of the present paper, a moving singular element procedure 
is presented for the dynamic analysis of fast crack-propagation 
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problems in arbitrary shaped finite bodies. In the present procedure 
a singular element, within which a large number of analytical eigen-
functions corresponding to a propagating crack are used as basis 
functions for displacements, may move by an arbitrary amount A 2 
in each time-increment At of the numerical time-integration proce­
dure (as opposed several time steps, say 6 to 8, per increment of crack 
growth, used in the procedures reviewed in [5]). The moving singular 
element, within which the crack-tip always has a fixed location, retains 
its shape at all times, but the mesh "regular" (isoparametric) finite 
elements, surrounding the moving singular element, deforms ac­
cordingly. An energy-consistent variational statement is first devel­
oped, as a basis for the foregoing moving singular element, finite-
element method of dynamic crack growth analysis. The present 
procedure leads to a direct evaluation of dynamic stress-intensity 
factor(s), since they are unknown parameters in the assumed basis 
functions for the singular element. 

In Part 2 of the paper, several numerical results for cracks propa­
gating in finite bodies are presented and discussed. 

In the following we discuss the details of formulation of a moving-
singularity finite-element formulation for analyzing dynamic crack 
propagation. 

Basis Functions for a Moving Singular Element 
We consider Mode-I-type dynamic crack propagation in two-

dimensional (plane-strain) linear elastic isotropic bodies of finite 
geometry. Let xa (a = 1, 2) be fixed Cartesian coordinates in the plane 
of the body, and X3 be the thickness coordinate of the body such that 
x 2 = 0 defines the plane of the crack. In the context of the present 
numerical method, without loss of generality, we consider the case 
when the crack-tip is moving along Xi-axis at a constant speed v. We 
introduce the coordinate system (£, X2) which remains fixed with re­
spect to the moving crack-tip, such that £ = X\ — vt. Let $ and ^ be 
the dilatational and shear wave potentials, respectively; and let Cd 
and Cs be the corresponding wave speeds. It can then be shown [2] 
that $ is governed by the equation 

d2(J> 32,6 3 2 * 5,2* 
[ 1 - ( ^ ) 2 ] ^ + ^ i = - ( 2 ^ , ^ + ( 1 / c ^ (1) 

and that ty is governed by a similar equation, except that Cd is to be 
replaced by Cs. Consider the "steady-state" solution to the homoge­
neous part of the previous equation, that is, the solution which appears 
time-invariant to an observer moving with the crack-tip. This ei-
genfunction solution which satisfies the traction-free condition on 
the crack-face (f < 0, x? = ±0), can be derived easily, as for instance 
in [9, 10], and is given in Appendix A for the sake of completeness. 

In the present procedure, a finite region (which, for convenience, 
is taken to be rectangular in shape) near the moving crack-tip is 
modeled by one finite element, in which the displacement field is 
assumed to be a linear-superposition of a finite number of the previ­
ously discussed eigenfunctions. However since the solution, in general, 
will also explictly depend on time, the undetermined parameters, j5n, 
are taken to be functions of time. Thus, in the singular element, we 
assume 

"i(£, X2, t) = Y. M*in(£. x% v)/3„(t) + Rigid body modes (2) 
n 

"2(£, *2, t) = £ "*2n(£, x% v)(in(t) + Rigid body modes (3) 
n 

where u*2n, "*in are given in Appendix A, and, in particular, ft(t) 
is identified as the Mode-I dynamic stress-intensity factor. It can then 
be seen that, in the present finite-element procedure, the dynamic 
stress-intensity factor is an unknown parameter in the element 
basis-functions, and thus can be calculated directly. Representing the 
foregoing equations (2), (3) in the familiar matrix notation, 

u»(f,*2, t)= U(ix2,v)0(t) (4) 

where bold-faced letters and a bold-faced letter with a tilde under it 
denote a column vector and a matrix, respectively; and us denotes the 
vector of displacements in the singular element. We note that the total 

velocity and acceleration of a material point in the singular element 
are given by 

u« = U$ - o(y),fj3 (5) 

and 

ii"= U&-2v(y),,:$ + vHu),HP (6) 

where, a (•) denotes a total derivative with respect to time t, and ( ),{ 
denotes a partial derivative with respect to £. 

Let the domain of the singular element in the present procedure 
be Vs and its boundary be dVs; and let ps be that part of dVs where 
the usual isoparameteric finite elements adjoin. In order that con­
vergence of the present finite-element method may be achieved, 
compatibility of displacements, velocities, and accelerations between 
the singular elements and surrounding regular elements, i.e., at ps, 
is maintained in a least-squares sense as described in the following. 
Let the displacement, velocity, and acceleration assumption for the 
regular element, at ps, be taken, respectively, as 

uB = Nqs; uR = Nqs; uR = Nqs (7a, b, c) 

where N are functions of the boundary coordinate r](xa) at dVs, and 
qs is the vector of displacements at nodes at ps. The parameters /3, /3, 
and p are so chosen that they minimize the error functionals 

h = P (us - uR)2dp; I2 = f (11s - uR)2dp; 
*J Ps JPs 

I3= C ( i i s - un)2dp (8,9,10) 
J Ps 

Using equations (4)-(7) in (8)-(10), and minimizing I\, I2, and I3 
successively with respect to /8, p, and p it can be shown that 

P = Aqs; /3 = Aqs + Bqs; fr = Aqs + 2|qs + Cqs (11-13) 

where 

A = H - 1 G ; B=(u)H~1EA (14,15) 

C = 2(u)H-1EB - ( u ^ H - ^ A (16) 

H= f UTUdp; G= C UTNdp (17a, b) 

i = f yT(y),{d/o; F= f yT(y),jfdp (17c, d) 
•J ps %J ps 

Thus equations (4)-(6) together with (11)-(13) represent the dis­
placements, total velocities and total accelerations in the singular 
element, in terms of its nodal displacements, velocities, and acceler­
ations, qj, qs, and q„, respectively. Thus, if qs at ps is determined, then 
P (and especially the Mode-I stress-intensity factor /3i), can be de­
termined directly. Finally, it is noted that the foregoing equations 
(4)-(6) and (11)—(13) represent the assumptions for the relevant field 
variables in the singular element at any generic time t. 

Now we consider the problem of dynamic crack propagation within 
a time increment At between two generic times t\ and £2-

Var ia t iona l P r i n c i p l e for D y n a m i c C r a c k - P r o p a g a t i o n 
A n a l y s i s 

In the following, we present a variational statement for dynamically 
growing cracks in linear elastic solids. Consider two instants of time 
11 and t 2 ( = t i + At)at which the variables of the problem are denoted 
by superscripts 1 and 2, respectively. At time t\, let the volume of the 
solid be Vi, the external boundary of the solid where tractions T\ are 
prescribed, be S„i; and let 2i" and 2j" be, respectively, the two surfaces 
of the crack. Also, let Ff be body forces per unit volume in the body 
at time £2- We assume that between time £1 and £2, the crack surfaces 
change by A2. The orientation of A2 to 2 , can be determined by some 
crack-growth direction criterion; however, for pure Mode-I, self-
similar growth is assumed. The newly created crack surfaces can be 
traction-free, but, for the sake of generality, assume that new trac-
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Fig. 1 Schematic representation of the movement of the singular element 

tions1 Tf+ and Tf~ are applied on the new crack-faces A 2 + and A2~, 
respectively; likewise, let new tractions Tf act at Sa2- The principle 
of virtual work applied at £2 can be written as 

0 = P (o?j8e?j+ puf&uf)dv 

- f Ffbufdv- f Tfdufds 

- f + (T?)+(8uf)+ds - f _ (T*)-(8u?)-ds 

- f (T?)+(fa?)+ds - f (T?)- (&«?)-<& (18) 

However, for the case of cracked structures, the changes in volume 
and external surfaces between times £i and t% due to a change in the 
crack surface by A 2 alone, can be assumed to be negligible, i.e., V\ 
ra V2 and S„i & S„2. It is important to note in equation (18) that 
(uf)+ T* (uf)~ [or (8uf)+ ?̂  (&uj)~] at the initial crack surfaces 2 J" 
and 2j", nor, more importantly, for the newly created crack-faces A 2 + 

and A2~ during the time interval £2 — t\ ( = At). If similar virtual 
displacements (&uf), such that (Suf)+ p£ {Suf)~ either on 2 , or on A2, 
are considered in the statement of virtual work at time £1 (prior to the 
creation of new crack-faces A2); this statement can be written as 

0 = f (ajjdefj + pa}5uf)dv - C Fjdufdv - f T}5ufds 
Jv2 Jv2 Jsa2 

- f +(T})+(Suf)+ds- C _(T})-(5uj)-ds 

- f (.<r}jv})+(8uf)+ds - C (O\JV))-(buf)-ds (19) 

wherein the approximations V2 =* Vi; S l 2 =* S„i are used and v) is 
a unit normal to 2 i . Adding equations (18) and (19), the virtual work 
principle governing dynamic crack propagation between times ti and 
£2 can be written as 

f j ( 4 + a}j)8efj + p(uf + u})Suf - (Ff + F})8uf\dv 

= f (T} + Tf)dujds+ f + (Tl + T})+(&ut)+ds 

+ f _ (Tf + T})-(8u?)-ds + C (Tf + aljv})HSu?)+ds 

+ f (Tf + a}jp})-(Suf)-ds (20) 

1 It is noted that the element basis functions assumed in equations (2) and 
(3) satisfy only the traction-free conditions on the crack-face. It is, however, 
easy to accommodate nonzero traction conditions on the erack-face by intro­
ducing appropriate additional terms in equations (2) and (3). These additional 
terms are so chosen that they satisfy the nonzero crack-face traction conditions 
either exactly or in an average sense. 

In the finite-element development, the domain V2 can be considered 
to be broken into a singular element V2S surrounding the crack tip (see 
Fig. 1), and a number, N, of regular elements ViRn (n = 1 . . . N) (thus 
V2 = V2s + \ V2RnY, likewise S„2 = 2. Sff2fln. Also, as seen from Fig. 
1, 2J" = 2^i + 2 aiRn. Henceforth, for simplicity, we use symbols Vs, 
VRn, Sm, 2+, and 2 J „ instead of V2s, V2Rn, Sa2Rn, 2Ji, and 2 j n , 
respectively. We now restrict our attention to the Mode-I case only, 
i.e., when the applied loading is in a direction normal to the crack 
plane and is symmetric with respect to the crack plane for all times 
t. Thus, for the Mode-I case, using the previous notation, the virtual 
work equation as applicable to a system of finite elements may be 
written as 

f K4- + a}j)btl + p(uf + uj)duf - (Ff + F})Suf}dv 

- f (Tf + T})Sufds- C .(T? + Tl)+5u?+ds 

X. ( 4 + a}j) Stfj + p(uf + u})8uf - (Ff + F})Suf dv 

Jx: 
(Tf + Tj)+5u2i+ds 

f (Tf + <jj]V})+duf+ds = 0 (21) 

Assuming that crack-growth occurs between times ti and t2 (which 
can be determined by an appropriate criterion, in the so-called "ap­
plication" calculations using the given material dynamic fracture 
toughness as an input; or is known, a priori, in the so-called "gener­
ation phase," i.e., in the case of simulation of known crack-tip time 
history data), the singular element is translated, in the Mode-I case, 
along the original crack axis, by an appropriate distance A 2 from its 
location at time t\, as shown in Fig. 1. 

It is important to note that in the present procedure, this amount 
A 2 is not, in any way, related to the distance between any two adja­
cent finite-element nodes at time £1; as is the case with most common 
finite-element methods which use the node-release technique in the 
simulation of dynamic crack propagation. As can be seen from Fig. 
1, as the singular element is translated by A2 between t\ and £2, the 
nodal pattern of the surrounding regular elements also changes be­
tween £1 and £2. It is to this readjusted finite-element mesh at time 
£2 that the virtual work equation in equation (21) is understood to be 
applied. However, it is also noted that only the nodes of the elements 
immediately surrounding the singular element are readjusted due to 
crack-growth of amount A2 between £2 and £1. Thus one has to obtain 
data, such as displacements, velocities, and accelerations, at time t\, 
at the new nodes of the regular elements, which are indicated by solid 
circles in Fig. 1. This data can be determined, using elementary in­
terpolation techniques, from the known data, at time t\, at the "old" 
nodes at time £1, which are indicated by open circles in Fig. 1. The 
details of these interpolation techniques are omitted for simplicity 
and will be reported elsewhere. Thus one is in a position to know the 
relevant data at time £1, at new nodes and (hence new elements) 
corresponding to the mesh in £2; and to assume the appropriate basis 
functions for the relevant variables at time £2 for the mesh at time £2, 
as follows: 
Known at t\ for the Mesh a t £2 

In VRn: UI = Nqt; €1 = Bqi; a = |Bqi 

"1 = No,i; iii = Nqj 

InV s :ui = U1/S1; in = Ui/3i - u iU u / J i 

ui = ui(&i - 2u1yljfj81 + u?yUfjSi 

«l =.Sij3i; Oi=PiPi, T ^ R n S i 

Assumed at Time £2 for the Mesh a t Time t2 

In VRn: u2 = Nq2; €2 = §q2; (72 = EBq2 

"2 = Nq2; ii2 = Nq2 

(22-24) 

(25, 26) 

(27, 28) 

(29) 

' (30-32) 

(33-35) 

(36, 37) 
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In Vs: u2 = U2/82; »2 = U2/32 - u2y2>f/32 (38,40) 

u2 = U2h ~ 2u2yz,£i&2 + uly2,H/32 (41) 

e2 = §2/32; <r2 = P2/32; T2 = R2/82 (42-44) 

where the familiar vector representations for displacements, strains, 
stresses, and tractions, are employed as u, 6, a and T, respectively. Also, 
Vi and v2 are velocities of the crack-tip at times £1 and t% respectively, 
and the eigenfunctions \i\ and U2 depend on v\ and u2, respec­
tively. 

Using' equations (22)-(44) in equation (21), the finite-element 
equations, for arbitrary variations 8q2 and 5/32 can be written, as 
shown in Appendix B, as 

Kq2 + mq2 = 0 2 + Qi - KQi - 1"ii for Vnn in V2- Vs 

(45) 

K^qs2 + Djqs2 + m%2 = Q*s for Vs (46) 

where K, m, Q2, Qi, K*, D*, and m* are defined in Appendix B, from 
which it can be seen that the metrices K* and D* are, unfortunately, 
unsymmetric, while the others are all symmetric. In equation (45), 
q2 and q2 are displacements and accelerations at t2 at nodes every­
where in and at the boundary of the region (V2 - Vs); whereas, qs2, 
qS2, and qs2 are displacements, velocities, and accelerations at t2 at 
nodes along the boundary dVs of the singular element. When equa­
tions (45), (46) are assembled, it can be seen that the resulting global 
"stiffness" and "damping" (which, however, is not a physical damping 
term) matrices have only a "small" degree of unsymmetry, confined 
to those rows and columns corresponding to nodes around the singular 
element. We can use the common time-integration schemes to inte­
grate equations (45)-(46). In particular, we use the Newmark's 
method which can be characterized by the approximations 

q2 = Ci(q2 - qi) - C2qi - C3qi (47) 

q2 = C„(q2 - qi) - C5qi - C6qi (48) 

where 

d = (8/yAt); C2 = (8/y) - 1; C s = ( y ) [(5/7) - 2] 

C4 = l /7(At)2 ; C6 = 1/(7At); C6 = (V27) - 1 (49) 

where, in the present calculations, 7 = V4, 8 = V2 are used. With the 
difference approximations in equations (47), (48), and similar ones 
for qs2 and qs2, we reduce equations (45), (46) to 

Kq2 = Q for V2 - Vs (50) 

K,qs2 = Q» for Vs (51) 

K = K + C4m (52) 

where 

Q = Q2 + Qi - Kqi - mqi + m(C4qi + C5qi + C6qx) (53) 

Ks = K̂  + C4m* + CiD* (54) 

Qs = Q* + m* (C4qsi + C5qsl + Ceqsi) 

+ DjCdcfc! + C2q.,i + C3qsi) (55) 

where K is symmetric; however, Ks is unsymmetric. When equations 
(50), (51) are assembled, we obtain, the final algebraic equations 

[K*]|q2| = |Q*) (56) 

where the stiffness matrix in equation (56) is, in general, unsymmetric, 
but the unsymmetry is confined mainly to the rows and columns 
corresponding to nodes around Vs- A rather simple technique of it­
erative solution of the foregoing equation, based on the decomposition 
of the stiffness matrix into symmetric and skew-symmetric parts, as 
below, was used. 

y2[K* + K'T]\q2'P\ = |.Q*| - V2[K* - K*T)\q2*lP-V} (57) 

Journal of Applied Mechanics 

Fig. 2 Schematic representation of crack growth in a typical problem: 
constant crack velocity v - 1000 m/s; At = 0.2 fis; A 2 = 0.2 mm; the mesh 
of regular elements around the singular element is readjusted at t = 2.0 
/is 

for any pth-iteration. In all the solutions obtained, only two iterations 
were found to adequate. Once q2 is computed from equation (56), the 
solution for time t2 + Ai can be repeated, with the approximations 
for the initial values q2 and q2 as 

0,2 = C4[q2 - q j - Csq\ - C6cji (58) 

q2 = ql + C7q*! + C8q2 (59) 

where C4, C5, Cg are defined earlier, and C^ = At (1 — 5); and Cs = <SAt 
(where a value of 8 = V2 is used presently). 

Once the nodal displacements q2 (and hence the corresponding 
displacements at the nodes of the singular element), at time t2, are 
computed from equation (57), the unknown parameters /3 (and hence 
the dynamic stress-intensity factor j3i) in the singular element can 
be computed from equation (11). 

Using equations (58) and (59) as initial data, the time-integration 
between the time steps t2 and t$ (t2 + At) can be carried out and, thus 
the process can be repeated for all subsequent time intervals. The 
successive growth of the crack, for a representative problem is sche­
matically illustrated in Fig. 2. 

From the example given in Fig. 2, it is seen that the singular element 
(A) remains its shape at all times but the regular elements (B) in the 
"immediate surrounding" of the singular element continually distort. 
However, in the previous example, at t = 2.0 jxsec, elements B have 
distorted sufficiently so that the use of isoparametric approximations 
in these elements may introduce spurious numerical errors. For this 

SEPTEMBER 1980, VOL. 47 / S73 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



reason, as typified by the foregoing example, at t = 2.0 fis, the regular 
elements B are readjusted as shown in Fig. 2. This involves a simple 
reinterpolation of data, in "B"-type elements from t = 2.0 — 0 [is to 
t = 2.0 + 0 fis, the details of which are omitted for brevity. Finite-
element calculations detailed earlier can be repeated for the read­
justed mesh at t = 2.0 + 0 /is until the B-type elements become so 
distorted that another readjustment may be warranted. These mesh 
readjustments were found to be easy to accomplish in the computef 
coding based on the present approach. 

Finally, it may be of interest to note that in the present singular 
element, 19 eigenfunctions2 for a propagating crack (see Appendix 
A) were used along with a rigid body translation mode in xi-direction; 
whereas, there are 18 degrees of freedom along the boundary ps of the 
singular element. The regular elements were of the common 8-noded 
isoparametric type. 

It should be remarked that the problems dealt with in the present 
paper are limited to the case of determining the stress-intensity factor 
at the crack-tip which is propagating with a prescribed velocity-time 
history. Thus the presently treated problem may be considered to fall 
in the category of "generation phase calculations" in the sense defined 
in [5]. The present procedure may be used to simulate the experi­
mentally determined crack-velocity-time history in test specimens, 
such as the double-cantilever-beam (DCB) specimen [11], to deter­
mine the velocity-dependent dynamic fracture toughness. Using this 
as input data, the problem of determining the crack-tip motion in 
plane elastic bodies subject to Mode-I-type dynamic transient loading 
may be treated. This second phase of research, which is the so-called 
"application phase" in the sense defined in [5], is currently being 
completed, and will be the basis of a forthcoming paper. 

Finally, we wish to note that once the basic features of the procedure 
based on the present moving singular element, with embedded 
propagating-crack eigenfunctions, are well understood, the numerical 
procedure can be further simplified. This can be accomplished, for 
instance, by using the well-known distorted isoparametric elements 
(the so-called "quarter-point elements") [12] in place of the present 
singular element. Even though the results from the use of a quarter-
point element are not expected to be as accurate as from the use of 
the present singular element; such results, with a suitable calibration, 
may be used in analyzing large-scale fast fracture in practical situa­
tions. The results from the use of a quarter-point element, and their 
comparison with those reported in Part 2 of this paper (using the 
present singular element), will be reported on shortly. Also, since it 
is known [10] that the eigenfunctions for a crack propagating at con­
stant velocity differ significantly in their behavior from those for 
stationary crack only at very high speeds (u c^ Cs) of propagation, the 
present procedure can be simplified, for practical purposes, by using 
the stationary-crack eigenfunctions in the singular element. The re­
sults from this modification, are also to be reported shortly. 

Closure 
In this paper we have presented a new translating-singularity fi­

nite-element procedure, wherein use is made of analytical eigen­
functions for a two-dimensional crack whose tip propagates at a 
constant velocity. The procedure is capable of modeling large-scale 
fast crack propagation in finite two-dimensional bodies of arbitrary 
shape. However, the type of problems considered is limited to the case 
of determining the dynamic stress-intensity factor at the crack-tip 
which is propagating with a prescribed velocity-time history. 

Implementation of the present approach and numerical example 
are discussed in an accompanying Part 2 of the paper. 

2 The number of eigenfunctions plus the number of rigid modes must be 
greater than or equal to the number of degrees of freedom at the boundary. A 
study of the effect of the number of eigenfunctions used, on the results was 
conducted, by varying this number from 17-25. The results varied only insig­
nificantly (i.e., less than 0.4 percent), and the number of eigenfunctions was 
chosen to be 19 in all subsequent computations. 

A c k n o w l e d g m e n t s 
This work was supported by the Office of Naval Research under 

Contract No. N00014-78-0636 with the Georgia Institute of Tech­
nology (GIT) and by supplemental funds from G.I.T. The authors 
thank Dr. N. Perrone for his timely encouragement. Thanks are also 
expressed to Mrs. T. Rapp for her able typing of this manuscript. 

References 
I Freund, L. B., "Dynamic Crack Propagation," The Mechanics of Fracture 

Erdogan, F. ed., ASME-AMD Vol. 19, ASME, New York, 1976, pp. 105-134. 
2 Freund, L. B., "Crack Propagation in an Elastic Solid Subjected to 

General Loading—I. Constant Rate of Extension," Journal of the Mechanics 
and Physics of Solids, Vol.. 20,1972, pp. 129-140. 

3 Freund, L. B., "Crack Propagation in an Elastic Solid Subjected to 
General Loading—II. Nonuniform Rate of Extension," Journal of the Me­
chanics and Physics of Solids, Vol. 21,1972, pp. 141-152. 

4 Freund, L. B., "Crack Propagation in an Elastic Solid Subjected to 
General Loading—III. Stress Wave Loading," Journal of the Mechanics and 
Physics of Solids, Vol. 21, 1973, pp. 47-61. 

5 Kanninen, M. F., "A Critical Appraisal of Solution Techniques in Dy­
namic Fracture Mechanics," Numerical Methods in Fracture Mechanics, 
Luxmore, A. R., and Owen, D. R. J., eds., Proceedings of a Conference, held at 
Swansea, United Kingdom, Jan. 1978, pp. 612-634. 

6 Bazant, Z. P., Glazik, J. L., and Achenbach, J. D., "Elastodynamic Fields 
Near Running Cracks by Finite Element," Computer and Structures, Vol. 8, 
1978, pp. 193-198. 

7 Aoki, S., et al., "Elastodynamic Analysis of Crack by Finite-Element 
Method Using Singular Element," International Journal of Fracture, Vol. 14, 
No. 11,1978, pp. 59-68. 

8 King, W. W., and Malluck, J. F., "Toward a Singular Element for 
Propagating Cracks," International Journal of Fracture, Vol. 14, 1978, pp. 
R7-R11. 

9 Rice, J. R., "Mathematical Analysis in the Mechanics of Fracture," 
Fracture, Vol. II, Liebowitz, H., ed., Academic Press, 1968, pp. 192-308. 

10 Malluck, J. F., "Crack Propagation in Finite Bodies," PhD Thesis, 
Georgia Institute of Technology, 1976. 

II Kalthoff, J. F., Beinert, J., and Winkler, S., "Measurements of Dynamic 
Stress-Intensity Factors for Fast Running and Arresting Cracks in Double 
Cantilever-Beam Specimens," Fast Fracture and Crack Arrest, ASTM STP 
627, Hahn, G. T., and Kanninen, M. F., eds. American Society for Testing and 
Materials, 1977, pp. 161-176. 

12 Gallagher, R. H., "A Review of Finite-Element Techniques in Fracture 
Mechanics," Numerical Methods in Fracture Mechanics, Owen, D. R. J., and 
Luxmore, A. R., eds. Proceedings of a Conference, held at Swansea, United 
Kingdom, Jan. 1978. 

APPENDIX A 
Details of basis functions for the singular element, for the Mode-I 

case, are given here. The eigenfunctions given here are solutions to 
the following equations for wave potentials $ and >f: 

d 2 $ d 2 $ 
[ l - ( u / C d ) 2 ] — + — = 0 (60) 

with a similar equation for ^ when Cd is replaced by Cs. For any 
nonzero, constant, speed of propagation, the eigenfunctions can be 
derived to be 

" l = L <Anfin; ui = E " L A i ; o-„0 = E o-„0n0re; a, |3 = 1, 2 
n n n 

(61-63) 
where 

u'u = -F(as, ad)[(n/2) + l]jr? / 2 cos (ndj2) 

-(1/2te(«)/'§ / 2cos( r e02/2)) (64) 

u\n = ~ F(as, ad)[(n/2) + l ] | - a d r ? / 2 sin (n<V2) 

+ (V2)[g(n)/a sK
/ 2 sin (n02/2)) (65) 

°-ii„ = F(as, ad)(n/2)[(n/2) + l]\(2ad - a 2 + l)ri\M2)-i] 

X cos [((n/2) - 1)0J - g(n)r^nl2)-^ cos [((re/2) - 1)02]| (66) 

o"22„ = F(as, ad)(n/2)[(n/2) + 1] | - (1 + a 2 ) / - ^ 2 ' - 1 ! 

X cos [((n/2) - l)0i] + g(n)r2WV-V cos [((n/2) - 1)02]| (67) 
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<ri2n = F(as, ad)(n/2)[(n/2) + l]{-2«dr1K«/2)-i] 

X sin [((n/2) - l)flj + (%)[(! + a?)/«.]g(n)r2KB/2>-« 
X sin [((n/2) - 1)02] (68) 

where X, fi are the Lame constants; C<i and Cs, respectively, the dila-
tational and shear wave speeds Cd = [(X + 2p)/p]1/2; Cs = (n/p)112; and 
the various parameters in the foregoing are defined as 

i),(dv (85) 

(86) 

«S = [1 " 

F(ad, as) 

(v/Cd)
2}; a2 = [1 - (u/Cs)

2] 

4 (1 + a 2 ) 

~ 3(27r)1« 4 a s a d - (1 + a 2 ) 2 

g(n) = (4adas)/(l + «2) when ra is odd 

= [1 + a 2] when ra is even 

rie'"1 = £ + JadX2 

r2e'82 = £ + iasX2 

(69) 

(70) 

(71). 

(72) 

(73) 

D5l = -2pu i f U^U 

QS2= f U ^ d u - f l u J ^ d s 

Qsi = f ulFxdu + f u j f ids 

Now, the conditions of "least-squares" matching of displacements, 
velocities, and accelerations between the singular element and the 
surrounding regular elements, i.e., equations (11)—(13) are used to 
express (82, |82, and $2 in terms of the respective values q„2, qs2, fls2 at 
nodes along the boundary of Vs. Thus 

Pi = Aiqsi; Pi = Aiqsi + Biq„i; 

Pi = Axqsi + 21x4,1 + Ciqsi 

Pi = A2qS2l Pi = A2qS2 + f2qs2; 

P2 = A2qs2 + 2B2qs2 + C2qs2 

(87) 

(88) 

when v = 0, the aforementioned functions can be reduced to the usual 
Williams' [22] eigenfunctions. 

It is interesting to note that the stress field cr^x^) [a, /3, JX = 1, 2], 
should in general case, satisfy the equations 

We note that (Ai, §1, and Ci) and (A2, | 2 and C2) are dependent on 
velocities of crack propagation i>i and u2, respectively. When equations 
(87), (88) are used, equation (76) can be rewritten as 

d2ua d2ua d2ua\ 
2v h uz p 

dt 2 d£d£ d£ 2 / 

(74) 

0 = E I ( q 2
T K T + q 2 r m T - Q 2 r + q r K T + q r m T - Q D 5 q 2 ! 

n 

+ [<fi&7 + qj2 °7 + $WsT ~ Q»T]Sq»2 

However, it can be seen that the special eigenfunctions given in 
(66)-(68), corresponding to the solution of equation (60), satisfy only 
the equations 

,d2u« 

where 

<r«M~P»2^=0 (75) 

for all values of v; thus, when u = 0, the correspondingly reduced ei­
genfunctions in equations (66)-(68), which coincide with the well-
known Williams' eigenfunction, needless to say, satisfy the static 
equations of equilibrium, aa0,0 = 0. 

APPENDIX B 

Details of Finite-Element Equation Development for 
Dynamically Propagating Cracks 

Upon substitution of equations (22)-(44), into (21), we obtain 

0 = E l [ ( q j K T + q 2 > T ~ Q2
T+ qf K T + q T m T ~ aD]5q2) 

n 

+ 0£KT* + PTPJ2 + PW* - Q£ + PMI 

+ PMi + PT?>Ii-QTim (76) 

K.: = [Alks2A2 + A^D^Bz + A^aQa] 

Q's = [A2
rDs2A2 + 2A2

Tms2B2] 

m» = A2
rm s2A2 

Q* = AJR-Ksi/Si - Dslpi - mslp! + Qs2 + Qsl) 

(89) 

(90) 

(91) 

(92) 

(93) 

From equations (89), equations (45), (46) were derived. It can now be 
seen that both the singular-element matrices K* and D* are unsym-
metric. The "damping" matrix D* is a result of the fact that the total 
accelerations of a material point in the singular element depend on 
P2. 

It may be of interst to note that in the evaluation of Ks2 of equation 
(81), the integrand will have a singularity of the type (1/n) and (l/r2). 
Special numerical integration schemes to evaluate this domain inte­
gral of equation (81) directly, can be developed. Alternatively, one 
can use the observation that, by definition, from equations (21) and 
(76) 

xj Vs 

d2u2 
2 -iu2

a)dv 

where 

'v, d? 

Using the divergence theorem, equation (94) can be rewritten as 

(94) 

rNdu K= f BTDBdv; m = f pNTN 

Q2= f NTF2du + P NTT2ds 

Ql = f N^Fjrfu-f- f N^fxrfs 

JVRn ' JS,n " 

KS2= f S%P2dv + pv2
2 f U ^ U J X K 

Jvs Jv, 

Ksi = f Sfridv + pv\ f U^(Ui),Hdu 
JVs Jvs 

- f ŷ n 
J AX 

>"s2 = P I U2
rU2dL>; msi = p I U^Uxdu 

J Vs ~ ~ ~ Jv,~~ 

D.,2 = -2pu2 f y2"(y2),£du 

(77, 78) 

(79) 

(80) 

(81) 

ids (82) 

(83) 

Ji>V, 

+ Sv [~^JJ + p{u2)2 af*)dufdu (95) 

the second integral on the right-hand side of equation (95) vanishes 
due to the special property of the eigenfunctions embedded in the 
singular element, as explained in equation (75). Thus one can write 
alternatively, 

KS
T2 = , f B2U2 ds (96) 

wherein, the integrand is nonsingular along ps, and no special inte­
gration schemes are necessary. 

Likewise, it is seen that 

PM1W2 = fv ( 4 « 4 - + P(«] f &ul)du 

(84) - f <j};v}5ufds (97) 
J A2 
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once again, using the property, as given in equation (75), of the ei-
genfunctions a}j in V\, and using the divergence theorem, we write 

iSiKjiSfo = f <rh v)5ufds - C ahvj&ufds (98) 

It can easily be seen that the foregoing equation can be simplified 
to 

^ K J i a f c • J a}jv)bufds (99) 

The aforementioned simplification is possible because dVs = ps + 2 i 
+ A 2 + Su 2, where ps is the interface of the singular element with 
surrounding regular elements, and 2 j is assumed, without loss of 
generality, to be free of any applied tractions at all times, and Su2 is 
the ligament ahead of the crack-tip (along Xi-axis) in the singular 
element, where, for Mode-I problems, T\ = 0, and u\ = 0. The 
boundary integration as indicated by equation (99) to evaluate Ksi 
may be more convenient than to directly apply equations (97) or 
(98). 
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Numerical Modeling of Dynamic 
Crack Propagation in Finite Bodies, 
by loving Singular Elements 
Part 2: Results 
Using the moving-singularity finite-element method described in Part 1 of this paper, sev­
eral problems of dynamic crack propagation in finite bodies have been analyzed. Discus­
sions of the effects of wave interactions on the dynamic stress-intensity factors are pre­
sented. The obtained numerical results are compared with the corresponding infinite do­
main solutions and other available numerical solutions for finite domains. 

Introduction 
In Part 1 of the present paper [1], a "moving singular-element" 

procedure has been presented for the dynamic analysis of problems 
of fast crack propagation in arbitrarily shaped finite bodies with linear 
elastic material behavior. In this procedure a singular-element, within 
which a large number of analytical eigenfunctions corresponding to 
a propagating crack are used as basis functions for displacements, may 
be translated by an arbitrary amount A2 in each time increment At 
of the numerical time-integration procedure. The moving singular-
element, within which the crack-tip has always a fixed location, retains 
its shape at all times, while the mesh of "regular" (isoparametric) fi­
nite elements, surrounding the moving singular element, deforms 
accordingly. An energy-consistent variational statement was devel­
oped, as a basis for the foregoing moving singularity finite-element 
method of dynamic crack propagation analysis. It has been shown [1] 
that the present procedure leads to a direct evaluation of the dynamic 
stress-intensity factors. 

In the present Part 2 of the paper several numerical studies of 
stationary as well as propagating cracks in finite bodies, are presented. 
These studies, in general, fall into the category of linear elastic dy­
namic fracture mechanics. These studies, in addition to illustrating 
the efficiency and accuracy of the present procedure, also shed light 
on the effects of stress-wave interactions on the stress-intensity factors 
for dynamically propagating cracks in finite bodies. 

The presently considered examples include: 
1 Static extension of a central crack in a panel from a nonzero 

initial length. 
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2 Self-similar, constant-velocity, propagation from a finite initial 
length of a central crack in a finite plane body subject to an uniform, 
time-independent, tensile stresses (normal to crack-axis) at the edges 
(which problem, is analogous to that treated by Broberg [2], and Rose 
[3,4]). 

3 A stationary central crack in a finite plane body subject, at its 
edges, to a Mode-I type uniformly distributed stress with a Heaviside 
step-function time-dependence (analogous to the problems of Baker 
[5], Sih, Embley, and Ravera [6], and Thau and Lu [7]). 

4 A problem similar to that in Example 3 except that the crack-
tips remain stationary until a time t0, where upon they start propa­
gating at a constant speed (analogous to the problems studied by 
Freund [8]). 

5 Constant-velocity propagation of an edge-crack in a panel, with 
the direction of propagation being parallel to the panel-edges on which 
uniform displacements, normal to the edges, are prescribed (analogous 
to the problem treated by Nilsson [9]). All the references [2-8] deal 
with unbounded bodies, except [9] which deals with a finite height, 
but infinite width strip. Thus the presently obtained results for finite 
bodies are compared with those in [2-9] and the effects of finiteness 
of the domains are discussed. Comparisons of the present results with 
the numerical results of other investigators, where available, are also 
presented and discussed. 

In the following we present results for each of the problems just 
cited. 

1 Static Crack Extension. To test the accuracy of the present 
method of "moving singular-elements," first a static problem of a 
central-cracked square panel [2L (length) = 2W (width)], subjected 
to uniform tension at edges parallel to the crack axis, was solved to 
obtain the static stress-intensity factor as a function of the current 
crack length, 2 . Thus, in the finite-element development given in Part 
1 of this paper [1], velocity and acceleration effects were ignored. The 
eigenfunctions embedded in the singular-element reduce, when v = 
0, to the well-known Williams' eigenfunctions as shown in Appendix 
A of [1]. Starting from an initial crack length value of 2n = 0.2 W, the 
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Fig. 1 Calculation of static K, factors in a center-cracked tension specimen 
by the present "moving-singularity" method: AX = 0.005; ( t ) indicates the 
current crack length when the regular element are readjusted as shown in 
Fig. 2 of [1] 
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Fig. 2 Normalized dynamic stress-intensity factor for a crack starting from 
a finite initial length and propagating with constant velocity, v/Cs = 0.2 
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Fig. 4 Normalized dynamic stress-intensity factors for the cases (v/Cs) = 
0.6 and 0.8 

singularity element was successively translated (in Mode-I growth 
sense), statically (with v = 0) in increments of A 2 = 0.005W until a 
final value of crack length 2 = 0.5 W is reached. During the previous 
series of calculations, the externally applied uniform tension was held 
constant. At each current crack-length level, the stress-intensity factor 
is computed directly as an unknown from the finite-element equa­
tions, as described in [1]. From the normalized stress-intensity factor 
solutions shown in Fig. 1, it is seen that the present results agree ex­
cellently with those reported by Isida [10]. The normalized results 
shown in Fig. 1 may be viewed as correction factors for static stress-
intensities, due to the finite size of the panel. 

We note that the symbols (|) in Fig. 1, as well as in all the subse­
quent figures, denote the current crack length (2/W) where the reg­
ular elements surrounding the moving crack-element were readjusted 
as described in Fig. 2 of [1]. 

2 Self-Similar, Constant Velocity, Crack-Propagation From 
a Finite Initial Length. The problem is that of a centrally cracked 
square panel (L = W = 40mm) with properties: JX (shear modulus) = 
2.94 X 1010 N/m2; v (Poisson's ratio) = 0.286; p (mass density) = 2.45 
X 103 Kg/m3. A time-independent tensile stress was assumed to be 
acting at the edges of the specimen parralel to the crack-axis. The 
crack is assumed to open from an initial length (2o/WO = 0.2 and to 
grow symmetrically with a constant velocity, v. This problem may be 
considered to be similar to that treated by Broberg [2] except that 
Broberg treated an infinite body with a crack which opens from a zero 
initial length. The problem was analyzed for four different values of 
v, namely, (v/Cs) = 0.2,0.4,0.6, and 0.8, respectively, where the shear 

wave speed for the present problem is Cs = 3.4641 X 106 mm/sec. The ' 
dilatational and surface (Rayleigh) wave speeds, Ca and CR, respec­
tively, are such that (Cd/Cs) = 1.8266, and (CR/CS) = 0.9238. 

In all the four considered cases of (v/Cs) ratio, the increment of 
crack growth in each step, A2 , was kept the same, at the value: 
(A2/W0 = 0.005. Thus, in each of the considered (v/Cs) cases, the time 
integration step, At, changes according as: [(u-At)/W] = 0.005. The 
finite-element mesh used, at the initial crack length in each of the four 
cases, is shown in the inset of Fig. 3. In this figure, as well as in Figs. 
1, 4, and 9, the singular-element near the crack-tip is identified by 
hatched markings. 

As noted in the review article by Rose [3], the dynamic stress-in­
tensity factor K may be expressed as the product of a velocity factor 
k(u) and a static factor K*; thus 

K = k(u)K* (1) 

The "static factor" K* depends on the current length of the crack, the 
applied load, the history of crack extension, but not on the instanta­
neous crack speed. As also discussed in [3], K* is, in general, not equal 
to the static stress-intensity factor, Ks, for a stationary crack of the 
same length as the moving crack. The analytical expression for K*" 
(in an infinite body subjected to uniform stress normal to the crack 
axis), as a function of the current crack length is given by Eshelby [11] 
and in [3], as 

K*~ = (2/ir)1'2 CZ ayy (x) /(2 - x)1'2 dx ' (2) 

where 

ayy(x) = a | * | / U 2 - 2o2)1/2; |x | > 2 0 (3) 
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Fig. 5 Crack-face displacements at various time-instants, for a crack 
propagating at constant velocity, (v/Cs) = 0.4 

In equations (2) and (3), a is the applied tensile stress at infinity, 22<j 
is the initial crack length, and x,y are Cartesian coordinates centered 
such that x = ± 2( t ) denote the current crack-tips and y is normal 
to crack-axis. Thus ayy (x) in equation (2) is the initial distribution 
of stress along the axis of the crack, prior to its propagation. Eshelby's 
results for the integral in equation (2) is 

K*~ = \<r(ir2o)m (2Ar) 1(2 + ®E- F}]/[1 + (£/2)] 1/2 (4) 

where £ = (2 — 2o)/2o; and E and F are the complete elliptic integrals 
of the 2nd and 1st kind, respectively, with the modulus [£/(2 + £)]1/2. 
On the other hand, the static-stress-intensity factor Ks ™ for a crack 
of length 22 in an infinite domain is 

k. <T(TT2) 1/2 (5) 

Thus, in general, K*"° < Ks~. It is also noted that the equation (4) for 
K*" is valid only until the time that disturbances from one crack-tip 
reach the other (moving) crack-tip. However, for the case of a crack 
growing self-similarly from a zero initial length (2o = 0) with a con­
stant velocity v, as in the problem studied by Broberg [2], disturbances 
from one crack-tip influence at all times the other movingcrack-tip 
if 2u < Cd, and K*° = Ks" at all times. 

The normalized dynamic stress-intensity factor solution for the 
present problem of a crack, in a finite square panel, propagating 
self-similarly at a constant velocity (v/Cs) = 0.2, is shown in Fig. 2. 
Note that the normalization is such that a value of unity represents 
the normalized stress-intensity factor Ks ™ for a crack of length 2 2 ( 2 
= 2o + vt) in an infinite solid with time-independent remote tension 
a. Also shown in Fig. (2) are 

1 The finite-size correction factor F = Ksf/a(ir'S)112 for the static 
stress-intensity factor Kj in the present finite domain. 

2 The normalized static factor K*c°/<r(Tr2)1/2, as calculated from 
equation (4). 

3 The velocity factor k{v) for (v/Cs) = 0.2, as given by Broberg 
[2]. The effect of the finiteness of the domain on K* may be accounted 
for, approximately, by including a finite-size correction factor in the 

initial stress-distribution at 2o, in equation (3). Thus it appears that 
one may write, approximately, that K*f = F(2o)K*". For the present 
case of (20/M/) = 0.2, the finite correction factor F(2o) = 1.055, as 
seen from Fig. 1. 

Also marked in Fig. 2 are several specific instants of time (or 
equivalently, the corresponding values of 2 ) with the notations: 

(a) Dc, Sc, and Rc are, respectively, the times taken by the dila-
tational, shear, and Rayleigh waves to traverse one crack-width. 

(b) DCDC (or RCRC) denotes Dc (or Rc) plus the time for the first 
rescattered dilatational (or Rayleigh) waves to travel one crack-
width. 

(c) DcDf (or ScSf) denotes the time taken for the dilatational (or 
shear) waves emanated by one crack-tip to be reflected by the nearest 
free-boundary and reinteract with the crack-tip in question. 
The foregoing times are calculated from the continuum relations for 
the respective wave speeds. However, it should be borne in mind that 
a "consistent-mass" representation is used in the present finite-ele­
ment method. 

For the case of (v/Cs) = 0.2, it is seen from Fig. 2 that the computed 
normalized dynamic stress-intensity factor correlates excellently with 
the values given by F(20)K*"/j(u)/o-(ir2)1/2 until roughly the time 
denoted by Rc. At longer times, i.e., at the times greater than Rc and 
DcDj, the computed normalized dynamic K\(t) appears to correlate 
excellently with the values given by [(iKsfk(v)/a(ir1i)1/2] where /3 is 
a constant. It is interesting to observe that, for the present problem, 
this constant /? appears to be equal to G(2RC)/F(2RC) where FCERC) 
is the finite correction factor in the static stress intensity for a crack 
of length equal to the current length, 2^C) in a dynamic problem, at 
which the event Rc (as defined earlier), occurs; whereas, G(J,RC) is 
likewise, the ratio [F(2o)K*°/(T(ir2)1/2] at 2 = 2 f l c . The event Rc 

is seen to occur at the time, t = (22o)/(Cfl — u), and thus 2fic = 2o + 
vt. Both t and (2RC/W) decrease as 2o decreases, for given CR and v. 
Thus, for smaller values of 2o (and/or smaller values of u), the ratios 
F(SRC), G(2RC), and hence /? tend to a value of unity. Thus, for cracks 
propagating from initial lengths such that (2o/ W) « 1, it appears that 
at the times greater than Rc and DcDf and/or after the crack has 
grown dynamically to a few times its initial length, the static factor 
K*f approaches the static-stress-intensity factor for the current crack 
length in the finite body, namely, Kj. 

In connection with the presently computed results shown in Fig. 
2, it should be noted that the crack velocity, v, was taken to be zero 
at the initial crack length 2o. It is assumed that the crack-tip accel­
erates to a velocity, (v/Cs) = 0.2, during the first time increment, At. 
The convergence of the present numerical results to the analytically 
predicted ones, at small times, t « Dc in the present case of (v/Cs) 
= 0.2, could have been studied by altering this time step At in which 
the crack-tip accelerates from (v/Cs) = 0 to (v/Cs) = 0.2. However, 
this was not attempted. 

The computed normalized dynamic stress-intensity factor solution 
for the case (u/Cs) = 0.4 is shown in Fig. 3, wherein the times Dc, Sc 

DcDf, and Rc, as defined earlier, are also marked. Once again, it is seen 
that until significant interaction of the waves from the other crack-tip 
and the free surface takes place (i.e., for time t < Rc or DcDf), the 
computed dynamic K-factor for the finite body correlates excellently 
with the value predicted by the approximate function: [K*fk{v)]. 

Finally, the results for the cases (v/Cs) = 0.6 and 0.8, respectively, 
are shown in Fig. 4, wherein only the times.!),,, and DeDf are also 
marked. The values of Rc and Sc are greater than the time for which 
the solution is obtained. Once again, it is seen that the computed 
dynamic K-factor correlates well with the approximate prediction, 
K*lk(v). Moreover, the convergence of the computed solution, to that 
analytically predicted, is slow, at these higher crack-speeds. A possible 
reason for this may be the initial conditions at 2o used in the present 
study, as explained earlier. 

The crack-mouth opening displacements at various instants of time 
(or equivalently, at corresponding crack-lengths), for the case of (v/Ca) 
= 0.4, are shown in Fig. 5. Also shown in Fig. 5 are the corresponding 
analytical results by Broberg [2], who considers constant velocity 
crack-propagation starting from a zero initial crack-length. An ex­
cellent correlation between the present results and those of [2] is 
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Fig. 7 Time-dependence of dynamic stress-intensity factor for a center-
cracked rectangular plate subject to a step-function normal stress; crack 
remains stationary until fo and then propagates with a constant velocity 

noted. A similar correlation was also noted for the other considered' 
cases of (u/Cs) ratio, but are not shown here. 

(3) Stress-Wave Loading of a Stationary Crack in a Finite 
Body. The problem is that of a rectangular panel [(W/L) = 2.6] with 
a centrally located crack of length (Xo/W) = (3/13). The material 
properties are taken to be: \x, (shear modulus) = 2.94 X 1010 N/m2; v 
= 0.286; and p = 2.45 X 103 kg/m3. Uniformly distributed uniaxial 
tensile stresses, with a Heaviside step-function time-dependence, were 
assumed to act at the edges of the panel parallel to the crack-axis. The 
crack is assumed to be stationary under the action of this time-de­
pendent loading. 

Due to symmetry, only a quadrant of the panel is modeled by finite 
elements, as shown in Fig. 6. Also marked in Fig. 6 are specific instants 
of time, calculated-by using continuum wave speeds, with the nota­
tions: 

(a) Dm is the time taken by the dilatational waves to travel the 
distance from the boundary, where time-dependent tractions are 
applied, to the crack-tip. 

(b) DmDc, DmSc and DmRc are, respectively, equal to Dm plus 
the time taken by the first scattered dilational, shear, and Raleigh 
waves to reach from one crack-tip to the other. 

(c) DmDcDc is equal to DmDc plus the time taken by the first 
rescattered dilatational wave to travel one crack-width. 

(d) DmDcDf is equal to Dm plus the time taken by the scattered 
longitudinal waves to travel from the crack-tip to the nearest free 
boundary surface and back to the same crack-tip. 

(e) DmDm is the time taken by the dilational waves to travel the 
length of the bar, reflect from the boundary surface on the opposite 
and return back to the crack-tip. 

(/) DmDmDc, DmDmSe and DmDmRc are, respectively, equal to 
DmDm plus the time for the rescattered dilatational, shear, and sur­
face waves to travel one crack-width. 

The presently computed normalized dynamic stress-intensity factor 
solution is shown in Fig. 6. Also shown in Fig. 6 are the analytical so­
lutions by Baker [5], Sih, Embley, and Ravera [6], for infinite domains, 
and the numerical solution by Aoki, et al. [12], for a finite domain 
identical to the one considered here. During the time interval Dm to 
DmDc, when no wave interaction takes place, the results for the 
present problem must agree with the results of Baker [5] and this can 
be seen to be the case with the present results. The solution at longer 
times is found to be in good agreement with that of Sih, et al. [6]. It 
is noted that the overshoot in the k -factor at the time instant DnRc 

in the present solution, as compared to the solution by Sih, et al. [6], 
is analogous to that in a recent solution by Kim [13]. It is also seen 
from Fig. 6, that the present solution is higher than that of Aoki, et 
al. [12], at all times. However, the solution of Aoki, et al., appears to 
be lower than that by Baker [5] even for times less than DmDc. 

Finally, it is of interest to note that even though the time for the 

longitudinal wave to arrive from the loaded boundary to the crack, 
as computed from continuum wave speeds, is Dm as marked in Fig. 
6, a nonzero stress intensity is observed at the crack-tip even at times 
lower than Dm in the finite-element solution. This is due to the in­
ertia-coupling that exists between the finite-element nodes (especially 
those of the singular-element) when a consistent mass-matrix, as in 
the present, is used. 

(4) Crack-Propagation at Constant Speed: Stress-Wave 
Loading. We consider the problem wherein the geometry, material 
properties and the time-dependent loading are all identical to those 
described under Case (Hi) in the foregoing. In this problem, the crack 
with an initial length of (X0/W) = 3/13 remains stationary until a time 
to = 4.4 fis and then propagates with a constant velocity u = 1000 
m/sec. The finite-element breakdown at the initial crack length, 2o, 
is identical to that in Fig. 6. In modeling the crack propagation, the 
regular elements are periodically readjusted as indicated in Fig. 2 of 
[1]. The instants of time (or equivalently the value of 2) at which these 
readjustments are done, are marked, by (f) in Fig. 7. 

Also marked in Fig. 7 are several specific instants of time, calculated 
by using continuum wave speeds, with the notations: 

(a) Dm is the time for the dilatational waves to travel from the 
boundary, where a Heaviside step function tension is applied, to the 
stationary crack-tip. 

(b) DmDc, DmSc and DmRc are, respectively, equal to Dm plus 
the time taken by the dilatational, shear, and surface waves first 
scattered by the stationary crack-tip to reach the other crack-tip. 

(e) Dc, Sc, Rc are, respectively, equal to to (when the crack-tips 
begin to propagate) plus the time taken by the dilatational, shear, and 
surface waves emanated by crack-tip at to to reach the other crack-
tip. 

(d) DmDm is the time taken by the longitudinal waves to travel 
the length of the panel to the opposite side and return to a (moving) 
crack-tip. 

(e) DcDm is the time taken for the dilatational waves emanating 
from a crack-tip at to travel to the nearest boundary (which in this 
case is the one where tractions are applied) and back to the same 
crack-tip. 

(/) DmDcDj is equal to Dm plus the time taken by the dilatational 
waves first scattered by the stationary crack-tip to travel to the nearest 
free-boundary and back to the same crack-tip, which is now propa­
gating. 

(g) DcDf is equal to t0 plus the time taken by the dilatational 
waves emanating from the crack-tip at to to travel to the nearest free 
boundary and back to the same crack-tip. 

The presently computed results for the dependence of the dynamic 
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Fig. 8 Crack-face profiles for a stationary as well as propagating crack at 
various times 

stress-intensity factor on time are indicated in Fig. 7, along with the 
comparison (analytical) results by Freund [8] and Baker [5], and the 
(numerical) results by Aoki, et al. [12]. As noted earlier, the correlation 
of the present stationary crack results with those of Baker [5], until 
wave interaction takes place, is excellent. In the case when the crack 
propagates suddenly at the time to (= 4.4 /ts in Fig. 7), the infinite 
domain results by Freund [8] are seen to correlate excellently with 
the present results, until significant interaction of waves emanating 
from one crack-tip with the other crack-tip takes place. It is noted that 
in [8] the crack-tip velocity is assumed to change from zero to "v" in 
zero time, whereas, in the present numerical study, this transition is 
assumed to take place over a finite time-step At. For a closer com­
parison with the results of [8], it would be interesting to vary the size 
of At over which the aforementioned transition occurs; but this is not 
pursued in the present study. It is seen that the comparison results 
by Aoki, et al. [12], are somewhat lower than those in [8] even until 
the time that the solution in [8] may be considered valid. Further, the 
results in [12] are higher than the present, after this time. 

The crack-face opening displacements at various time intervals for 
the propagating crack, as well as similar results at corresponding times 
for a stationary crack are shown in Fig. 8. It is interesting to note that 
at sufficient distances away from the propagating crack-tip, the 
crack-mouth opening displacements are nearly the same for the sta­
tionary as well as propagating cracks. 

(5) Constant Velocity Crack-Propagation in a Strip With 
Prescribed Boundary Displacements. The problem considered 
is that of the constant velocity propagation of an edge crack in a square 
sheet whose edges parrallel to the direction of crack-propagation are 
subject to uniform displacements Hi in the direction normal to that 
of crack-propagation. This problem is analogous to that treated by 
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Fig. 9 Dynamic stress-intensity factor for an edge cracked square sheet 
subject to constant normal displacement: (v/Cs) = 0.2 
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Fig. 10 Dynamic stress-Intensity factor for an edge cracked square sheet 
subject to constant normal displacement: (v!Cs) = 0.4 

Nilsson [9] who obtained an analytical solution for the steady-state 
stress-intensity factor for the constant velocity propagation of 
semi-infinite crack in a finite-height (normal to crack-axis), infi­
nite-width, strip. 

In the present problem the following geometry and material pa­
rameters are used: (2h/W) = 1.0 (see inset of Fig. 9), v = 0.286; n = 
2.94 X 1010 N/m2 , and p = 2.45 X 103 Kg/m3. The crack is assumed 
to start to propagate from an initial length of (2n/h) = 0.4. 

Three different cases of constant velocity propagation, (v/Cs) = 
0.2; 0.40, and 0.60, respectively, are considered. 

The results for the dynamic stress-intensity factor for the case. 
(v/Cs) = 0.2 are shown in Fig. 9 along with the analytical solutions by 
Nilsson [9], The results in Fig. 9 are normalized with respect to the 
plane-strain, static (u = 0) stress-intensity factor for the semi-infinite 
crack in a finite-height, infinite-width strip, namely, Ks °° = uyE/h^il 
— v2). Also shown in Fig. 9 are certain specific instants of time, with 
the notations: 

(a) DcDfi, ScSfi, are, respectively, the times taken by the dila-
tional, and shear waves, emanated by the moving crack-tip to be re­
flected from the nearest free-boundary and travel back to the crack-
tip. 

(6) DcDf2 is the time taken by the dilatational waves emanated 
from the crack-tip to be reflected by the second free-boundary (x = 
W) and travel back to the crack-tip. 

It is seen from Fig. 9 that, the correlation between the present and 
Nilsson's [9] results is excellent. It may be of interest to note that in 
an analysis using the "node-release" technique, Malluck and King 
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Fig. 11 Dynamic stress-intensity factor for an edge cracked square sheet 
subject to constant normal displacement: (v/Cs) = 0.6 

[14] found, for the case of (v/Cs) = 0.325, that their computed results 
for the energy-release rate for a similar problem were about 20% lower 
than that predicted by Nilsson [9], as steady-state conditions are 
reached. This may indicate the relative efficiency of the present nu­
merical method as compared to the familiar "node-release" tech­
niques. 

Finally the computed results for the cases (v/Cs) = 0.4 and 0.6 are 
shown in Figs. 10 and 11, respectively. The times noted in Figs. 10 and 
11 have the same meanings on those indicated in Fig. 9. From Figs. 
10 and 11 it is once again seen that the present results agree excellently 
with those in [9]. 

Closure 
The procedure of a moving singular element, within which a large 

number of eigenfunctions for a propagating crack are embedded, has 
been applied to study several problems of dynamic crack propagation 
in finite bodies. The numerical results have been found to correlate 
well with the available analytical solutions, for corresponding prob­
lems in infinite domains, during the time for which these analytical 
solutions may be considered as valid. The computed solutions beyond 
these times, and the knowledge of the times involved for wave-in­
teraction in finite bodies, indicate both qualitatively and quantita­
tively the effects of stress-wave interactions on dynamic stress-in­
tensity factors for cracks propagating in finite bodies. 

The use of the presented numerical procedure in the simulation of 
experimental data from dynamic fracture test specimens, as well as 

in predicting crack-propagation history in dynamically loaded cracked 
bodies, are the subjects of a forthcoming paper. 
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Asymptotic Ewaluation of a 
Combined Stress-Intensity Factor 
for a Pressurized Cylindrical Shell 
Containing a Longitudinal Crack 
Sanders' path-independent energy-release-rate integral I for a cracked shallow shell is 
used to compute the asymptotic form of the combined stress-intensity factor for a pressur­
ized elastically isotropic cylindrical shell containing a longitudinal crack. The combined 
stress-intensity factor is expressible in terms of the conventional stretching and bending 
stress-intensity factors and is a function of Poisson's ratio v and a dimensionless crack 
length X. When X is small the shell is nearly flat and when X is large the shell is very thin. 
Asymptotic formulas for I when X is small or large are obtained. A numerical solution for 
X = 0(1) is also obtained. 

Introduction 
Nicholson and Simmonds [1] have specialized Sanders' path-in­

dependent, energy-release-rate integral I [2] to an arbitrarily loaded 
elastically isotropic shallow shell containing a stress-free void. J can 
be interpreted physically as the flow of potential energy from the shell 
to the void (to create new surface area if the void expands). When the 
void is a crack one form of I is expressible in terms of the conventional 
bending and stretching stress-intensity factors, B and S, respectively. 
Another form reduces to an integral along the crack. Both forms of 
I are nondimensional and depend on Poisson's ratio v and the di­
mensionless crack length 

• (1 - i * ) 
1/4 

/Rh 

where c is the crack half length, h is the shell thickness, and R is the 
minimum radius of curvature. 

To interpret X we hold c fixed. Thus X « 1 implies the shell is nearly 
flat and X » 1 implies the shell is very thin. 

In [1] a bent cylindrical shell with a longitudinal crack was analyzed 
and a combined stress-intensity factor C(X, v) calculated for 0 < X 
< <». In this paper we will use the path-independent integral I to de­
termine C(X, v) for a pressurized cylindrical shell containing a finite 
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length crack. The ratio c/R is assumed small so that shallow shell 
theory applies. For symmetrical stress and displacement fields the 
combined stress-intensity factor is related to / and S and B by 

S2(X, v) 
7(X, v)/2ir = C2(X, v) = S2(X, v) + 

(3 + »)(1 - v) 
(1) 

Thus the determination of I yields C(X, v). 
Our analysis is split into three parts. First, for X « 1, a perturbation 

expansion in X is obtained for C. For moderate values of X, 0 < X 
< 40, we must turn to numerical methods. Finally, for X » 1, an as­
ymptotic solution is given. 

Sanders' Energy-Release-Rate Integral 
The derivation and nondimensionalization of I for linear shallow 

shells is contained in [1] and will not be repeated here. For a cylindrical 
shell of radius R under internal pressure p and containing a crack of 
length 2c, the nondimensional governing equations are 

NaM = 0 (2a) 

M „ w + 4\Hz,aPNaP + p) = 0, (2b) 

&uat0 + Uff,a) - i\2z,apw = (1 + v)Nap - v5a/)Ny7, (2c) 

Mag = - ( 1 - v)w,afi - vhapw,yy, (2d) 

Z,ll = 0, 2,12 = 0, Z,22 = 1. (3) 

where 

Since the governing equations are linear, the analysis of the cracked 
shell reduces to the analysis of the uncracked shell and the analysis 
of a shell with a crack subject to stresses that are equal and opposite 
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to those in the uncracked shell, the so-called residual problem. The 
nonzero stresses and displacements for the uncracked shell subject 
to internal pressure are 

W220 = 1, " i ° = -v, w° = - (4X2)-1 . (4) 

Thus, noting equations (45,) (46), (76)-(81) of [1], we obtain 

I = 2TTC2(X, V) = \ C [2u2+Xu2](x)dx, (5) 

where a dot denotes differentiation with respect to X and the brackets 
denote the jump across the crack of the enclosed quantity, i.e., 

[/](*) = lim \f(x, e) - f{x, -e)) as t — 0. 

T h e R e s i d u a l P r o b l e m 
The residual boundary-value problem is given by equations (2)-(3) 

with boundary conditions 

W22(*i,±0) = - 1 , | x i | < 1 (6a) 

N21(xu ± 0) = 0, | x i | < l (6b) 

w,2i(xu ± 0) + vw,u(xi, ± 0) = 0, \xi\ < 1 (6c) 

(2-v)w,ii2(xlt ± 0) + U),222Ul, ± 0) = 0, | x i | < l . (6d) 

Furthermore all stresses must vanish as r2 = xi2 + x2
2 -* °°. We have 

expressed the moment boundary conditions in terms of the midsur-
face normal displacement w. 

Equations (2), (3), and (6) can be reduced to singular integral 
equations using the results of [3]. Thus we obtain 

-C Hu(Xx - Xf)Fi(t;A, v)dt 

+ f fli2(Ax - Xt; v)F2(t;X, v)dt = - 1 , (7) 

f Hu(Xx - Xt; v)F1(t; X, u)dt 

+ ~f H22{Xx - Xt; v)F2(t; X, v)dt = 0, (8) 

where \x | < 1, f denotes the Cauchy principle value, 

Fi = £X1[Nn,2]dt, F2=-[w,12] (9) 

and the Hy are given by equations (63)-(65) of [1]. 

As pointed out in [1] the solutions of (5) and (6) have the form 

Fa(t; X, v) = (1 - t2)^Ga(f, X, v), 

\t\<l, X > 0 , a = 1,2, (10) 

where the G„ are continuous for te[—1,1]. 

I in T e r m s of the U n k n o w n i*\ 
For a cylindrical shell one can show that 

"1,12 = #11,2 + vN12,l, (11) 

J("l,2 + "2,1) = (1 + V)N12. (12) 

Evaluating the jump across the crack and using the boundary con­
ditions (6) yields 
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Fig. 1 Combined stress-intensity factor versus X 

K i ] = - §g
X1 [Nn,2]dt = -Ftixr, X, v). (17) 

f [u2](t)dt=- C t[u2A]dt= C tFl(t;X,v)dt (18) 

and (5) becomes 

I = ~f tf2Fi(t; X, v) + XFtlt; X, v))dt. (19) 

A p p r o x i m a t e S o l u t i o n s of t h e I n t e g r a l E q u a t i o n s 
The integral equations (7) and (8) need to be solved to determine 

/ . We obtain approximate solutions for the ranges X « 1,0 < X < 40, 
and X » 1. 

For X « 1 a perturbation solution may be obtained. Following the 
same procedure spelled out in detail in [3 or 4], we find that 

F1(x;X,v)--
Ax 

(1 - x2)1'2 

5 i r , n 
1 + — X2 + . 

16 

Hence 

C(X,JO = 1 + — X2 + . . . . 
16 

(20) 

(21) 

For X = 0(1) we have obtained numerical solutions for (7) and (8) 
by noting (10) and using the Lobatto-Chebyshev integration method 
of Theocaris and Ioakimidis [5]. The results for X up to 40 (a signifi­
cant improvement in the range of X over Copley and Sanders' nu­
merical solutions [6]) are shown in Fig. 1. There v = 0.3. 

For X » 1 Bradley has obtained an asymptotic solution to (7) and 
(8). The details may be found in [4]. The method used there is due to 
Latta and was also used in the analysis of a bent cylindrical shell [7]. 
From [4] 

Fi(x; X, v) ~SX 3 / 2 (1 - x2)V*[4x cos 6(x) 

- 2D sin 0(x)] as X — », (22) 

where 

[ui.id = [A/11,2], 

[m,2] + [u2,i] = 0. 

Differentiating (14) we obtain 

I"l,2l] + [«2,ll] = 0. 

Thus 

K i i ] = - [ N n . d -

Integrating (16) with respect to x\, we obtain 

(13) 

(14) 

(15) 

(16) 

8 \ /2( l + y/2) 

4 

7 

0(x) = - l n 
TV 

r 

1 + 

3 ^ ) 
1 + V'l + V% 

2W 

V l + %/2 
•2i/4 

In 
1-x 

1 + x 

To obtain the asymptotic form of / as X - • °° we replace Fi in (19) 
by the right-hand side of (22) and integrate. We find 

J ~ 20.7590X3'2. (23) 
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Thus, from (1), References 

C(X, v) ~ 1.8177 X3/4 as X —«>. (24) 

Fig. 1 is a graph of C(X, 0.3) and X-3/4C(X, 0.3) as determined from 
a numerical solution of the exact integral equations (7) and (8) and 
as determined from the small and large X asymptotic solutions (21) 
and (24). 

Conclusion 
We have used Sanders' path-independent energy-release rate in­

tegral, as derived for a cracked shallow shell by Nicholson and Sim-
monds [1], to compute the asymptotic behavior of a combined 
stress-intensity factor for a pressurized cylindrical shell containing 
a longitudinal crack. This result along with that of [1] extends (and 
completes) the work of Copley and Sanders[6]. 
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On the Influence of a Rigid Circular 
Inclusion on the Twisting and 
Shearing of a Shallow Spherical 
Shell1 

Known results for plates with rigid inclusions are complemented by explicit asymptotic 
solutions of the corresponding problems for sufficiently thin spherical shells. An impor­
tant element of the analysis is recognition of the fact that in addition to the distinction 
between interior, and edge zone solution contributions there is a significant distinction 
between near-field and far-field behavior of the interior solution, with the nature of this 
distinction depending on the nature of the boundary conditions which are prescribed. In 
the event that near-field behavior is of the membrane type and far-field behavior of the 
inextensional bending type, or vice versa, much higher stress concentrations occur than 
without such change in interior solution behavior. 

Introduction 
In what follows we complement a recent analysis of the effect of a 

small circular hole in a shallow spherical shell on the states of stress 
which without the hole would be states of uniform transverse twisting 
[3] or of uniform membrane shear [4], by a consideration of the related 
problems which are given upon assuming a rigid inclusion in place of 
the circular hole. We find, as before, that the solution of the problems 
as stated depends on the value of Possion's ratio and on the value of 
the dimensionless parameter a2/Rh; where a is the radius of the in­
clusion, R the radius of the shell, and h the wall thickness of the shell. 
When a^lRh = 0 the results for the two problems are well-known 
classical results of the theory of elastic plates. While our formulation 
shows the possibility of an explicit closed-form solution for all values 
oia2/Rh, as previously observed for the problem of the circular hole, 
we are limiting ourselves here to determine the solution for values of 
a2/Rh which are large enough to permit the application of an as­
ymptotic procedure. The essence of this procedure, for a class of 
thin-shell problems which include the present two problems, consists 
of the successive determination of interior and edge zone solution 
contributions [1, 2]. 

Our earlier work for the problem of the shell with circular hole led 
to results which it was easy to consider as reasonable for the problem 

1 Supported by the Office of Naval Research. 
Contributed by the Applied Mechanics Division for presentation at the 

Winter Annual Meeting, Chicago, 111., November 16-21,1980, of THE AMERI­
CAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until December 1,1980. Readers who need more 
time to prepare a discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
August, 1979; final revision, March, 1980. Paper No. 80-WA/APM-5. 

of transverse twisting, but which seemed somewhat paradoxical for 
the problem of the effect of the hole on the state of uniform membrane 
shear. It is one of the remarkable conclusions of the present analysis 
that an exactly opposite state of affairs prevails for the case of the shell 
with rigid circular inclusion. To wit, we now obtain a "reasonable" 
result for the membrane shear problem and a "paradoxical" result 
for the transverse twisting problem. 

A rationalization of the occurrence of paradoxical results as indi­
cated, which emerged in the course of the present analysis, is as fol­
lows. Our reasonable results are associated with interior solution 
contributions which are of the inextensional-bending type or of the 
membrane-theory type throughout the "interior" domain. Our par­
adoxical results are associated with interior solution contributions 
which change character, from inextensional-bending behavior in a 
far-field domain, to membrane-theory behavior in a near-field do­
main, or vice versa, because of a conflict between the effects of the 
boundary conditions at infinity and the effects of the boundary con­
ditions at the edge of the circular hole or inclusion. 

Differential Equations and Boundary Conditions 
The middle surface equation of the shallow spherical shell, with 

reference to base plane polar coordinates r and B, is given by z = H 
— r2/2R. The basic differential equations, for a uniform isotropic shell, 
are of the form 

RBV2\/2K - V2w = 0, RDV2V2w + V2K = 0. (1) 

In this, V2 = ( ),„. + r-\ ),r + r~2( ),„,,, D and 1/B are bending and 
stretching stiffness factors, and w and K are transverse displacement 
and Airy's stress function, respectively. 

In what follows, use is made of the relations 

Nrr =-r-^K,r + r~m,m, Nee = K,r (2) 
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and 

Mrr = —D[wirr + v(r 1W:r + r 2Wjo)], 

MOB = -D[r~lwtr + r~2w?0o + vw,rr], 
(3) 

for normal stress resultants and couples, and of the fact that the so­
lutions of (1) may be written in the form 

w = <l> + x, K=i/-RDV2x, (4) 

where <t> and \p are harmonic functions and x is subject to the equation 
V4X + X4x = 0 with X4 = 1/R2BD. 

We furthermore need to make use of expressions for tangential 
displacement components ur and uo which have earlier been shown 
[2] to be expressible, except for terms which do not arise for the 
problems considered in what follows, in the form 

ur = - ( 1 + v)BK_r - R'1 J 4>dr, 

u„ = - ( 1 + v)Br-lKi> + r f l - 1 J (S<t>,odr)r~2dr, 
(5) 

It is important to observe that equations (5) are derived subject to the 
restriction R < °° and that the transition to the corresponding ex­
pressions for the limiting case R = oo is of a subtle nature. 

The boundary conditions at infinity are for the problem of 
transverse twisting due to concentrated corner forces ± P 

Pr 2 sin 20 ljr n 
r — oo; w — , K — 0, (6) 

4(l-!/)D 

and for the problem of membrane shear 

r — oo; [0 — 0, K — -y2Sr2 sin 20. (7) 

The boundary conditions corresponding to a rigid insert of radius 
o are the four conditions 

W = W,r- u0 = 0. (8) 

Closed-Form Solutions 
We have, as for the corresponding two problems of the shell with 

a circular hole, as expressions for w and K, 

* = 
Pa2 sin 26» a2 

2(1 - i>WDB r 
C2-, 0 ) 

Pa2 sin 20/1 r2 a 
</> = —T: + CI-

2(l-v)D\2a2 r 
for transverse twisting, and 

VS a2 l\ r2 a2\ 

- Cl — sin 20, 1/ = -Sa2[ + c2 — sin 28, (10) 
D r2 \2a2 r2) 

for the problem of membrane shear, with the function x for these two 
cases being of the form 

Pa2 sin 29 

2(1 - v)D 
(03 ker2 Xr + C4 kei2 Xr) 

and 

•Sa2 (C3 ker2 Xr + C4 kei2 Xr) sin 28, 

(11) 

(12) 

respectively. 
Equations (9)-(12) are such that the boundary conditions at infinity 

are automatically satisfied, with the four remaining conditions for 
r = a serving to determine the values of the four constants of inte­
gration 

Associated with these solutions we have as reference values for 
stress couples and stress resultants 

Mrr(», br) = hP, AW«, V) = S, (13) 

and we are interested, in particular, in the values of stress-concen­
tration factors which are, for the problem of the rigid insert 

kb '• 

and 

Mrr(a, 

\P 

Nrr(a, 

w 

JTT) 

&m — 
hNrr(a, jw) 

SP 

6M„(q, |TT) 

hS 

(14) 

(15) 

Journal of Applied Mechanics 

respectively. For the present problems, just as for the corresponding 
problems of the shell with a circular hole, these stress-concentration 
factors depend on Poisson's ratio and on a shell parameter n = Xa 
which, for the case of a homogeneous shell, with D = Eh3112(1 — v2) 
and B = l/Eh, is of the form /t = V l 2 ( l - v2) al^/Rh . 

Known classical results for the values of km and h\, concern the case 
fi = 0 of a flat plate. The results for JX = 0 are 

kb = 2(1 - I/)"1, km = 0, 

for the problem of transverse (plate) twisting, and 

km = 8(3 - v)~\ kb = 0 

(16) 

(17) 

for the problem of membrane (plane stress) shearing. 
In what follows we complement these results for /i — 0 by asymp­

totic results, which apply when the parameter \t, is sufficiently large 
compared to unity, say larger than about ten, with the determination 
of results in the intermediate range depending on the evaluation of 
the exact solution, in accordance with equations (8)-(12). 

Asymptotic Solution 
The boundary conditions (8) are now written in the form 

4, + x = 0, <{>,r + x,r = 0, (18) 

- (1 + v)BRi/,r - X"4(V2x),r + S 4>dr = 0, (19) 

- ( 1 + v)BRr~^,e - X-4r-MV2
X),9 

+ r f (S<P,odr)r-2dr = 0, (20) 

for r = a. 
In order to derive an asymptotic solution for sufficiently large values 

of fi = Xa we take account of the order-of-magnitude relations 

</),r = 0{a-l<l>), S<t>dr = 0(a<l>), 0(XX), (21) 

and we consider that the first of the two relations in (18) implies that, 
necessarily, 

X = 0(0) . (22) 

A use of (21) and (22) in (19) and (20) indicates that the terms with 
X in these equations are of relative order JX~1 and jit-2, respectively, 
compared to the terms with </>. Accordingly, we may, for sufficiently 
large values of IM, omit these terms and have then that the interior 
solution contributions 4> and ^ may be determined from the abbre­
viated tangential displacement boundary conditions 

' S<kfidr 
(1 + ! / ) S ^ _ J j ^ = 0 ; ( 1 + i , ) B ^ _ r f J i ^ d r - 0 , (23) 

R r R J rl 

for r = a. 
Having 4> we subsequently determine x by means of two boundary 

conditions which follow from the transverse displacement conditions 
(18), upon consideration of (22) and (21), in the form 

X = - 0 , X,r = 0, (24) 
for r = a. 

Having 0, \p, and x we find stress resultants and couples from (2) 
and (3), in conjunction with (4) in the asymptotic form 

Nrr = ^ + ^ 

MT, 

•RD 

-D 

(V2X).r 
Nei 

• + v—'- + v—'-
r r 

i,rr-RD(W2x),r 

- + X,n 

Moo = -D 

In this it is consistent to use as expression for x> 

— + -*— + "<l>,rr + VX,, 
r r 

(25) 

(26) 

V2 § , . r - a\\ ^ r - a . . r - a 
X = R exp —A—— C3COS X —7=- + C4sm A V2 V2 

sin 28. (27) 

where k = —Pa2/2(1 — v)D for the problem of twisting, and k = 
Sa2\fW/D for the problem of shearing. 
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R e s u l t s for the P r o b l e m of T r a n s v e r s e T w i s t i n g 
An introduction of <f> and \p as given in (9) into the interior solution 

boundary conditions (23) reduces these to the form 

so that 

l + v 1 
2 — ^ c 2 + - - c i • 

ci = 0, 

•0, 
l + v 1 

2 + - + ci = 
p.2 6 

0, 

1 
e2 = - -

(28) 

(29) 
12 1 + v 

Therewith, the two edge zone solution boundary conditions (24) 
give 

c3 = cA- (30) 

and then 

</> = -
P a 2 sin 20 r2 

\ 4 ( l - f ) D « ! ' 

Pa2 sin 261 

* = ' 

4(1 - v)D 
exp — X 

V2 

P a V sin 20 a2 

2 4 ( l - i - 2 ) v / f l B r 2 ' 

r — a . r 
cos A — — + sin A 

(3D 

•JL\ 
V2 V2f 

(32) 

With (31) we obtain from equations (25) and (26) for the distribu­
tion of stress outside the edge zone, that is in the interior domain 

M„ -Moe' = iP sin 20, 

Nrr
l= -2VV = ' 

Pp.2 sin 26 a4 

(33) 

(34) 
4(1 - v2)y/DB rA 

Inside the edge zone these expressions are complemented by the 
contribution of the x-function, as given by (32). We limit ourselves 
here to the calculation of the edge values of resultants and couples at 
the most highly stressed location, that is for r = a and 6 = 7r/4. 

We find from (25) that except for terms of relative order Up, 

Nrr(a,iir) = Nrr'(a,iir), 

Neoia.lir) = vNrr'(a,br)-

(35) 

(36) 

Equation (26) gives for the edge values of Mrr and M$e, except for 
terms of relative order Up2, 

Mn 
TV 

a, ~ 
M 

4 1 + y 
Ms, 

P 
v — -

H* 

41 + v 
(37) 

We conclude from equations (33) and (34) that it is appropriate to 
distinguish two subdomains of the interior domain, which may be 
designated as the "far field" and the "near field." The far-field solu­
tion, which is valid when p « r2la2, is an inextensional bending so­
lution, while the near-field solution, which holds when r2/a2 « p, is 
a membrane solution, with the bending stresses in this near-field being 
small of relative order lip compared with the membrane stresses. 

Next, equations (35)-(37) indicate that in the edge zone membrane 
stresses and bending stresses are of one and the same order or mag­
nitude, with the membrane stresses retaining their order of magnitude 
in the passage across the edge zone and with the bending stresses 
decaying from their value for r = a to practically zero in the course 
of this passage. 

Equations (35) and (37), in conjunction with (14), give as asymptotic 
expressions for stress-concentration factors 

kb '• 
1 M km = -

p-
(38) 

2 1 + v ' "" V l 2 ( l - v2) 

Equation (38) indicates the remarkable fact that for large values of 
p the concentration of stress due to the rigid inset in the transversely 
twisted shell comes out to be much larger than the corresponding 
concentration for the analogous problem of the flat plate. 

Results for the Problem of Tangential Shearing 
We introduce <f> and \p as given in (10) into the boundary conditions 

(23) so as to obtain the relations 

(1 + v)(l - 2c2) + clri
2 = 0, (1 + v)(l + 2c2) + CILI2 = 0. (39) 

It follows from this that now 

d = - ( 1 + v)p2, c2 = 0. (40) 

The two boundary conditions (24) for x then give for the constants 
C3 and Ci in equation (27) 

c3 = c4 = (1 + v)p~2, (41) 

and therewith, altogether, 

<P = -Sa2 IB1 + va2 

sin 20, t-
1 

Sa2 — sin 20, (42) 

„ , IB 1 + v I r — a\l . r — a . . r - a\ . 
X-oa \ exp — cos A — — + sin A — — sin 20. 

M D ix2 V\ y/2)\ V2 V2l 
(43) 

We now find from equations (42), (25), and (26) as expressions for 
interior resultant and couple distributions 

N„ -Nee1 = S sin 20, 

Mrrl= -M0f,
i = eSVBD:-

(44) 

(45) 
ix-

Again, these expressions are complemented inside the edge zone 
by a x-Qontribution which is now given by (43). We limit ourselves 
again to a determination of resultants and couples for r = a and 0 = 
7r/4 and find now, except for terms which are small of higher order in 

Nrr(a,\K) = Nrr
l(a,\-K) (46) 

N00(a,\w) = vNrr
l(a,\^) 

Mrr(a,iir) = (1 + v)Sy/W 

Moo(a,hir) = v(l + v)Sy/W 

(47) 

(48) 

(49) 

It may be concluded from (44) and (45) that now there is no dis­
tinction between near-field and far-field behavior in the interior do­
main, with the entire interior solution contribution representing a 
membrane state, effectively. 

As concerns the edge zone state, membrane and bending stresses 
again come out to be of one and the same order of magnitude. Mem­
brane stresses retain their order of magnitude in the passage across 
the edge zone and bending stresses decay from their edge value to 
practically zero. 

Equations (46) and (48), in conjunction with (15), give as asymptotic 
expressions for stress-concentration factors 

1, kb ' 
/ 3 + 3e 

(50) 

with km and kb now both being of the same order of magnitude as the 
value of km for the corresponding problem of the flat plate. 
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Perturbation Analysis of Buckling of 
Circular Rings Under Nonuniform 
Normal Pressures 
Perturbation solutions are found for buckling of thin elastic circular rings under nonuni­
form pressures. The solution leads to the same results obtained before by numerical meth­
ods. Two cases of pressure distribution of the form p = poU + e cos 2m8) and p = p0[l + 
((cos 28 + v cos 48)] are considered. The analysis yields equations to determine the ring 
curvature at any angle and pressure. 

I n t r o d u c t i o n 
A problem of interest, as well as of practical application, is the 

nonlinear behavior of an elastic circular ring under nonuniform 
pressure. The loads are taken to be doubly symmetric and always 
remain normal to the ring. The applied pressure is assumed to be of 
the form 

p = p0[ l + 6/(0)], (1) 

where £ is a nonuniformity parameter, and f(6) is periodic and doubly 
symmetric. The ring is considered to be an inextensible elastica of 
constant stiffness EI, for which the curvature change is proportional 
to the applied bending moment. The governing equations for this 
problem are given by [1] 

d2U 1 

d82 2 

and 

••Po-
J_ f2 

47T Jo 
U3d6, 

(2) 

(3) 

where U - Rip is the ratio of the ring radius R before deformation and 
the radius of curvature p at the same arc length after deformation, 
p = pRs/EI is the nondimensional pressure parameter, and p~o is the 
average pressure parameter for the ring circumference. 

Seide and Jamjoom [1] carried out a numerical investigation of this 
nonlinear integro-differential equation for the particular case where 
f(8) = cos 28. Their numerical results are given by a set of curves which 
show the curvature ratio U at 8 = 0 and 8 = TT/2 versus po for various 
cases of the parameter e. They obtained also the deflected ring shapes 
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when ( = 0.0001 and ( = 1.0 for different values of the applied pressure 

Po-
In the present paper, a perturbation analysis of this problem is 

worked out. An asymptotic solution is obtained for the buckling shape 
as function of po and t. The perturbation method used here repro­
duces exactly the same results as the numerical solution given by Seide 
and Jamjoom [1]. The analysis and results will be presented for two 
cases of the nonuniformity distribution function f(6). In one case we 
take f(8) = cos 2m0, and the other f(8) = cos 28 + v cos Ad. 

A n a l y s i s W h e n f(6) = cos 2m0 
To seek a perturbation solution for equations (2) and (3), we assume 

the following expansions: 

U = 1 + rivi + r)2V2 + 7i3vs + ... (4) 

epo = i?Ai + r]2A2 + J)3A3 + . . . (5) 

where the A's are constants and the u's are functions of 8 which are 
periodic and doubly symmetric. Inserting these expansions (4) and 
(5) into equations (2) and (3) and equating different powers of i) to 
zero, one gets 

u"i + (Po + 1)^1 = Ai cos 2m9 (6) 

v\ + (po + l)i>2 = -(a- v\) + A2 cos 2m8 (7) 

1 3 
V3+ (po+ l)u3 = -f3 + 3y + -av1 

•v\ - 3uii>2 + A3 cos 2m8 (8) 

where 

l- C\\M, J8 = - C^B, 7 = f Cw*l6 (9) 
>ir J o 2TT JO 2TT JO •2ir Jo 

Equation (6) gives 

Ai = —4m2 + po + 1 (10) 
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v i •• cos 2mB (11) 

In equation (7), we require 1)2 to be orthogonal to v\, hence we must 
set 

and V2 will thus be 

U2 = 
3 cos 4m8 

4(16m2 - po - 1) 

(12) 

(13) 

From equation (8), the orthogonality condition of v$ to Vi and t>2 then 
leads to 

A3=-
3(16m2 - po - 4) 

(14) 
8(16m2 - po - 1) 

Here, it should be mentioned that further calculations indicate that 
there is no need to find V3. To account for the nonlinear term in 
equation (2), epo is calculated up to third order in r} and U is deter­
mined up to second order. Hence the solution is given by 

• 4 ) 
ep0= (-4m2 + p 0 + l)ij-

U = 1 + v cos 2m0 + ?f 

8 ( 1 6 m 2 - p 0 - l ) 

3 cos 4m8 

4(16ro2 - po - 1) 

T)° (15) 

(16) 

From these equations, one can find U at any angle 6 by setting first 
a value for po then solving the cubic equation (15) for r\. For the special 
case treated by Seide and Jamjoom [1], one has m = 1; and our results 
from equations (15) and (16) are 

3(12-
epo =- (Po - 3)?) -

U = 1 + 7/ cos 29 + tf-

Po) 3 

8(15 - po) V 

3 cos 46 

(17) 

(18) 
4 ( 1 5 - p o ) 

Here, it is worth mentioning that equations (17) and (18) reproduce 
exactly the curves given by Seide and Jamjoom [1] for U against po. 
For later discussion and comparison, we consider also the special case 
with m = 2, the results are 

3(60-
«Po = (Po - 15)?; -

U = 1 + i) cos 40 + ry 

8(63 - po) 

3 cos 8 

Po) , 
— if 

4 ( 6 3 - p o ) 

(19) 

(20) 

A n a l y s i s W h e n f(B) = cos 20 + v cos 40 
The analysis of the present case is quite similar to the preceding 

one. In equations (6)-(8), cos 2m8 is now replaced by cos 28 + v cos 
48 and this leads to the following results; 

vi = - -
4y 

3 w „ 3 
A2 = V A 3 = ~8 

3 / 64i>2*\ 
1 + - 1 + 

y\ yz 1 
vx 

v\ = cos 28 H cos 48 
y 

1 2v2x\ „ 2vx 
1 cos 48 + 

\ y 1 z 

v x 
cos 68 H cos 

yt 
18 

(21) 

(22) 

(23) 

where 

x = po - 3, y = po - 15, z = po - 35, t = p 0 - 63 
The solution is therefore given by 

3vx . 3 [_ 3 / 64v2x\' 
epo = XT) + !)'• 1 + - 1 + -

2y 81 y\ yz 
rj° 

U = 1 + r/vi + r/2i)2 

(24) 

(25) 

(26) 

R e s u l t s and D i s c u s s i o n 
The main results of this paper are equations (15) and (16) for/(0) 

= cos 2m8 and equations (25) and (26) for f(8) = cos 28 + v cos 48. We 
consider first the particular case when f(8) = cos 28 which was solved 
numerically be Seide and Jamjoom [1]. From equations (17) and (18), 

Fig. 1 Variation of ring curvature with applied pressure 
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Fig. 2 Variation of ring curvature with applied pressure 

we have plotted U at 0 = 0 versus p 0 in Fig. 1 for different values of 
6. By comparing this figure and Fig. 4(6) in reference [1], one finds that 
corresponding curves are identical even when e = 1. This is encour­
aging in favor of the perturbation method used here to deal with the 
type of problems as the present one. From Fig. 1, it is clear that uni­
form loading (e = 0) on the ring causes no deformation until po reaches 
the value p 0 = 3. On the other hand when e > 0, the ring deformation 
starts from the moment the load is applied and increases rapidly when 
Po is in the vicinity of the value po = 3. 

Now we consider another particular case when f(6) = cos 48. From 
equations (19) and (20), we plotted the curves of U versus po in Fig. 
2, and it is interesting to notice that these curves behave almost the 
same way as in the previous case with f(8) = cos 28. But, we should 
remark that uniform loading in this case causes no deformation until 
Po reaches the value po = 15. 

Finally, when f(8) = cos 28 + v cos 48, curves of U versus po can be 
plotted from equations (25) and (26). One may expect to find these 
curves somewhere between those in Figs. 1 and 2 of the foregoing two 
cases. The results however show that the term v cos 48 does not affect 
much the situation have we had v = 0. In Fig. 1, we plotted dashed 
curves of v = 1 and solid ones for v = 0. We notice that curves for f(6). 
= cos 28 + cos 48 are slightly away from those for/(0) = cos 28 and only 
when e is not very small. 
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Elastic Instability of an Annular 
Plate Under Uniform Compression 
and Lateral Pressure 
The elastic instability of a thin clamped annular plate which has suffered a finite axisym­
metric deformation due to simultaneous loading of uniform compression and lateral pres­
sure is studied by examining the asymmetric small free vibration in the neighborhood of 
the nonlinear axisymmetric equilibrium state. The problem is solved by applying a finite-
difference method to the dynamic version of the nonlinear von Karman plate theory. The 
numerical results indicate that there are the ranges of the magnitude of combined loads 
under which the axisymmetric deformation of the plate becomes unstable. 

I n t r o d u c t i o n 
The nonlinear axisymmetric bending and postbuckling of thin 

circular plates have been studied by numerous researchers [1-7]. In 
addition, the secondary buckling or wrinkling, i.e., the branching of 
asymmetric equilibrium states from nonlinear axisymmetric ones of 
the circular plate has been investigated by Morozov [8], Yanowitch 
[9], and Cheo and Reiss [10,11]. On the other hand, the axisymmetric 
postbuckling behavior of thin annular plates has been studied by Pal 
[7], Huang [12, 13], and Uthgenannt and Brand [14]. The present 
author referred to the secondary buckling of the heated annular plate 
[15]. 

In the present paper, the elastic instability of thin clamped annular 
plates subjected to simultaneous loading of uniform compression and 
lateral pressure is studied theoretically. The dynamic version of the 
nonlinear von Karman plate theory is employed. Equations describing 
the asymmetric small free vibration of the plate which has suffered 
a finite axisymmetric deformation are solved by means of a finite-
difference method. By examining a continuous variation of the 
asymmetric frequency as a function of the load parameters, one may 
detect the unstable axisymmetric equilibrium state. The ranges of 
the combined loads under which the axisymmetric deformation of the 
plate becomes unstable are clarified through a numerical example. 

B a s i c E q u a t i o n s and M e t h o d of So lu t ion 
Let us consider that a uniform, radial, compressive, edge thrust T 
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Fig. 1 Dimensions and coordinate system of the annular plate 

and a uniform lateral pressure p are applied simultaneously to a thin, 
isotropic, clamped annular plate with thickness h, inner radius a, 
outer radius b, Young's modulus E, Poisson's ratio v, and the mass 
density p. Taking the coordinate system as shown in Fig. 1, the 
transverse displacement of the midplane and the stress function for 
stress resultants are denoted by W and F, respectively. As a basis for 
the analysis of the asymmetric small vibration of the plate in the 
neighborhood of an nonlinear axisymmetric equilibrium state, we use 
the dynamic version of von Karman's equations. These equations and 
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the boundary conditions are given in nondimensional form as fol­
lows: 

150 

12/ 1 \ 12/ 1 \2 
V4/ = \w,x + ~w>0o\wiXX + — \w,xe --w,e\ 

x \ x xl \ x l 
(1) 

V4w =-\f,x + -f,eo\w,xx + -f,xx\wiX + - » ( ( 
x\ x I x \ x I 

- 2 - / \-w) +p-wTT (2) 
\X j,xO\x j,X0 

'• w,x = / = 0, fiX = — Ax at x = 7 , 1 (3) 

where subscripts following a comma stand for partial differentiation 
and 

„„ d2 I d I d 2 

V2 = + + — — 
dx2 x dx x2 dd2 

In these equations, the nondimensional quantities are related to the 
corresponding physical ones through the following relations: 

r -, a V l - v2 

0 0 h 

Tb2 

•W, f--
D 

T=—\ , A = V l - V2 , 
b2M ph V 2TTD/X 

pb* 
V T ^ ^ ^ - (4) 

Dh 

in which 7 is a ratio of inner to outer radii, D = E/i3/12(l - v2) is the 
flexural rigidity of the plate and t is time. 

Denoting the time-independent, nonlinear axisymmetric defor­
mation state by wo(x) and/o(x), the relevant equations are obtained 
from equations (l)-(3). 

X 
1 
- (xv).x 
X J 

- « ) , * 
X ,x 

-6f2 

r;f+: 

f = 0, r) = —\x at x = 7 , 1 

(5) 

(6) 

(V) 

where 

V = fof, f = wo,» 

In order to analyze the asymmetric small free vibration of the plate 
in the vicinity of an axisymmetric equilibrium state, we express w and 
/ in the form 

w = w0(x) + wi(x) cos Ndei<*T 

f = fo(x)+fi(x) cos iV0e'w (8) 

where N and w are the number of circumferential waves and a circular 
frequency, while u>i and /1 are infinitesimal quantities. 

The equations governing the asymmetric small free vibration of 
the plate in the neighborhood of the axisymmetric equilibrium state 
are obtained by substituting equations (8) into (l)-(3), subtracting 
the equations of axisymmetric deformation from resulting equations 
and retaining only the linear terms in the infinitesimal quantities. This 
leads to 

x 

N2 

?u>i,„ + |u>i , , -^u>i | f , J 

V i 4 u > i •• tfi,„ + \h,. 
N2 

N2 

+ \wix wi\ri,, 

wi = w\x — /1 = fix = 0 at x = 7, 1 

(9) 

+ w2wi (10) 

(11) 

where 

, d2 I d N2 

Vi2 = — r + 
dx2 . x dx x2 

We solve the foregoing nonlinear axisymmetric and eigenvalue 
problems by means of the numerical method employed in reference 

210 

Fig. 2 Relations between thrust and the square of frequency: p = 100 

xlO 

4 
Wo(max)/h 

Fig. 3 Relations between thrust and the maximum value of axisymmetric 
deflection 

[16]. An outline of our application of this procedure is presented 
here. 

The system of nonlinear differential equations (5)-(7) governing 
the axisymmetric^deformation is solved by Newton's method, which 
replaces these equations with a system of linear correctional equa­
tions. This latter system of equations is in turn approximated by a 
system of finite-difference equations using central difference formulas 
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Fig. 4 Relations between thrust and the maximum value of axisymmetric 
deflection 

for the derivatives and solved by the application of Potters' algorithm 
[17]. The solution with sufficient accuracy can be obtained by re­
peating the foregoing procedure until the condition |5y(")/y(")| £ 
10~4 is satisfied, where byM and y ( n ) correspond to the values of 
correction term and solution of n iteration at each point, respectively. 
The eigenvalue problem posed by equations (9)-(l l) is replaced by 
the finite-difference analog and solved by Potters' algorithm in the 
same way as the foregoing statement. A mesh of 100 points on the 
interval of (1 — y) was considered in the finite-difference method. 

When the values of the ratio y, Poisson's ratio v, and the load pa­
rameters X and p are given, we can determine the eigenvalues, i.e., the 
natural frequencies a> for each value of the circumferential mode N. 
If the square of a particular frequency of the asymmetric vibration 
in the neighborhood of the axisymmetric deformation is negative, the 
axisymmetric deformation is unstable. The branching of the asym­
metric equilibrium states from the axisymmetric one may occur at 
the point which the particular frequency vanishes. 

Numerical Results and Discussion 
As a numerical example, we take an annular plate with y = 0.5 and 

v = 0.3. 
The variation of the square of the first order of natural frequencies 

corresponding to N = 1, 2,3,4, and 5 forp = 102 as a function of the 
compressive thrust X is shown in Fig. 2. From this figure, it can be seen 
that there are the ranges in which the square of the natural frequencies 
corresponding to N = 1, 2, 3, and 4 becomes negative. Hence, the 
axisymmetric deformation is unstable between X = 149.2 and 168.3, 
and between X = 171.1 and 187.5. The branching of the asymmetric 
equilibrium states with N = 1, 2, and 3 from the axisymmetric one 
may occur at these four points Xcr = 149.2, etc. 

Fig. 3 shows the relations between the thrust and the maximum 
value of the axisymmetric deflection for various values of pressure. 
Fig. 4 shows a part of Fig. 3 after magnification. In these figures, cir­
cles, triangles, squares, etc., denote the branching points, while broken 
lines correspond to the unstable axisymmetric equilibrium states in 

o u 

o 

(a) 

J L 

'Muuiuuuu^ 

(b) 

j i i 

200 0 
P P 

Fig. 5 Instability regions 

which the square of the natural frequency of the asymmetric small 
vibration is negative. The bifurcation buckling with the indicated 
wave number N may occur practically at the branching points of the 
ends of the broken lines. The following may be observed from these 
figures. The asymmetric bifurcation buckling of the annular plate 
without pressure occurs at the point with X°cr = 147.7 and N = 4. For 
the case with p < 164.8, the axisymmetric deformation is unstable 
near X°cr. When the thrust is approximately 2.6 times the asymmetric 
buckling one X°cr of the annular plate without pressure, the bifurca­
tion buckling with N = 17 occurs and the axisymmetric deformation 
is always unstable. 

According to Figs. 3 and 4, the relation between thrust and pressure 
is shown in Figs. 5. Fig. 5(a) shows a part of Fig. 5(b) after magnifi­
cation. In these figures, the shaded ranges show the values of the 
combined loads destabilizing the axisymmetric deformation. It can 
be seen that the lateral pressure reduces the bifurcation buckling 
thrust Xcr with the large value. The small stability region exists in the 
instability region near X°cr. 

Figs. 6 and 7 show (a) the axisymmetric deflection, (b) the axi­
symmetric radial and circumferential stress resultants, Nro and Ngo, 
just before bifurcation buckling, and (c) the buckling deflection in 
the cases wi thp = 102, 104, and 0. In these figures, 0.5 and 1 in the 
abscissa correspond to the inner and outer edges of the annular plate, 
while N0

ro stands for the axisymmetric compressive radial stress re­
sultant just before buckling with N = 4 of the annular plate under only 
uniform compression. From these figures, it can be seen that the bi­
furcation buckling at the large thrust is caused by the large circum­
ferential stress and that the corresponding buckling deflection has 
many waves in the circumferential direction, three half waves in the 
radial direction and the maximum value near the outer edge. 

Conclusions 
On the basis of the dynamic version of the nonlinear von Karman 

theory, a theoretical analysis is performed on the elastic instability 
of a thin annular plate subjected to simultaneous loading of uniform 
edge thrust and lateral pressure. The problem is solved by applying 
a finite-difference method to the equations describing the asymmetric 
small free vibrations of the plate in the neighborhood of the finite 
axisymmetric equilibrium state. The present study has led to the 
following conclusions: 

The combination of uniform radial compression and lateral pres­
sure destabilizing the axisymmetric deformation of the annular plate 
exists always for the large thrust. The annular plate under small 
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Fig. 6 Distributions of (a) axisymmetric deflection, (b) axisymmetric radial 
and hoop stress resultants just before buckling, and (c) buckling deflection: 
p = 100. =r=^ Xcr = 187.5, W = 1, ̂ ; Xcr = 149.2, N = 3 

0.5 .0 

Fig. 7 Distributions of (a) axisymmetric deflection, (b) axisymmetric radial 
and hoop stress resultants just before buckling, and (c) buckling deflection: 
= ; p = 10", \ c r = 372.8, N = 17, ==; p = 0,Kr = 385.2, N = 16 

pressu re becomes u n s t a b l e d u e t o t h e small t h r u s t which gives rise 

to the buckling of the annular p la te wi thout pressure. T h e bifurcation 

buckling, i.e., t he branching of the asymmetr ic equil ibr ium s ta te from 

t h e ax i symmet r i c one occurs a t t h e b o u n d a r y be tween t h e s tabi l i ty 

and instabili ty regions in t h e space of combined loads. T h e bifurcation 

buckl ing a t t h e large t h r u s t is caused by the large hoop stress and th i s 

buckl ing load is a b o u t 2.6 t imes t h a t of t h e a n n u l a r p l a t e w i t h o u t 

p ressu re . 
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Dynamic Stability of Annular Plates 
Under Pulsating Torsion 
The dynamic stability of annular plates under periodic torsion is analyzed by means of 
the Galerkin method in conjunction with Hsu's procedure. The instability regions associ­
ated with both principal and combination parametric resonances are clarified for rela­
tively low frequency ranges. It is found that under the purely periodic torsion only the 
combination instability region exists, while under the simultaneous action of the static 
torsion the principal instability region exists also. The circumferential phase difference 
of two vibration modes excited simultaneously at the resonance is also found to change 
remarkably the relative width of the instability region. 

Introduction 
The dynamic stability of flat plates subjected to periodic in-plane 

forces is a problem of technical importance which has received a great 
deal of attention in the last decade. For example, Bolotin [1], Hut t 
and Salan [2], Duffield and Willems [3], Merritt and Willems [4], 
Reckling [5], and Popescu [6] investigated the principal and secondary 
regions of instability for various plates by means of Bolotin's method. 
The instability regions for both principal and combination resonances 
of square and rectangular plates were examined by Jagadish [7], and 
Yamaki and Nagai [8], respectively. Recently, the principal and 
combination instability regions of annular plates under periodic radial 
loads were studied by Tani and Nakamura [9,10]. However, to the 
best of our knowledge, the dynamic stability of annular plates under 
pulsating torsion has not been investigated yet. 

This paper examines theoretically the dynamic stability of clamped 
thin annular plates subjected to both static and periodic torsion.-The 
Galerkin method is used to reduce the problem to that for a finite 
degree-of-freedom system, the instability regions of which are de­
termined by utilizing Hsu's result [11] for coupled Hill's equations. 
Through detailed calculations, the instability regions of practical 
importance, associated with both principal and combination reso­
nances, are clarified for relatively low frequency ranges. It is found 
that the circumferential phase difference of two modes, having the 
same circumferential wave number, of vibration excited simulta­
neously at the resonance has an important role in the principal and 
combination resonance. The principal resonance is also found to de­
pend sensitively on the simultaneous action of the static torsion. 

Problem Formulation 
Consider that a periodic torsion Q = <7o + <7i cos Qt acts on the cir-
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November, 1979. 

Fig. 1 Geometry of an annular plate 

cumferential edges of a thin, isotropic, annular plate with thickness 
h, inner radius a and outer radius b. The coordinate system is taken 
as shown in Fig. 1. When the problem is restricted to relatively low 
frequency ranges where flexural vibrations of the plate are dominant, 
effects of transverse shear deformation and in-plane as well as rotatory 
inertia forces can be neglected. The effect of damping is assumed to 
be negligible. Hence, in the unperturbed motion, the plate executes 
a simple in-plane vibration with the stress resultants as given by 

iVro = N60 = 0, Nr90 = (go + 9i cos Qt)/2irr2 (1) 

where go is a static load, while q\ and Q are an amplitude and an ex­
citing frequency of dynamic load, respectively. 

Next, with W denoting the small incremental deflection just after 
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the plate loses its stability, the equation governing the perturbed 
motion of plate is 

PhW,tt + DViW-2Nreo{-W,,\ = 0 (2) 

where 

Eh* , d2 1 d 1 d2 

D = , V2 = — + + 
12(1 - i/2) dr2 r dr r2 d02 

In the foregoing, D is the flexural rigidity of the plate, E, v, p, and t 
are Young's modulus, Poisson's ratio, mass density of the plate, and 
time, respectively, while subscripts following a comma stand for 
partial differentiation. 

As for the boundary conditions, we will consider the case of both 
edges clamped as follows: 

W = W,r = 0 at r = a,b (3) 

Here we introduce the following notations for convenience: 

r t [W W 
* = log - , T = —\l , W = — 

b b 2 \ ph h 

1 * 
(<Zo, <?i) = — (9o, <7i), <7cr = 2-irDks 

<?cr 

o > - Q 6 » * / ^ , y = l (4) 
V w o 

In the notations, 7 is the ratio of inner to outer radii and qCI is the 
buckling load with the relevant parameter ks. Further, qo and q~\ are 
the static and periodic load intensities normalized by qCT, respectively, 

I while co is nondimensional parameter relating to exciting frequency. 
With these notations, equations (2) and (3) can be rewritten as fol­
lows: 

L(w) = wiTT + e-ixViw 

- 2ks(qo + q~\ cos UT)e~ix(w:Xe - iu,«) = 0 (5) 

w = wiX = 0 at x = 0, log y (6) 

where 

_„ d4 d3 d2 d2 / d2 d d2 \ 
V4 = 4 + 4 + — 2 — - - 4 — + 4 + — 

dx4 dx3 dx2 d0 2 \ dx2 dx dd2) 

Under given boundary conditions, equation (5) has, in general, only 
bounded solutions for w and the unperturbed motion is stable. 
However, under specific combinations of 50, qi, and coi the governing 
equation has the solution increasing indefinitely with time, leading 
to the dynamic instability of the plate. The problem consists in de­
termining the boundaries dividing the stability and instability regions 
in the space of q~\ and co, when the values of the static load qo and the 
ratio y are prescribed. 

M e t h o d of So lu t ion 
Considering the boundary condition (6), we put a solution of 

equation (5) as 

u> = E (cm - i - cm+i)[om(T) cos N6 + 6m(r) sin NO] 
m 

cm = cos (m/&c), j8 = vr/log 7, (m = 1, 2, 3 , . . .) (7) 

where am(T) and 6„ , (T) are unknown time functions and N is the 
number of circumferential waves. With this expression, we apply the 
Galerkin method to (5), which leads to the following conditions: 

L(w)(cn-i-cn+i)\ . \e2'dxdd = 0, 
0 Jo \sm Ndl 

(n = 1, 2, 3 , . . .) (8) 

Performing the foregoing integration, we obtain the following set of 
equations for am(T) and bm(r): 

E [Mnmam>TT + Rnmam + ks(q0 + (?i cos o>T)Pnmbm] = 0 
m 

E [M„mbm>TT + Rnmbm - ks(q0 + Qi cos WT)Pnmam] = 0 
m 

(m, n = 1, 2, 3 , . . . ) (9) 

where 

Mnm = [1 - ( - l ) " + m
7

2 ] ( * n , m - l - *n,m + l) 

Rnm = - [ 1 - ( - l ) n + m 7 - 2 ] [ S m - l * „ , m - l - E m + l * „ , m + l 

- 2 / 3 2 ( H m - 1 ^ n , m _ 1 - i J m + i t f n , m + 1 ) ] 

P n m = - 2 N [ 1 - ( - l ) " + m 7 - 2 ] l * n , m - l - * n , m + l 

+ - i 8 2 [ ( m - l ) ^ „ , m _ ! - (m + l ) ^ n > m + 1 ] | 

*n,m = Im+n-1 + Im-n+l ~ Im+n+l ~ Im-n-1, U = 1/(4 + i62/2) 

*n,m = "m+n-1 + "m-n+1 ~ Jm+n+1 ~ Jm-n-l, Jl = Hi 

Em = ^ 4 m 4 + 2/32m2(N2 - 2) + JV2(JV2 - 4) 

Dm = fi2m2 + N2, Hm = mDm (10) 

In the foregoing, the coefficients Mnm, Rnm, and Pnm depend on the 
ratio 7 as well as the wave number N and are symmetric with respect 
to indices n and m. Equations (9) represent a set of coupled Mathieu 
equations. 

Upon omitting the inertia terms as well as those with periodic 
coefficients, and putting am (T) = om, bm (T) = bm, and qo = 1, equations 
(9) become 

E (Rnmam + ksPnmbm) = 0 
m 

E (Rnmbm ~ ksPnmam) = 0 (m, n = 1, 2, 3 , . . .) (11) 
m 

In order that these homogeneous equations have nontrivial solutions 
in am and bm, the determinant of the coefficients should vanish, from 
which the value of ks can be obtained for the assigned value of N. The 
minimum value of ks will be determined by successively changing the 
value of N, which gives the value of ks corresponding to the buckling 
load qCI, together with the buckling wave number N?. 

Next, upon omitting the terms with periodic coefficients and put­
ting a m ( r ) = am cos COT and om(r) = bm cos COT, equations (9) be­
come 

E [(Rnm - 0>2Mnnl)am + ksqoPnmb~m] = 0 
m 

E [(Rnm ~ U2Mnm)b~m - ksqoPnm&m] = 0 (m, n = 1, 2, 3, . . .) 
m 

(12) 

Equating to zero the determinant of the coefficients of these equa­
tions, we obtain, for each prescribed value of N, the nondimensional 
natural frequencies and the corresponding modes of vibration, under 
the effect of the static torsion qo. The natural frequencies thus ob­
tained may be denoted by co;(i = 1,2, 3 , . . .) in order of smallness and 
the corresponding eigenvectors by 4>ij (i, j = 1,2,3,. . . ) . The subscript 
i defines the order of radial modes of vibration, which represents the 
number of half waves in the radial direction. 

Here, one should note that in addition to Si = 1, the other condition 
is required to determine the eigenvectors 4>ij, because of the as­
sumption of the solution (7). Hence, the following condition is 
added: 

wiXX = 0 at x = 7, 0,= do (13) 

This condition corresponds to that a nodal line of vibration mode in 
the radial direction develops from the position (7, 80) on the inner 
edge of the plate. Further this condition makes it possible to designate 
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Fig. 2 Effect of static torque qa on the natural frequencies w, in the case 
with y = 0.5 

the circumferential phase difference of two modes, having the same 
circumferential wave number, of vibration excited simultaneously 
at the resonance. 

Now, it is well known that under certain combinations of q~o, q~\, and 
GO, equations (9) have the solution am(r) and bm(-r) growing with time 
indefinitely, leading to the parametric instability of the system. To 
clarify the stability boundaries, it is convenient to rewrite (9) in the 
standard form. For this purpose, one transforms the generalized 
coordinates am and bm to the normal coordinates d; by making use 
of the eigenvectors <t>ij, which leads to the following set of coupled 
Mathieu equations in the standard form: 

d;/TT + co,-2d; + q~\ cos air Y, Sijdj = 0 

Sij = Sjt = ks Y. L ^kiPkl^lj 
k l 

hjVL £ <l>ikMki4>u)' 
h l 

-HI. (i,j, k, 1= 1 ,2 ,3 , . . . ) (14) 

For the stability of these equations, detailed studies have been made 
by Hsu [11]. According to his results, equations (14) have instability 
regions of combination resonance type when a) is in the neighborhood 
of o)j + iiij, and the first approximations for the stability boundaries 
are given by 

CO 

— = 1 ± ! 'iiqi, (;,;' = 1 ,2 ,3 , . . . ) 

(iiij = C0i + dij, (15) 

In the foregoing, u>ij and dij stand for the central frequency and the 
relative width parameter of the instability region, respectively. The 
numerous instability regions closely distributed can be represented 
easily by using of ojy and dij. At the combination resonance, it is to 
be noted that two modes of vibration, having different radial modes 
i and j but having the same circumferential wave number N, are ex­
cited simultaneously, and that these modes may have a phase dif­
ference in the circumferential direction. Equations (14) have also 
principal instability regions when co is almost twice the natural fre­
quency oi;, the boundaries of which are given by putting i =j in (15). 
In this case, only the mode corresponding to co; is excited. 

By means of the higher approximations [12], we may obtain many 
secondary instability regions with small relative openness. Under 

Table 1 Torsion buckling load parameter ks and the 
corresponding wave number Ns in each case 

Present 

7 Ns 

Dean [13] 
Ns 

0.2 
0.5 
0.8 

36.00 
186.1 

1780 

3 
6 

17 

35.99 
186.1 

1780 

3 
6 

17 

small exciting forces, however, the occurrence of the secondary in­
stability will be prevented by inevitable small damping. Hence, the 
consideration of the secondary instability will be omitted in the fol­
lowing. 

Buckling Load and Natural Frequencies 
On the basis of (11) with 20 terms for each unknown parameter am 

and fem, the buckling parameter ks and the corresponding wave 
number Ns in the cases with 7 = 0.2,0.5, and 0.8 are determined with 
the results listed in Table 1. Accurate results obtained by Dean [13] 
are also shown. Excellent agreement will be noticed. 

Next, on the basis of (12) with 20 terms for each unknown param­
eter am and bm, and ks as given in Table 1, the natural frequencies 
o);(i = 1, 2, 3) in the case with 7 = 0.5 are determined for each wave 
number N, with the effect of the static torsion qo taken into consid­
eration. The results are illustrated in Fig. 2. The following will be 
observed from this figure. The first order of natural frequencies de­
creases with an increase in the static torsion. This tendency is most 
pronounced when N is in the vicinity of buckling wave number Ns. 
The effect of the static torsion on the second and third orders of 
natural frequencies is very small. 

The effect of the static torsion on the first and second natural modes 
of vibration can be also examined. The typical results for the case with 
7 = 0.5, N = 6(= Ns), and 60 - ir/2iV are shown in Fig. 3, with the 
contour lines with the maximum amplitude of the deflection w taken 
as unity. It will be seen that, with the application of static torque, the 
radial nodal lines are obliquely rotated in the loading direction and 
that the first natural mode of vibration almost agrees with that of the 
static buckling. 

Instability Regions 
First, the variation of the relative openness dij of instability regions 

with the circumferential phase difference a of two vibration modes 
is examined for the case with 7 = 0.5 and q = 0.5 by using the eigen­
vectors tfrij obtained along with the calculation of natural frequencies 
a);. This is because two vibration modes, having the same circumfer­
ential wave number but having the different phase in the circumfer­
ential direction, may be excited simultaneously at the resonance. The 
results with dij a 10~2 are shown in Fig. 4, from which the following 
is observed. The relative openness of the combination instability re­
gion is widest when the value of the circumferential phase difference 
a is in the vicinity of ir/2N. On the other hand, that of the principal 
instability region is widest when the value of a is equal to 0 and TT/N. 
The value" of the relative width parameter Oij depends on the cir­
cumferential wave number N which two vibration modes simulta­
neously excited have equally. 

Next, to examine the effect of the static torsion, the instability re­
gions for the cases with q0 = 0, 0.25, 0.5, 0.75 and 7 = 0.5 are deter­
mined with the results shown in Fig. 5. In this figure and the following, 
the relative width parameter dij represents the maximum value with 
respect to the circumferential phase difference. Only the instability 
regions with dij a 10 - 2 have been considered for natural frequencies 
up to third order of radial modes. From Fig. 5, one can easily find the 
location and the openness of the instability regions, together with the 
wave number as well as the modes of the excited vibration. The fol­
lowing observations can be made. Under purely periodic torque 
without the static one, one has only the instability regions of combi­
nation resonance type. To judge from the magnitudes of the relative 
widths dij, the instability regions associated with (i, j) as (1,2) are of 
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T / N 

most importance. The relative width 0i2 has a maximum when N is 
near the buckling wave number Ns. Under the simultaneous action 
of the static torque, one has the principal instability regions, besides 
the combination instability regions. With an increase in the static 
torque, the relative widths da of the principal instability regions, 
especially 8n, grow rapidly, while those for the combination type 0y (i 
^ ;') remain almost unchanged. When the static torque exceeds one 
half of the buckling load, the principal instability region of the lowest 

order, associated with the wave number around iVs, is of most im­
portance. The central frequency of each instability region is shifted 
toward the lower frequency with the static torque. 

To check the effect of the radial ratio 7, the instability regions for 
the cases with 7 = 0.2 and 0.8 are also determined with the results 
shown in Figs. 6 and 7. It can be seen from these figures that the in­
crease of the radial ratio raises the central frequency and reduces the 
variations of the central frequency and the relative width with the 
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wave number. The large change of the central frequency with the 
radial ratio is obviously due to the variation in the natural fre­
quency. 

Conclusions 
The dynamic stability of annular plates subjected to both static and 

periodic torsion has been theoretically studied within relatively low 
frequency ranges. The main results obtained may be summarized as 
follows: 

1 Under the purely periodic torque only the instability regions 
of combination resonance type exist, while the simultaneous action 
of the static torque gives rise to the principal instability regions. 

2 With the increase in the static torque, the relative widths of the 
principal instability regions, especially 0\\, grow rapidly, while those 
for the combination type remain almost unchanged. When the static 
torque exceeds one half of the buckling load, the principal instability 
region of the lowest order, associated with the wave number around 
the buckling one becomes most significant. 

3 The relative openness of the instability regions depends sensi­
tively on the circumferential phase difference of two vibration modes 

excited simultaneously at the resonance with the same circumferential 
wave number. 

4 With the increase in the static torque and/or the decrease in the 
radial ratio, the central frequency of each instability region is shifted 
toward the lower frequency, due to the variation in the natural fre­
quency. 
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The Effect of Damping on Dynamic 
Snap-Through 
Dynamic snap-through criteria are compared for an impulsively loaded shallow circular 
arch modeled as a Kelvin-Voigt material. The Budinasky-Roth criterion is used in con­
junction with direct numerical integration of an approximate set of motion equations to 
obtain critical magnitudes of the load as a function of small viscous damping and the spa­
tial distribution of the load. These critical magnitudes are compared to a lower bound es­
timate which is independent of the load distribution and damping. This lower bound is 
a stability-sufficiency condition formulated by Hsu. The presence of small damping sig­
nificantly increases the critical magnitudes with respect to the undamped results for non-
symmetric loading, and thus indicates the conservative nature of the lower bound. 

Introduction 
In a recent paper [1] the effect of the spatial distribution of an im­

pulsive load on dynamic snap-through of a shallow circular arch was 
discussed. A spatially independent lower bound on the critical mag­
nitude of the impulsive load required for snap-through was compared 
to a criterion based on direct integration of the equations of motion. 
This latter criterion, then, accounted for the spatial distribution. The 
lower bound is a sufficient condition for dynamic stability formulated 
by Hsu [2], and the criterion used to determine critical magnitudes 
by direct integration is due to Budinasky and Roth [3]. The Budian-
sky-Roth criterion was used to obtain critical magnitudes for snap-
through occurring on the initial oscillation of the response, termed 
immediate snap-through, and for snap-through occurring at any time 
of the finite integration period, termed finite time snap-through. For 
most spatial distributions considered, the lower bound was a con­
siderably less conservative estimate of finite time snap-through than 
for immediate snap-through. The present paper considers the effect 
of small material damping on this conclusion, since it is anticipated 
that finite time snap-through will be significantly affected by small 
damping whereas immediate snap-through will not. 

The influence of damping on dynamic snapping of a simply sup­
ported sinusoidal arch subject to a timewise step pressure with si­
nusoidal spatial distribution was addressed by Lock [4], Hegemier 
and Tzung [5], and Huang and Nachbar [6]. Both Lock and Hegemier 
and Tzung consider energy dissipation by external damping (simu­
lating an arch on a viscous foundation), whereas Huang and Nachbar 
use material viscous damping for energy dissipation. Lock found that 
damping had an appreciable effect on the critical pressures required 
for "indirect" snap-through (analogous to finite time snap-through 
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in the present work). Further, Lock found no significant numerical 
difference between dynamic and static critical pressures for large arch 
rises and for a value of the viscous damping coefficient y equal to 1 
percent of critical damping of the fundamental symmetric mode. 
Huang and Nachbar also observed that dynamic buckling loads 
equaled static buckling loads for damped arches with large rises. 
However, Hegemier and Tzung state this is true as y —<• 0+, and 
moreover that there is a discontinuity between the critical pressure 
as y —- 0+ and the critical pressure determined from a purely elastic 
response (7 = 0). In their concluding remarks, Hegemier and Tzung 
go on to state that for the arch subject to impulsive loading and suf­
ficiently small disturbances, only symmetric snapping is possible 
because small asymmetric disturbances will be damped out. Con­
sidering step pressure loading and axisymmetric deformations of a 
spherical cap, Mescall and Tsui [7] do not obtain dynamic response 
characteristics suggested by Hegemier and Tzung. Instead they find 
dynamic critical pressures to be about one-half the static values and 
a smooth increase in the dynamic critical pressures with increasing 
damping. 

Basic Equations 
In dimensionless form the equations governing the nonlinear planar 

vibrations of the shallow circular shell (or arch) modeled as a Kel­
vin-Voigt material (see Fig. 1) are 

I + x-4(0"" + 7*"") - (i + <P")iv + yrf) = 0 (l) 

1 = -(72) r+ 1[0-(V2)W2]dr (2) -(V2) J {<!> - (V2)(0')2]dr 

;ially uniform circumferential * 

. = w/aj32, X2 = y/n(fi2alh) =* y/4&(Holh) (3) 

where fflr) is the spatially uniform circumferential strain of the mid-
surface and1 

1 It is noted that equation (3) in [1] is missing a square root sign. 
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where 

f = I2a{l - v2)(^Eh^-^T (12) 

in which T is the actual kinetic energy per unit arch width. It follows 
from (8), (9), and (11) that 

T(0) = (V2)A
4£2 (13) 

A p p r o x i m a t e S o l u t i o n 
An exact solution to (1) and (2) subject to conditions (7) and (8) is 

not available, so an approximate solution is sought. Here we use 
Galerkin's method and expand 4>(T,T) as 

* ( I \ T ) = £ [WT)Z„(D + £„(T)Z„(D] 
n = l 

(14) 

Fig. 1 Shallow circular arch 

in which w is the radial displacement, a is the midsurface radius, Ho 
is the maximum arch rise, h is the arch thickness, and /? is the semi-
opening angle of the arch. The dot and prime indicate partial deriv­
atives with respect to dimensionless time r and scaled polar angle F, 
respectively, where 

r = ct/a, c2 = E/p(l - v2), T = ( (4) 

in which t is real time, E and v are the usual elastic constants, p is mass 
density, and 6 is the polar angle. The dimensionless damping coeffi­
cient y is given by 

y = (Ha)[(l-v2)IEp\ 1/2 (5) 

In (5), f is the actual damping coefficient in the Kelvin-Voigt con­
stitutive equation 

E he 
e + f—. 

1 - v2 dt 

(6) 

where a and e refer to the normal stress and strain, respectively, in 
the circumferential direction for a surface parallel to the midsur­
face. 

The shallow circular shell equations (1) and (2) for a Kelvin-Voigt 
material model may be obtained from the shallow arch equations 
derived in [6]. In [6], one must specialize the initial shape to be circular 
(equivalent to a parabolic shape for a shallow arch), and substitute 
£ / ( l - v2) for EQ to obtain (1) and (2). 

The boundary conditions associated with (1) and (2) for a 
pinned-end arch are 

<M±1,T) = 0, 0 " ( ± 1 , T ) = 0, T > 0 

The initial conditions are taken as 

<Mr,o) = o, (jnr.o) = m(Y), | r | < i 

(7) 

(8) 

These initial conditions are equivalent to imparting a very short-
duration impulsive load to the arch at the initial instant having a 
spatial distribution u(Y). It is convenient to normalize this spatial 
distribution by requiring 

(u,u) = 1. 

where the scalar product of two functions is defined as 

• +i 
u,v) = C u(T)v(T)dT 

(9) 

(10) 

•In this manner the dimensionless magnitude e of the initial velocity 
in (8) can be related to the dimensionless initial kinetic energy f (0) 
imparted to the arch by the impulsive load. The dimensionless kinetic 
energy of the arch is 

f = m^HM 

The functions Zn(T) and Zn(T) are the symmetric and antisymmetric 
mode shapes, respectively, of the free, undamped, infinitesimal vi­
brations of the arch about its undeformed configuration. These mode 
shapes are orthonormal and are given in the appendix of [1]. Coeffi­
cients f n M and ^(T), then, represent the symmetric and antisym­
metric generalized displacements. Substituting (14) into (1) and (2), 
and using Galerkin's method, results in the following ordinary dif­
ferential equations for the generalized coordinates: 

h + yfc2h + hHi + QM,h) + QMuh) + ^Qntfi) £ k2^2 

+ 2y7r2lQil(^)}T.k2^k=0 
k 

h + y»i% + w2fc + (^)2[S(f/) + y&mti 

+ (i27T4/4) & = 0 (15) 
l ; i 

The parameters jS; and Jii represent the symmetric and antisymmetric 
eigenfrequencies, respectively, and the polynomials in the symmetric 
displacements are 

j k 

Qis = (Y«) E E E [(iy«)&i»ri + 2y(PijPuKjhh] 
i k i 

s = Zvjh+(1/4)ZZPjkhtk 
j j k 

The coefficients T?; and Py are 

Vi = -(1h)(Zi,l), Pij= (Zi',Zj') 

Initial conditions on the generalized displacements are 

f,(0) = &(0) = 0 

h(0) = «<u,2,->, &(0) = e<u,Z;> 

(16) 

(17) 

(18) 

For numerical integration of (15), the series representation (14) was 
truncated to the first two symmetric modes and the first antisym­
metric mode. Constraining the motion to a three-dimensional con­
figuration subspace sacrifices quantitative accuracy but, as discussed 
in [1], this simplified model exhibits the qualitative features inherent 
to snap-through. The reduced set of equations (15) were integrated 
numerically using a Hamming Predictor-Corrector method for a 
specific arch rise of A equal to five. 

To specify various spatial distributions of the initial velocity con­
sistent with (9), one may select 

where 

(ID 

u ( D = [Zx + vZz + v{l + i;2) i/%]/Z> (19) 

D = [(l + i;2)(l-l-P2)]1/2 (20) 
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such that initial conditions (18) become 

K(0) = e/D, h(0) = ve/D, ^ (0) = v(l + v2)l/h/D (21) 

The parameters v and v represent initial direction parameters of the 
motion trajectory in the three-dimensional configuration space. If? 
vanishes, the spatial distribution (18) is symmetric and equations of 
motion (15) admit a purely symmetric response (£,- = 0, T > 0). Thus 
v is interpreted both as a symmetric initial direction parameter and 
a symmetric spatial distribution parameter. Consequently the pa­
rameter v represents an asymmetric initial direction (distribution) 
parameter. 

For specific values of y, v, and v the equations of motion (15) were 
integrated for many values of e. Each integration was carried out for 
48 nondimensional time units. This corresponds to three periods of 
the lowest frequency mode which, for X equal to five, is the antisym­
metric mode. As discussed in [1], an extended integration time of five 
periods (80 nondimensional time units) did not significantly alter the 
critical magnitudes determined for finite time snap-through. Thus 
the three periods of the lowest frequency mode appeared an adequate 
length of time for numerical integration. 

For each value of e the displacement norm was obtained over the 
finite time integration period. This norm is defined as 

R(r) = (fi2 + f2
2 + £i2)1/2 (22) 

The peak value of R on its initial oscillation and its maximum value 
during the entire period were recorded for each t so the dependence 
of ffmai on 6 for both immediate and finite time snap-through could 
be determined and subsequently plotted. These plots are called re­
sponse curves. According to the Budiansky-Roth criterion, critical 
magnitudes for both immediate and finite time snap-through corre­
spond to "jumps" in these response curves. 

To facilitate an understanding of the dynamic results and establish 
the lower bound estimate of ec, the results of the static analysis of 
equations (15) given in [1] are summarized here. The static equilib­
rium solutions of (15) are the critical points in the three-dimensional 
configuration space. The origin of this space represents the unde-
formed symmetric arch. For X equal to five there are four additional 
symmetric equilibrium configurations and a pair of asymmetric 
configurations. The asymmetric pair have identical symmetric dis­
placements and equal in magnitude, but opposite in sign, antisym­
metric displacements. Of the seven critical points in the configuration 
space, only two are stable with respect to infinitesimal disturbances. 
These are the origin and a symmetric critical point whose norm R is 
near unity. The latter critical point corresponds to the static snap-
through configuration. The asymmetric pair of critical points have 
the same potential energy, and it is the smallest potential energy of 
all the unstable critical points. Either of this pair, then, represents 
the "nearest" critical point to the origin in the sense of Hsu [2]. Here 
the one with a positive antisymmetric displacement is selected as 
nearest. Equating the potential energy of this nearest critical point 
to the initial kinetic energy (13) imparted to the arch gives the lower 
bound on the critical magnitude necessary for dynamic snap-through. 
For X equal to five this value of e is 0.1276. Hence the dynamic motion 
is stable against snap-through for any spatial distribution of the initial 
velocity i f £< 0.1276. 

Discussion of Numerical Results 
In addition to a fixed arch rise with X equal to five, the present re­

sults are limited to a specific value of 0.848404 for the symmetric 
component v of the initial velocity distribution. This particular value 
of v is the symmetric direction component of the nearest critical point 
to the origin of the configuration space. Values chosen for the asym­
metric distribution parameter v range from zero to 0.40. This includes 
the particular value of v = 0.183666 which is the asymmetric direction 
component of the nearest critical point. Thus increasing values of v 
imply increasing amounts of asymmetry in the initial velocity dis­
tribution, and the particular distribution with v = 0.183666 starts the 
motion trajectory in the configuration space toward the nearest critical 
point. 

Values selected for the damping parameter y are 0,0.005,0.01, and 
0.05. Undamped results are also given in [1] and are represented here 
with some refinements. The largest value of the damping parameter 
considered is approximately 1 percent of critical damping for the 
linear vibrations of the antisymmetric mode (lowest frequency mode 
for X equal to five). Also, these values of y seem physically reasonable. 
For example, damping coefficients determined from vibration tests 
of double cantilevered aluminum beams [8], as reported in [9], result 
in values of y within the range used, for realistic arch radii in (5). 

Some of the response curves obtained are shown in Figs. 2(a)-(h). 
Only the purely symmetric response (v = 0) and nearly symmetric 
response (v = 0.025) are shown for each value of y. The jump criterion 
for the purely symmetric response is very distinct for both immediate 
and finite time snap-through. The critical magnitudes ec for imme­
diate snap-through are slightly larger than for finite time snap-
through. This difference decreases with increased damping and for 
y = 0.05 it vanishes (i.e., snap-through occurs on the initial oscilla­
tion). For finite time snap-through and ? = 0, the critical magnitude 
increases from 0.189 at y = 0 to 0.198 at y = 0.05 (a 4.8 percent in­
crease). 

A small amount of asymmetry (v = 0.025) in the initial velocity's 
spatial distribution causes dramatic changes in the response curves 
with respect to those of the purely symmetric response, as shown in 
Figs. 2(6), (d), and (/). The finite time snap-through curves exhibit 
alternating jumps to snap-through and back with increasing e. The 
initial jump in Rmax to snap-through lRmax near unity) occurs at a 
substantially lower magnitude of 6 than for the purely symmetric 
results. This alternating pattern in the finite time response curves for 
v = 0.025 persists for y = 0.005 and 0.01, but is damped out for y = 
0.05. Contrary to the assertion of Hegemier and Tzung [5] that only 
symmetric snapping is possible if y ^ 0, the present results show a 
strong influence of small asymmetric perturbations on dynamic 
snapping, even in the presence of small damping, as evidenced by 
comparing Figs. 2(c) and (d). Apparently the qualitative character 
of the finite time snapping phenomenon for small damping is the same 
as in the undamped case. 

Although not presented here, the time histories of the individual 
displacements imply that the symmetric response is unstable with 
respect to asymmetric perturbations. For small asymmetric pertur­
bations, the symmetric motion parametrically excites the growth of 
the asymmetric displacement, which in turn reacts with the symmetric 
motion. This instability may or may not lead to dynamic snap-
through, as the alternating pattern of the response curves show. 
Parametrically induced snap-through was used as an explanation by 
Lock [4] for dynamic critical step pressure loads exceeding the static 
critical pressure loads for sufficiently large arch rises. A recent paper 
[10] reviews other current literature on snap-through by parametric 
excitation. 

The immediate snap-through response curves in Figs. 2(b), (d), and 
(/) do not exhibit a large jump as they do for the purely symmetric 
results shown in Figs. 2(a), (c), and (e). Consequently, the Budian­
sky-Roth criterion is quite subjective. This gradual rise in the response 
curves was also noted for centrally distributed step pressure loads 
applied to spherical caps [11]. 

The critical magnitudes tc determined from the response diagrams 
are plotted versus the distribution (direction) parameter v in Figs. 
3 (a )-(d). Also shown in each of these figures is the lower bound esti­
mate of ec determined by Hsu's criterion. The critical magnitudes for 
undamped finite time snap-through in Fig. 3(a) decrease very rapidly 
for small increases in V from v = 0, and remain relatively close to the 
lower bound.2 The "jump-in-response" criterion is very distinct for 
most finite time results and hence critical magnitudes were easily 
determined for Figs. 3(a)-(d). An exception is shown in Fig. 3(d) for 

2 Fig. 3(a) is a refinement of Fig. 5 in [1]. In the present work many values 
of £ for each distribution in the undamped case were used to generate more 
precise response curves like Fig. 2(6). Thus the determination of the critical 
magnitudes for finite time snap-through is more precise. 
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v = 0.09 and y = 0.05 where no distinct jump in the finite time re­
sponse existed so the critical magnitude was not defined. Figs. 3(b)-
-(d) show that small amounts of damping significantly affect the finite 
time critical magnitudes for all distributions considered. As the 
damping increases, these critical magnitudes approach those of im­
mediate snap-through. As the damping decreases, there appears to 
be a smooth decrease in critical magnitudes to their undamped (7 = 
0) values. 

In most cases where M O , the immediate snap-through critical 
magnitudes could not be determined, since no distinct jumps in the 
response curves occurred. Instead, a range of critical magnitudes is 
shown, based on Rmax varying from 0.6 to 0.862. The latter value is 
the norm of the nearest critical point. The larger this range is for a 
given v, the more gradual is the increase in Rmax on the initial oscil­
lation with increasing e. If a distinct jump in flmax greater than 0.2 
occurred for immediate snap-through results, this value of e is circled 
in Figs. 3(a)-(d). 

Concluding Remarks 
Critical magnitudes of the initial velocity, determined by direct time 

integration and the Budiansky-Roth criterion, are a function of the 
initial velocity's spatial distribution and material viscous damping. 
For the elastic response (see Fig. 3(a)) the critical magnitudes for fi­
nite time snap-through are appreciably reduced for nonsymmetric 
distributions (v ^ 0) of the load. For these same distributions, the 
undamped critical magnitudes for immediate snap-through are not 

precisely defined by the Budiansky-Roth criterion. This subjectivity 
is reflected in a range of e determined for each distribution which 
results in a flmax value varying from 0.60 to 0.862 on the initial oscil­
lation of the response. The critical magnitudes are compared to a lower 
bound estimate formulated by Hsu [2] which is independent of the 
spatial distribution and damping. This lower bound is a good estimate 
of the undamped finite time critical magnitudes for nonsymmetric 
distributions, but is a very conservative estimate of the range of un­
damped critical magnitudes for immediate snap-through. 

Small viscous damping significantly increases the finite time critical 
magnitudes (see Figs. 3(6)-(d)). Immediate snap-through critical 
magnitudes remain subjective and their range is essentially unaffected 
for damping coefficients 7 of 0.005 and 0.01. For 7 = 0.05 finite time 
and immediate snap-through critical magnitudes approximately 
coincide, and the range of subjectivity for immediate snap-through 
is appreciably decreased. It is apparent, then, that the. lower bound 
estimate becomes quite conservative when small dissipation is in­
cluded. However, it remains precise. For 7 = 0.05 the critical magni­
tude is approximately 69 percent higher than the lower bound for a 
distribution with small asymmetry (v = 0.045), and is 33 percent high 
for a distribution with larger asymmetry {v = 0.40). 
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Two-Mode Buckling of an Elastically 
Supported Plate and Its Relation to 
Catastrophe Theory 
Classical buckling and initial postbuckling of a geometrically imperfect infinite plate on 
a nonlinear elastic foundation under two independent applied compressive loads are ana­
lyzed. The plate is assumed to have imperfections of the same form as the buckling modes. 
It is found that single mode behavior occurs when the two independent loads Nx and Ny 

are unequal. A two-mode case occurs when the two applied loads are equal and the form 
of the instability falls into the category of the parabolic umbilic type one or type two, de­
pending on the quadratic and cubic spring constants. The importance of the contribution 
of the quartic term and imperfection-sensitivity is examined. The analysis is studied 
within the context of Koiter's general theory of multimode postbuckling behavior. 

Introduction 
Catastrophe theory [1] and the theory of elastic stability [2-5] are 

two independently developed theories which deal with the stability 
analysis of physical systems which evolve as a function of certain 
prescribed parameters. As such, these theories are closely related to 
one another and have resulted in a number of papers [6-8] which 
provide comparative studies. It is evident from the foregoing that 
catastrophe theory is effective in the classification of the forms of 
instability which may occur while the task of actually providing a 
method of analysis of physical systems has been taken up in the theory 
of elastic stability. 

Thompson and Hunt [6] were among the first to investigate the 
similarity between the theory of elastic stability and catastrophe 
theory and they provided a comparative study of the various types 
of instability mechanisms. Sewell [7] provided a series of examples 
which demonstrated various forms of the elementary catastrophes 
while Huseyin [8] considered the comparison between the theory of 
multiple-parameter systems and catastrophe theory. Further, a 
general analysis of two-mode buckling problems and their relation 
to the hyperbolic and elliptic catastrophes were presented in [9]. In 
addition, the parabolic umbilic catastrophe was first analyzed in depth 
in terms of the theory of elastic stability in [10] and was then applied 
to the two-mode buckling problem of an imperfection-sensitive ex­
ternally pressurized spherical shell. Further applications to various 
simple structures can also be found in [11,12]. 
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The present paper deals with the two-mode initial postbuckling 
analysis of an infinite plate resting on a nonlinear elastic foundation. 
It is found that the resulting form of the potential energy falls into 
the category of the parabolic umbilic model of catastrophe theory. 
This represents an extension of a paper by Reissner [13] in which he 
showed that this problem is qualitatively similar to the two-mode 
buckling problem of an externally pressurized spherical shell [14] in 
that the expanded potential energy takes a similar form. A Koiter style 
analysis is used and the problem is attacked using a UVW displace­
ment formulation. 

The analysis considers the case of two independent compressive 
in-plane loads Nx and Ny and it is shown that in general there exists 
a unique eigenvalue for the buckling problem. However, in the par­
ticular situation that IV* = Ny, an infinite number of buckling modes 
are involved. In the present case, the analysis is focused on a two-mode 
interaction problem and it is shown that this leads to a stability 
problem which takes the form of the parabolic umbilic catastrophe. 
Critical load-imperfection results are obtained and it is demonstrated 
that the inclusion of two independent load parameters, as specified 
by catastrophe theory, can significantly alter the results. In addition, 
the results show that higher-order terms of the potential energy for 
the present two-mode plate buckling problem cannot always be ne­
glected in this type of asymptotic analysis. 

Potential Energy 
The potential energy of a plate resting on a nonlinear elastic 

foundation can be expressed as 

P.E. = Um+Ub + UF-Uw (1) 

where Um is the membrane strain energy, Ub is the bending strain 
energy, Up is the strain energy of the elastic foundation, and Uw is 
the work done (positive for compessive loads) by the applied load. The 
aforementioned quantities are given by 
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Um=-
Et 

2(1 - v2) v2)JJ 
U,X + ~ W\x + V,y + ~ W2,y 

• 2(1 - v) [K 2W*Mv,y + -w^ 

•\[u,y + v,x + w,xw, ^ dxdy (2) 

Ub = 
Et3 

24(1 - v2) v2)JJ 
W,XX+W,yy\ -2(l-V)(W,XXW,y 

uF--
2(1 1 - v2) J J 

WKy) 

-kiW2 + -k2W
3 + -k3W

i 

2 3 4 

and 

Uw = J S NxU,xdxdy + / J NyV,ydxdy 

dxdy (3) 

dxdy (4) 

(5) 

In the foregoing, £ is Young's modulus, t is the thickness of the plate, 
v is Poisson's ratio, (U, V, W) is the displacement vector of the middle 
plane of the plate, kz, k% ks are related to the linear, quadratic, and 
the cubic spring constants of the elastic foundation, respectively, and 
Nx, Ny are the in-plane, applied loads in the x,y-directions respec­
tively. 

The prebuckling state of a plate is composed of end shortening in 
the two in-plane directions with no out-of-plane displacement. 
Therefore, the total displacement takes the form 

U = c\x + u, V = c^y + v, W = w (6) 

where c\ and c2 are functions of the applied loads and u, v, w are in­
cremental displacements which are zero prior to buckling. 

Substituting the total displacement into the potential energy ex­
pression and then grouping the terms according to the powers of the 
incremental displacements, the potential energy may be expressed 
as 

P*[u] = Pjx[u] + P2
x[u] + P3

x[u] + P4°[u] + • (7) 

where P,x[u] is a function of the ith degree in the perturbed dis­
placements and u represents the vector of displacements [u, v, w]T. 
The superscript X indicates that the functional contains terms which 
depend on the applied loads and the superscript 0 implies that the 
functional is independent of the applied loads. 

Explicit values for ci and C2 are obtained from the requirement that 
Pix[u] must vanish in order that the prebuckling state be an equi­
librium state. Using this condition yields 

c i : 

-m{N* 
vNv C 2 : 

Et 
[Ny - vNx] (8) 

The remaining quantities P2°["L JY["L ^2*["] , and Pi°[u] are 

P2°[u] • - J L - W 
2(1 - v2) J J 

+ 2f(U,XV%y) + 

U2
X + V2y + -(l 

,y 2 

!/)(u,y + L>|X)2 

12, 
; + W2

:yy + 2viV:XXW:yy 

+ 2(1 -v)w2,Xy] + -kiw2 

P 2 ' M = -

Pa°[u} 
Et 

2(1-

P2*[w] = - I I -w2
ty dxdy 

- T \ \ U:XW2
iX + V,yW2

iy + V(UtXW2
:y) 

dxdy (9) 

(10) 

(11) 

Et rr\ 1 
p4°["l = TT-, 7, \\-(w2,x + w2,y)

2 + -k&>*dxdy (13) 
2(1 — v1) J J 4 4 

where 

P 2 V ] = - ! r P 2
x [ " ] and P 2 * [ u ] = - § - P 2 V ] 

dNx dNv 

In the foregoing, it may be noted that P3°[«] has replaced Ps*[u]. This 
results because of the linearity of the prebuckling problem. 

Class ica l B u c k l i n g Load 
The classical critical load is determined from the condition that the 

first and second variations of the quadratic terms in the potential 
energy must vanish. These calculations take the form of an eigenvalue 
problem in terms of Nx and Ny, with the set of minimum values cor­
responding to the locus of classical critical loads. 

The eigenfunctions are easily found as 

Uhxhy = 0: 

sin 

Vkxky 
•0 

x sin y 
U>k,ky= \kX~\ \ky-

cos ( ql cos \ q, 
with the corresponding eigenvalues defined by 

1, 
XXkX

2+Xyky2=-[(kX
2 + ky2)2+l] (14) 

In obtaining these results the nondimensional quantities Xx, Xy have 
been introduced as 

(X,X y ) = ^ ^ ( i V I , N y ) 
Ejt 

where q = [t2/6&i]1/4. In addition, kx, ky are the wave numbers in the 
x, y- directions, respectively. 

The classical critical load is obtained as the least value of this ex­
pression when it is minimized with respect to the wave numbers kx

 2 

and ky2. Also, since Xx and \ y are assumed to be independent, there 
is a locus of values of X* and \ y which defines the classical critical load. 
This locus of values may be determined in a number of ways; however, 
in the present case it is determined by assuming a prescribed rela­
tionship between Xx and \ y and another parameter X, and then de­
termining the least value of X. Doing so yields 

\ x = ce\; \ y = /3X 
where a and B (not both zero) take the values 0 < (a, 8) < 1. Thus the' 
eigenvalue equation can be rewritten as 

(kx
2 + ky

2)2+l 
X = - (15) 

2{akx
2+Bky

2) 

For the case 0 < B < a it may be shown that the minimum eigenvalues 

1; 0 < \ycl < 1 (16) 

where 

corresponding to the wave numbers 

kx
2=l; ky2' 0 (17) 

A second possibility 0 < a < B follows in a parallel manner and yields 
identical results with the interchange of XIci and Xycl as well as kx and 
ky in the aforementioned. The third possibility which arises is that 
due to the uniform compression case a = 8. For this situation the least 
eigenvalue is 

^xd ~ 1; \ y d ~ 1 

corresponding to the critical wave numbers 

(18) 

• (vtyW2
>x) + (1 — i0(i4,y + v%x)(wiXwiy) + -hiw3dxdy (12) kx

2 + ky
2= 1 (19) 
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Fig. 1 Interaction of the critical loads XXcl and X, 

The previous eigenvalue will be designated as Xcj or in dimensional 
form 

Ncr-
Et* 

6(1 - i/2)?2 

These results, which yield the buckling load interaction for the in­
dependent applied loads Nx and Ny, are presented in Fig. 1. The in­
teraction curves are obtained as the straight lines 0\A and 02A, re­
spectively. Excluding the point A, any point which lies on the line 0\A 
implies a state of single mode buckling. Similarly, any point on the 
line O2A leads to a state of single mode buckling. The point A repre­
sents the case when the applied loads are of equal magnitude and for 
which multimode buckling occurs as there exist more than one set of 
wave numbers kx and ky which satisfy the condition for a minimum 
eigenvalue. 

From this point on, the analysis will concentrate on the two-mode 
buckling problem which results when the critical wave numbers are 
given by 

k = -
2 

First mode 

Second mode (20) 

or by the identical situation when kx and ky are interchanged. The 
specification of this particular combination of kx and ky may seem 
rather arbitrary and quite restricitve; however, it represents an im­
portant stepping stone to the multiple mode buckling situations. That 
is, for the possibilities involving XXcl ^ Xycl, single mode buckling 
occurs which has been adequately treated elsewhere. In addition, for 
the situation XXd = Xyd, the foregoing combinations of kx and ky lead 
to the only two-mode problem which has nontrivial cubic terms in the 
potential energy. Thus, since higher-order instabilities contain the 
lower-order ones as special cases, it is appropriate to obtain a complete 
understanding of the lower-order problem. This has not been con­
sidered previously. 

Ini t ia l P o s t b u c k l i n g of a T w o - M o d e S y s t e m 
Following Koiter's method of analysis [2], the potential energy of 

a two-mode system can be expanded in a Taylor's series about the 
classical critical load of the perfect system. Upon expansion, the ap­
proximation to the potential energy becomes 

PE = (Nx -Nc,)P2'\uc} + (Ny -N c l )P 2*\u c} + P3°[uc] +... 

+ NxPn'[uc, u] + NyPu*[uc, u]+... (21) 

where u are initial imperfections which are taken in the same form 
as the buckling modes. The two sets of wave numbers given in the last 
section yields the critical modes 

Uc1 = [uc1, vc\ wc
1]T = t£i[0, 0, cos (x/q)]T 

U c 2 = [ u c 2 , u c
2 , w c

2 F = i £ 2 [ 0 , 0 , 

cos (x/2q) cos (y/3y/2q)]T (22) 

carrying out the appropriate integration, the quadratic terms be­
come 

P2*M = - i ( ^ 2 ) S o (23) 

(24) 

-Y 
Ql 

The terms involving the initial imperfections are 

Pu*M = 4(N'Sog2 

where £ i£2 are the imperfection amplitudes. The cubic contribution 
is given by 

Et rr"\ 
P3°[uc} = — zr -fe2(»c1 + wc*)*dx dy, 

2(1 - vz) JJ 3 
which can be expressed as 

P 3 ° M = P s W + i V K 1 , "c 2 ] + Pl2°[Uc\uc2] + P 3 ° [ "c 2 ] 

Upon evaluation, the various terms become 

Et 
Pi2°[uc\uc

2]: -(£i£22)(t3W8)So 
2(1 - v2) 

PtPWc1] = P2l°[Uc\ "c 2 ] = P3°[Ue2] = 0 (25) 

The fact that the last three terms vanish leads to the requirement [10] 
that higher-order quantities must be retained, in the first approxi­
mation to the potential energy. The appropriate quantity for the 
present problem is a quartic and with the inclusion of this term the 
problem falls into the classification of the parabolic umbilic catas­
trophe. The additional term which is required is P^luc1] — P2

X["2] 
where 

Pi°[uc 
Et 

[1 + q4k3] £i4S0 (26) 
2(1 - v2) 1.32 

and where u2 = \u,i, v% W2]T is the solution of the second-order per­
turbation problem. Following Koiter [2], u2 is given by the solution 
of 

P n x K 5u2] = - P 2 i ° K 1 , Su2] (27) 

subject to the appropriate orthogonality conditions for u2. The set 
of differential equations for u% v% w2 is then obtained as 

2 " 2 , K + (1 + v)v%xy + (1 - y)u2o £1 
,*2 . I2x' 

2v2,yy + (1 + v)u2,xy + (1 - v)v2,xx = 0 (28) 
t 2 

— [w2,xxxx + 2w%xxyy + w2,yyyy] + h\W2 

6 
2(1 — v2) 

+ [Nxw2 ,XX 
+ NyW2iyy] 

Et 
1 / 2x\ 

= - - £i2t2fe2 1 + cos — 
and where it is noted that the influence of the boundary conditions 
has been omitted and are replaced by a periodicity requirement. 

The solution of the aforementioned differential equations is of the 
form 

/ 2x 
u2= (si)(£i2) sin — 

u2 - s2 

w2 = s 3 | i 2 + s4£i2 cos 
2x 

(29) 

Upon substitution of the eigenvectors into the potential energy and Since only derivatives of i>2 appear in P2
x[ii2] then s2 need not be 
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evaluated. Thus, substituting the expressions for u2 and 102 into the 
differential equations, the constants &\, S3, and s4 can be evaluated. 
Doing so yields 

«i : 
t2 _ _t?kz _ _t^ki 

s3- „ , . S * - ~ l 8 k l 

and therefore the desired modification to the quartic term is 

- J V M 
Et 

2(1 - v2) \q 

1 i y (fc2)
2 

32 144 ft 
£i4So (30) 

Now, assembling the results from equations (23)-(26) and (30), the 
approximation to the potential energy becomes 

Et 
PE = -

2(1 - v2) \q 
tYso . li11^ tf + \tf 

+ ± (1 - \y) h# + I K2^2
2 + C4„£i4 

IZ o o 

b o 

--K :&& 

where 

C4o = - I + - K 3 
2 T^. 

(3D 

(32) 

and where K2 = ( Q 4 A ) k2, K3 = q4ka are nondimensional spring 
constants. The equilibrium equations and stability determinant for 
the foregoing may now be obtained directly as 

-8 -6 -4 P 2 

1.4 

1.2 

1.0 

•8 

•6 

4 

•2 

0 

-•2 

-4 

-8 

TYPE ^ 

• 0 N E | TYPE 
^ TWO 

•2V .4 6 •8 

Fig. 2 Range of spring constants K2 and K3 which leads to the parabolic 
umbilic type one and type two models 

(1 - Xx)£i + ~K2tf + 24C40£i3 = X*£i 
4 

i ( l - X J + § ( l - X y ) &2 + - K 2 £ i £ 2 

: - ( X x + 3Xy fe (33) 

and 

(1 - XJ + 72C40£i2 

- ^ £ 2 

-Kfo 

- d - x j + - ( i -Xv) 

+ i * * 

(34) 

respectively. 

Transformation to Standard Form 
The previously obtained potential energy expression can be 

transformed to the standard form of the parabolic umbilic by intro­
ducing the nondimensional quantities x, y, L\, L% t\, and t<i (x and 
y not to be confused with coordinates of plate). The appropriate ex­
pressions are 

x = C*£i, y = [K2/8C*V'^2 

1 
Li = — ( 1 - X J / C * 2 L2 = 

12 
[(l-\x) + S(l-\y)]{C*/K2] 

€1 = - [Xx/C*]?i £2 = - (Xx + 3Xy) VC*/8K 2 ? 2 
6 6 

where 

Thus, after division by a constant, the potential energy is transformed 
to the form 

PE = ± x* + xy2 + Lix2_+ E<iy2 — t\x — tiy 

where the " + " or " - " signs correspond to C40 being positive or neg­
ative, respectively. The stability problem is therefore characterized 

by four control parameters (Li, L2, ei, e2) which are defined by the 
loads Xx and Xy and the initial geometric imperfections £1 and| 2 . The 
two cases defined by a positive or negative coefficient C4o result in 
distinctive stability problems and these are termed the parabolic 

, umbilic types one and two, respectively. Fig. 2 shows the range of 
parameters K2, K3 which lead to either of these possibilities. Here, 
the hatched region corresponds to the type one case, the line repre­
sents a singular case when C4o vanishes (which is not treated in the 
context of the present analysis) and the remainder is the type two 
case. 

Results 
In order to show the influence of the quartic term as well as that of 

independent loads a series of representative curves demonstrating 
these parameters has been evaluated. The results are for the particular 
two-mode case corresponding to the modes of equation (22) and in 
the form of selected critical load-initial imperfection curves resulting 
from the stability problem described by equations (33) and (34). For 
the purposes of illustration K2 and K3 have been chosen as K2 = 0.133, 
Ka = -0.4375 and -0.5955 which yield % K2 = 0.1 and 24C40 = 
± 0.177 and where the type one and type two cases occur for positive 
and negative values of C40, respectively. Further, for comparison 
purposes, in Fig. 3 the results for C40 = 0 are also presented. It is felt 
that the foregoing choice of coefficients yields the possibility of ob­
taining an unbiased parameter study for the present problem. 

Fig. 3 demonstrates the differences in imperfection sensitivity for 
the type one and type two cases and a further comparison curve when 
the quartic term is omitted is also evaluated. It is noted that the ap­
plied loads are constrained to be equal (Xx = \y). Of importance in 
this figure are the changes in imperfection sensitivity even for small 
imperfections and perhaps more importantly the existence of a critical 
load curve only in the type two case for positive values of the imper­
fection. Thus, if the quartic term is omitted in the analysis, there are 
fundamental changes in the critical load behavior of the type two case, 
even in an asymptotic sense. 

Figs. 4 and 5 are denoted to an evaluation of the applied loads, X* 
and Xy, being independent. This feature manifests itself in the factor 
e. For the situation presented in Fig. 4 it may be appreciated that there 
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Fig. 3 Critical load-imperfection curves for equal applied loads (X„ = Xy ) 
and £2 = 0 

are indeed changes in the critical loads as a function of t, this change 
being quite uniform. The most interesting aspect is that for t positive 
the critical load curve intersects the vertical axis. This implies a de­
crease in \Xcr even for£ 1 = 0 and in addition that the type one situation 
becomes imperfection sensitive to positive £1 which was not the case 
for equal applied loads CX* = Xy). Thus, although it is true for only 
very small positive £1, there has been a fundamental asymptotic 
change in the critical load-initial imperfection result. It is further 
noted in Fig. 4 that the type one and type two cases yield asymptoti­
cally similar results for negative £1 although the results do show dif-
ferenttrends even for small imperfections. Fig. 5 considers the case 
when £1 = 0 and £2 varies. The features which are predominant are 
that the type one and type two problems yield essentially similar 
trends and that the parameter e causes a quite uniform shift in the 
critical load-imperfection curve. 

S u m m a r y and C o n c l u s i o n s 
This paper has presented the initial postbuckling analysis of a plate 

loaded under the action of two independent in-plane loads. It has been 
noted that in general terms single mode buckling occurs if the applied 
loads are of unequal magnitude and multiple mode buckling occurs 
for equal magnitude loads. One particular aspect of the multiple mode 
case has been investigated. That is, a two mode case which results from 
the lowest order coupling in the problem. It has been further noted 
that for this situation the problem takes the form of the parabolic 
umbilic catastrophe and thus for a complete representation of the 
initial postbuckling behavior, a higher-order quartic term in the po­
tential energy as well as independence of the applied loads must be 
permitted. The influence of these factors are then investigated and 
it is fair to say that the inclusion or exclusion of the quartic term can 
alter the postbuckling behavior completely while the variability of 
the applied loads results in some not unimportant changes in the 
overall as well as asymptotic character of the critical load-initial im­
perfection results. 

Two additional factors related to this presentation should be 
mentioned. First, the two mode analysis considered is only part of a 
more complex multimode situation; however, the coupling terms for 
the more general case are of fourth order or higher. In addition, the 
present problem will always exist as a reduction of the more general 
case. Second, the form of the cubic terms in the potential energy a£i£22 

obtained in the present analysis leads directly to a consideration of 
the parabolic umbilic. This is not the most general situation as the 
same results will occur if the cubic terms are of a more complete form 
A£i3 + B£i2£2 + C£i£2

2 + 0 £ 3
3 where the coefficients A, B, C, D are 

related such that this cubic form has two equal roots. Thus higher-
order terms in the potentfal energy as well as independence of applied 

-•'l ' ' -05 ' ' 0 ' 05 ' ' ' ' ^""J 

Fig. 4 Critical load-imperfection curves for unequal applied loads ( \ y = X» 
+ 6) and £2 = 0 

Fig. 5 Critical load-imperfection curves for unequal applied loads (Xy = Xx 

+ ejand^i = 0 

loads may play a role even when the cubic terms in the potential en­
ergy are apparently quite complete. 
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On the Localization of Buckling 
Patterns 
The possibility of localization of a buckling pattern is investigated for a class of structures 
in which the initial buckling mode is periodic. A simple model indicates that the basic 
mechanism of localization involves a bifurcation at the maximum load point. This model 
also illustrates a clear analogy between localization of a buckling pattern in a structure 
under compressive loading and the phenomenon of necking in a bar under tensile loading. 
An analysis of the bifurcation that leads to localization, carried out for the more realistic 
structural model of a column on a softening foundation, demonstrates a delay between 
the maximum load point and the bifurcation point. A finite-element analysis of an elas­
tic-plastic plate strip under axial compression shows the development of localization for 
a low hardening material, whereas localization does not occur in a plate made of a high 
hardening material for which no maximum load is reached. 

Introduction 
A frequent observation in structural buckling is that the final 

buckled configuration of the structure involves a localized deforma­
tion pattern, in contrast with the periodic deformation pattern as­
sociated with the critical buckling mode. The structures prone to this 
type of localization have the common property that the applied 
load-deflection curve achieves a maximum. For example, Moxham 
[1] has observed the behavior illustrated in Fig. 1 in over 100 tests 
carried out on steel plates and has used a model based on an assembly 
of single plates hinged together to argue that continued growth of all 
buckles is not stable beyond the maximum load [2]. 

In the present paper such localization of buckling patterns is dis­
cussed in a broad perspective. First, for a simple model we show that 
the basic mechanism of localization is a bifurcation at the maximum 
load point. This type of model reveals that localization of a buckling 
pattern is in various ways analogous to necking in tensile bars. 

Next, for an elastic column on a softening foundation, the bifur­
cation, at which the initial periodic buckling pattern loses uniqueness, 
is analyzed in detail. In particular, we show, again analogous to the 
situation prevailing in tensile necking, that in a realistic structural 
model there is a delay between the maximum load point and the point 
of bifurcation that leads to localization. For this structure, the effect 
of geometric and material parameters on this delay is explored. 
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University of Denmark, 2800 Lyngby, Denmark. 
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Finally, we carry out a finite-element analysis of a long simply 
supported rectangular plate made of a strain-hardening elastic-plastic 
material. For a particular plate geometry the bifurcation point, at 
which the initial periodic buckling pattern loses uniqueness, is de­
termined. However, here, primary emphasis is given to analyzing the 
development of localization. 

Simplified Models 
The basic mechanism involved in the localization of a buckling 

pattern is revealed by a simple, bar model (Fig. 2) which can be re­
garded as a one-dimensional model of a long periodically buckled 
structure under compressive loading. 

Consider a homogeneous axially compressed bar constrained to 
remain straight, but free to slide in the axial direction (Fig. 2a). The 
axial stress-strain curve is taken to be a nonlinear function of the 
strain. This constitutive law models the axial force versus average axial 
strain dependence in a structure, such as a long simply supported plate 
strip, including the effects of any periodic buckling pattern which has 
developed. Thus we take the effects of both geometric and material 
nonlinearities to be incorporated into the nonlinear stiffness of the 
bar. 

For a bar of length L, the end displacements are taken to be pre­
scribed at x = 0, L. The incremental relation between the axial force 
N and strain e is 

N=Ce (1) 

where C is the instantaneous modulus and u is the axial displacement. 
We have used a small strain formulation since in the buckling prob­
lems of interest here the strains do remain small. 

Bifurcation away from a uniformly strained state is governed by 
the variational equation 

57=0 sl 
Jo 

Cie dx (2) 
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(b)

Fig. 2 Axially compressed bar model; (a) a homogeneous bar with 115
stress-strain curve; (b) a bar undergoing localization. In (b), the stress-strain
curve In the localized mode ( - - - ) 1$ contrasted with that for a homogeneous
bar (-)

(7)

~
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(0)
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1T=t) A::) S() A(1= IT
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L = 2LA + LB

Hence, such an alternative deformation state is possible only when
C = 0, i.e., at the maximum load point.

These analyses are quite analogous to the similar one-dimensional
analyses of necking in a tensile bar. As for the tensile bar [3,4], the
extent of the region of localized deformation is determined by factors'
not incorporated into the one-dimensional model. For example, in
an axially compressed plate strip with a periodic buckling pattern,
(J can be associated with the axial load and € with the node-to-node
shortening divided by th~ distance between nodes. The lo~alized .
deformation pattern then covers at least one buckle in the funda­
mental periodic pattern.

The postlocalization behavior can readily be determined within the
context of this simple bar model. We let L denote the total length of
the bar and f denote the total strain increment. Hence, as shown in
Fig.2(b)

Fig. 1 Final collapse mode of an axially compressed steel plate strip, from and
Moxham [11

f = (1 - p) fA + P fB (8)

where p = LBIL.
Incremental equilibrium (4) then gives

where (') denotes an increment and subscripts A and B denote
quantities associated with the corresponding regions in Fig. 2{b).

Since

(9). ir [ ( ) CBl€=- p+ I-p-
cB CA

(4)

At bifurcation CB = 0 (implying a smooth stress-strain curve at bi­
furcation for this model), while CB is negative after the maximum
load. As long as CA is algebraically larger than CB, the stress-strain
curve corresponding to localization will lie below the one corre­
sponding to homogeneous deformation, as shown in Fig. 2{b). Note
that for a given CBICA, the smaller p is, the more rapidly the load
drops. If the bar in Fig. 2 is considered as a model of an axially com- .
pressed plate strip, then (9) gives the load-end shortening.curve that
emerges from Moxham's model [2].

In addition to the axially c~mpressed plate strip this simple bar
model also has a bearing on other buckling ·problems. Among these
are a column supported by an elastic or elastic-plastic foundation, a­
column continuous over several constantly spaced supports, which
are free to move in the axial direction, and a stiffened panel contin­
uous over several bays. In these cases a maximum load may be reached
due to elastic-plastic material behavior or, in the panel, due to geo­
metric nonlinearities [5, 6].

. A similar simple model can also be used for the problem of tube
bending that has attracted some interest in recent years [7~9]. In tube

.bending a maximum moment is reached due to the ovalization of the
cross section (the Brazier effect), and possible buckling into a short-
wave pattern on the compressed side of the tube will further decrease

(5) . the bending stiffness. If the tube yields plastically, much less ovali­
zation is needed before the maximum moment is reached.

Consider the tube as a uniform bar oflengthL bent into a circular
(6) .shape with current radius R (Fig. 3). The current angle IJ between the'

(3)n = 1,2,3 ...
• n7rXa = sm--

L

iTA = CfA

Incremental equilibrium implies

are all critical simultaneously for C = 0, i.e., at the maximum load. If
no maximum is reached, bifurcation does not occur. Note that in this
very simple model the classical bifurcation of a geOmetrically perfect
structure into a periodic buckling pattern effects the stiffness C, but
within the context of this model is not a bifurcation, since the average
axial strain f remains uniform.

The same conclusion can be reached by a different analysis. Con­
sider incremental deformations from the homogeneous state. We
investigate whether a localized region (B in Fig. 2{b» can undergo
incremental straining different from that in the surrounding material
(A in Fig. 2(b».

Incremental equilibrium requires

where n denotes the difference between two solutions corresponding
to the same prescribed end displacements. Bifurcation modes ofthe
form
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n= 2 BIFURCATION MODE 

Fig. 3 Tube bent into a circular shape with current radius R, by prescribing 
the angle 0 

end cross sections at x = 0, L is taken to be prescribed, but otherwise 
the ends can slide freely. Referred to the current neutral axis of the 
bar the incremental relations between the bending moment M, the 
axial force N, the bending strain K, and the axial strain ( are 

M = Dk k = w x 

N=Ce t = u,x + 

(10) 

R 

where D and C are instantaneous moduli and shallow arch expressions 
are used for the strains in terms of the tangential and radial dis­
placements u and w. Bifurcation is governed by the variational 
equation 

51=0 1 = C (Cee + Dkk + Niuxib x) dx (11) 
J o ' ' 

and with N = 0, C > 0 bifurcation into modes of the form 

nirx n-KX 
• ai cos i2 = a2Sin n = 1, 2, 3 . 

Li LI 

(12) 

is critical for D = 0, i.e., at the point of maximum bending moment. 
This means that even for prescribed edge rotations the circular shape 
is unstable beyond the point of maximum moment. The symmetric 
n = 2 mode, sketched in Fig. 3, leads to the well-known final collapse 
mode, in which the tube forms a sharp kink. Higher-order modes 
would lead to more kinks. 

We note that equations paralleling (4)-(9) can also be written down 
for this tube bending problem. 

E l a s t i c C o l u m n on a S o f t e n i n g F o u n d a t i o n 
The structure considered is a linear elastic column of length L, 

having bending stiffness EI and subjected to an axial load P as shown 
in Fig. 4. The column rests on a foundation that provides a restoring 
force per unit length F. 

In the presence of an initial imperfection W(X), the governing 
differential equation takes the form 

d2W „Td*W d2W „ 
EI + P r + .F = 

dX* dX2 dX2 (13) 

Here W(X) is the lateral displacement of the column in addition to 
the initial deviation from the straight configuration measured "by 
W(X). 

The restoring force provided by the foundation is a piecewise linear 
function of the additional displacement W(X), as sketched in Fig. 
4, so that 

(14) 
KtW \W\^W0 

l±XilV0 + K2(W =F W0) | W\ > Wo 

with the upper sign taken for IV > 0 and the lower for IV < 0 and 
K\ > K2 for a softening foundation. 

Here, the displacement Wo is termed the yield point of the foun­
dation. We introduce the nondimensional quantities 

x = (KJEiyH X w = W/Wo w = W/Wo 

•• Kz/Kt \ = -P/(K1EI)1'2 

2 

(15) 

Fig. 4 Column on a softening foundation; the insert shows the piecewise 
linear force-deflection curve of the foundation 

where, since Kt > K2, P < 1. Substituting (14) and (15) into (13) 
gives 

' + 2Xw" + w -2Xw" | i u | « l 

w"" + 2\w" + f3w = -2\w" T (1 - /3) | w | > 1 

where ( )' denotes d{ )/dx. 
The column is taken to be simply supported at its ends so that 

(16) 

w(0) = w(l) = 0 w"(Q) = w"(l) = 0 (17) 

with / = (Ki/EI)1'* L, 
For a perfect column, w = 0, the initial bifurcation mode w and the 

corresponding bifurcation load are 

. nirx 
•• s i n A c 

fn7r\2 p n r | - 2 

r + (18) 

where n is the integer that minimizes Xc. For convenience, we focus 
attention on columns with length I = nir, for which 

1 (19) 

Now, consider a column with an imperfection, of amplitude 5, in the 
shape of the critical bifurcation mode (19). The solution to (16) is 
simply 

X5 . 
w(x) : (20) 

so long as X5 =S 1 — X. For larger deflections, the softening branch of 
(14) will be activated. One solution has, as does (20), n half waves over 
the length of the column. The locations of the yield point, i.e., the 
positions at which \w\ = 1, are given by (k - 1/2) 7r - y and (k — 1/2) 
X IT + 7 for each half wave, k = 1, 2 . . . n. The parameter y is deter­
mined by the analysis. 

Due to symmetry, we can focus on the quarter wave for which 
0 < x < 7r/2. In this interval the solution to (16) is 

w(x) [ wi(x) 0 < % < T r / 2 - y 

m(x) n72 - 7 < x < TT/2 

Here, 

w\{x) = 2 Re jci sinh sx\ + -
\8 

W2(x) = ri cos p(x - TT/2) + r2 cos q(x. - TT/2) 

X5 
+ -

,8 + 1 
sin* + | l - - j 

(21) 

(22) 

(23) 

where 

x-Vx 2 - ^ q2 = \ + Vxrzrp s2 = -x + i vT^x5 

(24) 
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Fig. 5 Load versus lateral deflection amplitude for a column on a softening F i g 6 L o a d v e r s u s lateral deflection amplitude for a column on a softening 
foundation with /3 = 0.1 foundation with 0 = 0.25 

with i = V—T and Re { | denoting the real part of a complex quantity. 
The form of w2(x) displayed in (23) presumes X2 > /3, which holds for 
the range of parameters of interest here. 

The complex constant c\ and the two real constants r i and r% are 
determined from the requirement that the deflection, the rotation, 
the bending moment, and the shear force are continuous at x = 7r/2 
— y. In terms of the functions w\(x) and w2(x), these conditions be­
come 

; W2 U>i = U>2 U>i ••w2" wi"! = w2'" (25) 

for x = TT/2 — 7. In addition, for consistency, there is the requirement 
that 

•j(x/2 - 7) = 1 (26) 

The relations (25) give four equations for the four coefficients; the real 
part of c 1, the imaginary part of c 1, n, and r2. The subsidiary condition 
(26) fixes X for a given 7 . 

These equations are solved by a straightforward numerical proce­
dure. Figs. 5 and 6 display the results in terms of curves of load X 
versus the lateral deflection amplitude wm where 

k - \ k = l,2,...n (27) 

In Fig. 5, (8 is taken as 0.1 while in Fig. 6 results for a somewhat 
stiffer foundation /? = 0.25, are illustrated. In each figure, the dotted 
lines denote the limiting value of the load for large wm, namely, 
(J3 + l)/2, and results are displayed for a perfect column 5 = 0, and for 
imperfection amplitudes 5, of 0.1 and 0.5. Of course, in this periodic 
mode, the load-lateral deflection curves are independent of the length 
of the column. 

Bifurcation from this state is possible when there exists a solution 
to the homogeneous version of (16), which satisfies the boundary 
conditions (17) and the continuity conditions (25) at each 

(k - 1/2) vr ± 7, k = 1, 2 . . . n. 

Since each of (16) is a constant coefficient fourth-order ordinary 
differential equation, the homogeneous solution can be expressed as 
the sum of four complex exponentials, there being two pairs of com­
plex conjugate exponentials. For a column of length mr, the homo­
geneous solution to (16) contains 2(2n + 1) arbitrary constants. At 
each of the 2n locations (k — 1/2) ir ± 7, k = 1, 2 . . . n, the four con­
tinuity conditions (25) must be satisfied. Additionally, the homoge­
neous boundary conditions (17) at each end of the column give four 

(a) 

(b) 

Fig. 7 (a) The periodic lateral deflection pattern for ft = 0.1 and 8 = 0 at 
the bifurcation point for / = Sir. (b) The bifurcation mode, (c) An arbitrary 
linear combination of the periodic mode and the bifurcation mode, illustrating 
the tendency to localization 

equations. Thus there are 8n + 4 homogeneous equations to be sat­
isfied by in + 2 complex constants. When the determinant of the 
coefficients of the equivalent system of (8n + 4) X (8n -I- 4) real 
equations vanishes, a nontrivial solution exists to the bifurcation 
equations. 

Since the load X is taken as the prescribed quantity, this determi­
nant necessarily vanishes at the maximum load point. However, the 
corresponding eigenm'ode is not a bifurcation mode, but is some ar­
bitrary multiple of the solution (21)-(23). The agreement between 
this trivial mode and (21)-(23) served as a check on the numerical 
procedures. 
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Fig. 8 Load versus average axial strain for a rectangular plate with n = 10, 
<Ty/E = 0.00337, hlb = 0.035, v = 0.3 

A straightforward numerical search procedure was employed to 
determine the value of the lateral deflection amplitude at bifurcation 
from the configuration described by (21)-(23) for various column 
lengths nit. For a perfect column this is a secondary bifurcation 
point. 

As will be discussed in conjunction with Fig. 7 subsequently, the 
bifurcation mode has a number of half waves different from n, so that 
a linear combination of the primary periodic mode and the bifurcation 
mode can result in preferential growth of one of the buckles. However, 
to distinguish between mode snapping to the wavenumber of the bi­
furcation mode and localization involves postbifurcation consider­
ations. If the springs are elastic-plastic, in the sense that unloading 
occurs with stiffness K\ in (14) (the dash-dot line in Fig. 4), then lo­
calization rather than mode snapping is anticipated. In this case un­
loading initiates at bifurcation and the relative amplitudes of the 
periodic mode and the localized mode, at bifurcation, are set by the 
Shanley condition [10,11,13]. 

Bifurcation points for various values of n are shown in Figs. 5 and 
6. The bifurcation modes are constrained to be symmetrical about the 
center of the column x = rnr/2. For the boundary conditions employed 
here, bifurcation modes antisymmetrical about x = mr/2 occur 
somewhat before the ones shown. 

In Fig. 5, where /3 = 0.1, the bifurcation points for column lengths 
of 9ir (n = 9) and 5w (n = 5) are shown. As the length of the column 
increases, the bifurcation point approaches the maximum load point 
which is the bifurcation point according to the simple model discussed 
in the previous section. This is analogous to necking in a tensile bar 
[3, 4] where for a finite length bar the onset of necking is somewhat 
delayed beyond the maximum load point. In Fig. 6 where the foun­
dation is somewhat stiffer, /? = 0.25, bifurcation occurs at larger de­
flections, wm, than in Fig. 5 where $ = 0.1. For a fixed column length, 
it can be seen that the bifurcation point occurs further beyond the 
maximum load point as the harmonic imperfection amplitude & in­
creases. 

Fig. 7 shows, for j3 = 0.1 and I - 5ir, the periodic deflection pattern, 
the bifurcation mode and an arbitrary linear combination of these 
indicating the tendency to localization. For the antisymmetric bi­
furcation mode, which occurs somewhat earlier, localization would 
occur at one end of the column. In the analysis of the onset of necking 
in tensile bars [4] an analogous situation is encountered in that under 
the idealized boundary conditions employed in that analysis, the neck 
is predicted to form at one end of the bar, unless symmetry about the 
midplane of the bar is imposed. 

Elastic-Plastic Plates 
The rectangular plates considered in this section have length a and 

width b in the X\ and ^-directions, respectively, and the thickness 
is h. Using von Karman plate theory the in-plane components of the 
Lagrangian strain tensor are approximated by 

e o/3 = ~ ("a,0 + "fta + ">,a Wfi), Kaff = ~W>a/3 

(28) 

where ua are the in-plane displacements and w is the lateral dis­
placement of the plate middle surface. The coordinate normal to the 
middle surface is %3 and ( ),„ denotes partial differentiation with 
respect to the in-plane coordinates. 

The theory of plasticity employed is small strain J2-H0W theory with 
isotropic hardening, using a uniaxial stress-strain behavior repre­
sented by the following piecewise power law 

la 
* • " - " - Uy 

(29) 

for a < <jy 

- - + 1 for 

Here a and e are the uniaxial stress and strain, E is Young's modulus, 
ay is the initial yield stress, and n is the strain-hardening exponent. 
At each stage of the computation the membrane stress tensor Nap and 
the moment tensor Map are determined from the stresses by inte­
grating through the thickness, and the incremental principle of virtual 
work is used as the basis for a numerical solution. The details of the 
equations are given in [12] and shall not be repeated here. 

The plates are taken to be simply supported at all four edges 

(30) 
w = 0, Mu = 0 at xi = 0,a 

w = 0,M2 2 = 0 at x2 = 0, b 

The loaded edges are constrained to remain straight, whereas the 
other two edges are free to pull in 

" I (0, x2) = —ui(a, Xi) = U 

N2! 0 at x2 = 0, b 

Ni2 = 0 at x\ = 0,a and X2 = 0,b (31) 

Here, U is the prescribed edge displacement and in the following the 
parameter X is taken to be proportional with the resultant axial force. 
Furthermore, only deflections symmetric about the lines X\ = all and 
x2 = ft/2 are considered here, so that symmetry conditions are pre­
scribed along these two lines and only one quarter of the plate needs 
be considered in the numerical solution. 

Imperfections in the initial stress-free state of the plate are specified 
in the form of an initial deflection 

_ , ,Z Z r/o WM2> . nlTTXl . TTX2 

w = h(£1 + £2e-[<2*i-a>/<>]2) sin sin 
a b 

(32) 

where £i is the amplitude of an imperfection in the shape of the bi­
furcation mode and £2 represents the amplitude of a localized im­
perfection. Thus the total lateral deflection w is the sum of the initial 
deflection w and the further deflection due to the loading. 

The thickness to width ratio h/b = 0.035 and material parameters 
(Ty/E = 0.00337, v = 0.3, and n = 10 used in [12] are also chosen here. 
Furthermore, a/b = 3 is chosen with m = 3 in (32), corresponding to 
square buckles; even though the minimum bifurcation load in this case 
is obtained for buckles 0.814 times as long as the plate width. A reason 
for this choice is that the bifurcation load for square buckles is only 
2.5 percent above that for the critical wavelength, and square buckles 
grow faster prior to plastic yielding. 

Numerical solutions of the incremental equilibrium equation are 
obtained by dividing one quarter of the plate into 6 X 2 rectangular 
conforming finite elements. Within an element each displacement 
component is approximated by products of Hermitian cubics in the 
Xi and %2-directions, and integrals over the middle surface are eval­
uated by 4 X 4 point Gaussian quadrature, with 7 point Simpson in­
tegration through the thickness. 

Fig. 8 shows a plot of the load parameter X normalized by the critical 
value Xc for square buckles versus the average axial strain e = 2U/a. 
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Fig. 9 Load versus maximum lateral deflection amplitude for a rectangular 
plate with n = 10, <ry/E = 0.00337, h/b = 0.03S, v = 0.3 

Fig. 9 shows A versus the maximum displacement wm = w{al2, b/2). 
For | x = 0.01 and £2 = 0 three equal buckles grow in a stable manner 
until a bifurcation point is reached a little after the point of maximum 
axial force. The bifurcation point is characterized by a nonzero solu­
tion of the variational equation 

51 = 0 I- X1^ pean + Ma0Kap + NaffUi,awiP} dA = 0 (33) 

for fixed edge displacements. Thus, at this point, the uniqueness of 
the periodic solution is lost in agreement with the prediction of the 
simplified bar model and with the behavior of the elastically sup­
ported column. 

Now in order to follow the process oflocalization a slightly 
nonuniform imperfection is considered with £1 = 0.01 and £2 = 0.001. 
In Figs. 8 and 9, the result is compared with the prebifurcation solu­
tion obtained by considering a square plate with just one buckle 
(alb = 1, £1 = 0.01). Near the bifurcation point the deformations 
suddenly concentrate in the central buckle with rather little defor­
mation of the other two buckles. At the same time the A — e — curve 
(Fig. 8) starts to decay more rapidly, and, as for the simple bar model, 
it is evident that a longer plate localizing into a single buckle will give 
a stronger decay of this curve. The load-deflection curve in Fig. 9 
would not at all be affected by localization, if the plate had straight 
frictionless hinges built in between buckles at the initial nodal lines 
as in the model problem considered by Moxham [2]. However, in the 
real plate a clamping effect from the neighboring plate material will 
oppose localization into a single buckle, resulting in the slower decay 
after the bifurcation point shown in Fig. 9. 

The behavior of an initially perfect plate, w = 0, has not been ana­
lyzed here. However, prior to any localization it is well known [12,13] 
that the plate will remain flat up to the critical bifurcation point, at 
which sinusoidal deflections start to grow. On the postbifurcation path 
a maximum load is reached at small but finite deflections [12,13], so 
according to the simple model this point offers the earliest possibility 
of a secondary bifurcation and subsequent localization. As for the 
model of a column on a softening foundation, it is expected that the 
delay between the maximum load point and the bifurcation point is 
somewhat greater for an imperfect plate (Figs. 8 and 9) than for a 
perfect plate. 

As shown in [12], a maximum load point and the corresponding 
imperfection-sensitivity for rectangular plates occur only for low 
strain hardening. Therefore, the previous computation with imper­
fections f 1 = 0.01 and £2 = 0.001 is repeated for a high hardening 
material, n = 2.5. The load versus axial compression curve is shown 
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Fig. 10 Load versus average axial strain for a rectangular plate with 
n = 2.5, OylE = 0.00337, h/b = 0.035, V = 0.3 

in Fig. 10. Here no localization occurs, which is expected, as no max­
imum load point is reached. The difference is most clearly illustrated 
by the plots in Fig. 11 of the ratio between the maximum deflection 
wm = w(a/2, b/2) and the deflection w\ = w (a/6, 6/2) at the center 
of the first buckle. Initially this ratio is close to 1.1, due to the im­
perfections chosen, but as the buckles grow with increasing load the 
ratio approaches unity. For n = 2.5, where no maximum is reached, 
this tendency of stable uniform growth continues, whereas for n = 10 
the ratio starts to increase rapidly at the bifurcation point a little 
beyond the maximum. 

The stable uniform growth of all buckles found for n = 2.5 agrees 
with the behavior of elastic plates. It is of interest to note here though 
that long elastic plates can experience a secondary bifurcation in the 
advanced postbuckling region [14,15]. However, this bifurcation leads 
to snapping into a periodic mode with a higher axial wave number, 
which then grows for increasing load. 

The elastic-plastic plates considered here have the particular aspect 
ratio alb = 3 and only symmetric modes are accounted for. It is ex­
pected that, as for the column on a softening foundation, considering 
longer plates and including nonsymmetric bifurcation modes would 
result in bifurcation more closely following the maximum load 
point. 

The occurrence of a bifurcation just after the maximum load does 
not, of course, effect the load-carrying capacity of a perfect plate or 
of a plate with a periodic imperfection. However, for a plate with a 
localized as well as a periodic imperfection, there is a possibility that 
some imperfection-sensitivity associated with the localization bi­
furcation might accelerate the growth of the nonuniformity of the 
buckling pattern and result in a reduced maximum load. It is therefore 
of interest to notice in Fig. 11 that, on the contrary, up to the maxi­
mum load the tendency is to smooth out the initial nonuniformity in 
the deflection pattern. 

C o n c l u d i n g R e m a r k s 
A wide variety of structures, for which the applied-load deflection 

curve achieves a maximum, are susceptible to the type oflocalization 
discussed here. The basic mechanism of localization involves a bi­
furcation, subsequent to the maximum load point, at which the initial 
deformation pattern loses uniqueness. Thus, as illustrated in Fig. 1, 
the final collapse mode in a structure prone to localization bears no 
resemblance to the deformation pattern prevailing at the maximum 
load point. However, it is the prelocalization deformation pattern 
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Fig. 11 Ratio between lateral deflection amplitudes at the central buckle 
and at the first buckle versus average axial strain for a/b = 3, £1 = 0.01, 
| 2 = 0.001, <TV/E = 0.00337, hlb = 0.035, V = 0.3 

which determines the maximum load point. Furthermore, at least for 

the plate strip analyzed here, small localized imperfections do not 

significantly effect the structure's load-carrying capacity. Hence, the 

fact that localization occurs does not invalidate an analysis directed 

toward determining the maximum support load which restricts at­

tention to periodic modes and imperfections. On the other hand, there 

are applications, such as shock-absorbing devices, in which the final 

collapse mode is a significant concern. 
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Dynamic Response of a Plate With 
Arbitrary Shape 
This paper is concerned with a method for solving dynamic response problems of a thin 
plate with arbitrary shape based on the classical plate theory. The result for an arbitrarily 
shaped plate subjected to general transient loads is obtained by utilizing the Fourier ex­
pansion collocation method. As an example, the dynamic response of a truncated ellipti­
cal plate subjected to a uniformly distributed exponentially decaying impact load is in­
vestigated. To verify the present method, numerical calculations are also carried out for 
a circular plate, and the results obtained are compared with the exact ones. 

1 I n t r o d u c t i o n 
A variety of structures used in land, sea, air, and space vehicles is 

subjected to dynamic loads. Various plates are used as elements of 
structures, and many researches on the dynamic problem of circular, 
rectangular, and elliptical plates have been reported based on the 
exact analysis. For the plates with arbitrary shape, general approxi­
mate methods such as the finite-element, finite-difference and 
point-matching methods have been used [1-3]. These methods have 
many advantages for solving eigenvalue problems of a plate with ir­
regular boundaries. However, in such methods, a large-size digital 
computer is required, and in general, there exist many computational 
difficulties to obtain good results in cases of higher mode vibration 
and dynamic response problems [4]. Recently the more rigorous 
methods have been given by Laura, et al. [5, 6], and the author [7, 8]. 
In those studies there are some restrictions to the shape of the 
boundaries, and in general, the analysis must be developed on each 
problem. Therefore it seems to be important to give a more direct 
method from which the results with reasonable accuracy being ob­
tained easily using a minicomputer. This paper is concerned with a 
direct method for dealing with dynamic response problems of a plate 
with arbitrary shape. The method developed in the author's previous 
report [9] concerning dynamic response problems of a membrane of 
arbitrary shape is expanded into this problem. In the analysis, the 
curved boundaries are divided into small segments, and the boundary 
conditions are satisfied directly using the Fourier expansion collo­
cation method. To verify the present method, the results obtained 
are compared with exact ones for a circular plate. Numerical calcu-

1 After April 1, 1980, Department of Mechanical Engineering, Faculty of 
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lations are carried out for a truncated elliptical plate subjected to a 
uniformly distributed exponentially decaying impact load. 

2 General Formulation of a Plate With Arbitrary 
Shape 

When the origin of polar coordinates r and d is taken at an arbitrary 
point in a plate, the equation of motion of the thin plate, in the coor­
dinates r, 6, is 

D V 2 V 2 I D + phd2w/dt2 = q (1) 

where w is the transverse displacement, V2 is the two-dimensional 
Laplacian operator, p is the mass density, h is the thickness, D = 
Ehs/12H is the flexural rigidity, E is Young's modulus, v is 
Poisson's ratio, t is the time, and q is the applied dynamic load. By 
applying Laplace transformation fir, 8, s) = J o f(r, #> t)e~stdt to 
equation (1), the solution for a solid plate, under the assumption of 
all initial conditions being zero, is obtained as [7] 

W = il/D) E L «„ 
1=1 n=0 

AinJni<xr) + BinIniar) 

+ iw/4a2) £q,„ {«/„(«•) Y»(«£) - Yniar)Jnia$ 

+ (2/TT) [/„ iar)Kn (a£) - Kn (atr)In (a£)] £d£ *,„ (2) 

where 

X 2TT 

qir, 6, s)<bind6, a 4 = -s2ph/D 

tn = 1/2 for n = 0 e„ = 1 for rag 1, $ i n = cos nd, 

$2n = sin nd (3) 

The coefficients Ain and S;„ are constants of integration to be de­
termined from the boundary conditions, J nicer) and Y„(cw) are the 
complex Bessel functions of first and second kinds of order n, and 
In(ctr) and Kniar) are the modified Bessel functions. 

The boundary conditions for the .plate with arbitrary shape are 
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where X,,,1 = XinHr, 8), X,n
2 = Xln

2(r, . are given by 

Fig. 1 Geometry of ith segment of curved boundaries of arbitrary shape 

(w)r = (diu/dz)r = 0 for the clamped edge 

(w)r = (MZ)T = 0 for the simply supported edge 

(Mz) r = (Vz)r = 0 for the free edge 

(4) 

where z is the coordinate normal to the boundary. We consider the 
case of the most complex plate of which boundary is consisted of both 
curved and straight lines. It is difficult to find the transformed ex­
pressions of the bending slope dw/dz, Kirchhoff's shear V2 and the 
bending moment Mz in the direction normal to the boundary curve 
in the case of arbitrarily shaped plates. In this paper, to obtain the 
general transformed expressions, the curved boundary is divided into 
small segments as shown in Fig. 1. For treating the curved boundaries 
of arbitrary shape, the variation of the directions of the bending slope, 
the bending moment and the shearing force along the small segment 
of the boundary curve is neglected. Then each direction of these is 
assumed to be a constant although each magnitude of these varies 
along the segment. The following relations can be obtained from Fig. 
1 for the ith segment: dr = dxi cos (0 — 7,), dd = — (dxi/r) sin (8 — 7,). 
By making use of the assumption as just mentioned, the general 
transformed expressions of dw/dxi and Mxi in the direction xi normal 
to the segment are obtained as 

dw/dxi = (dw/Z>r) cos (0 — y{) - (dw/rdd) sin (0 - 7;) 

Mxi = - D|(d2i<J/dr2)[cos2 (8 - 7;) + v sin2 (8 - 7;)] 

- 2(d2w/rdddr) (1 - v) sin (8 - yt) cos (8 - 7;) \ (5) 

+ (dw/rdr) [sin2(0 - 7,) + v cos2 (d — 7;)] 

+ 2(duJ/r2d0)U - ") sin (8 - 7,) cos (8 - 7,) 

+ (£>2uJ/r2d02)[sin2 (8 - 7;) + v cos2(0 - 7;)]) 

where 7; is the angle between the normal and the x -axis which has a 
constant value in a small segment under the assumption as just 
mentioned (see Fig. 1). Substituting equation (2) into equations (5), 
one obtains 

w=(l/D) Y. L tn[AlnJn(ar)<bln + BlnIn(ar)<S>in + Fin
lY 

1=1 n=0 

dw/dxi = (a/D) E E (n(AinX,n
1 + B,nXtn

2 + Fln
2) ,>(6) 

(=1 n=0 

(7) 

Xin
l(r, 8) = [Jn-i(ar) - (n/ar)Jn(ar)] cos (8 - 7;) cos nd 

+ (n/ar)Jn{ar) sin (8 — 7;) sin nd 

XinHr, 8) = [In-i(ar) - (n/ar)In(ar)} cos (8 - 7;) cos n8 

+ (n/ar)In(ar) sin (6 — 7;) sin n8 

mlnHr,8) = \(n2+ n)(l-v)[cos 2(8-yi) cos n8 

— sin 2(8 — 7;) sin n6]/a2r2 — [cos2(0 - 7;) 

+ v sin2(0 — 7,)] cos nd}Jn(ctr) 

- {(1 - o)[cos 2(8 - 7,) cos n8-n sin 2(8 - 7;) 

X sin n6]/ar}Jn-i(ar) 

mln
2(r, 8) = \(n2 + n)(l - j-)[cos 2(8 - 7;) cos n8 

— sin 2(8 - 7;) sin n8]/a2r2 

+ [cos2 (8 - 7;) + v sin2 (8 — 7;)] cos n8\In(ar) 

- 1(1 - v)[cos 2(8 - 7;) cos n8 

- n sin 2(8 - yi) sin n8]/<xr}In-i(ar) 

FmHr, 8) = (-K/ia2) Cqir\Jn(ar)Yn(a&- Yn(ar)Jn(a£) 
Jo 

+ (2/ir)[In(ar)Kn(aii) - Kn(ar)In(aOMd^ cos nd 

FmHr, 8) = (l/a)[cos (8 - y^dF^/dr - sin (8 - 7;) 

dFi„Vrd0] 

FmHr, 8) = ( l /a 2 ) | (d 2 ^ l n Vdr 2 ) [cos 2 (8 - 7;) 

+ v sin2 ( 0 - 7 ; ) ] 

- (2d2FlnVrc)rd8) (1 - v) sin (8 - 7;) cos (8 - 7;) 

+ (<>Flnyrdr) [sin2 (0 - 7,) + v cos2 (8 - 7;)] 

+ (2dF l nVr 2d0)( l - v) sin (8 - yd cos (8 - 7;) 

+ (d2i? lnVr2d02) [sin2 (0 - 7,) + vcos2 (0 - 7,)] 

The. expressions for / = 2 have the same forms as equations (7), but 
cos nd is replaced by sin n8 and also sin n8 is replaced by —cos nd. The 
transformed expressions for the straight line boundary are also the 
same as equations (6), but the angle 7; has a constant value. 

The boundary conditions along the whole range of the boundary 
cannot be satisfied directly. To satisfy the boundary conditions, the 
Fourier expansion is performed to the equations of the boundary 
conditions along the boundary line. For the present case, one straight 
line is considered to be one segment, while one curved line must be 
divided into many segments according to the convergence of the so­
lution. The Fourier coefficients are therefore obtained by the addition 
of those for the separately considered boundaries. When the plate is 
symmetric about an axis, the analysis can be separated into symmetric 
and antisymmetric cases. Hence when the coordinate 0 is taken from 
the axis of symmetry and the series are truncated to N + 1, the si­
multaneous equations for finding the unknown constants A\n and Bin 

can be obtained, as 

Mx, - a2 Y. I f n (Ainmin
l + Binmi„2 + F(n

3) 
(=1 n=0 

A!(X) 

„ 

Aw 
1 
1 

AlN 

Bio 

1 
1 
1 

BIN 

m, » 

N 

£ 
n'=0 

N 

L 
n'=0 

N 

z n'=0 

N 

s n'-O 

Pn 
1 
f 

1 

Pn 

Pn 

1 
1 
1 

Pn 

<0U 

Af11 

o21 

N21 

(80) 
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-

A2(X) 

. 

An 

i 
l 

Aw 

B21 
t 

1 

B2N 

m « 

where 

| A i ( X ) | 

•Sfio 
1 

N 
E Pn'l12 

n'=\ I 

I 
N « 

£ Pn'N12 

N 
£ P„'i2 2 

n'=l I 

I 
N I 
£ P. 'N2 2 

n ' = l 

(86) 

. ct21 
&NN 

' 0 0 ' " 

|A2(X)| = 

5 AW 

-.12 
' N l 

o32 — — — — Q32 

' N N 

c»22 
ONI 

I 
I 
I 

c42 
OWN 

(9a) 

(96) 

S*'m = (2en/w) £ P Zi*^imdfl for k = 1, 2, 3, 4) 

and where 

'Aim = cos m#, Y^m = sin mfl 

2; . ' ' 1 = J„ (<xRi)$in, Z,„ i2 = In(aRi)Qln, 

ZlniS = X,„!(/?;, 9), Zln" = X,„2tR,-, 0) 

(10) 

Pnmxl = - (2en/ir) £ P FinMfli, W i 
,-=1 J O i - i 

Pnm
2' = - (2«„/ir) £ P ^„2(i?;, W 

,•=1 ^ 6 , _ i 

Imdd 

Imdd 

(Ha) 

(116) 

for the clamped edge, and 

Zln
n = Jn{aRi)$ln, Ztn

i2 = /„(««;)*/„, 

Z; n
i 3 = m^Hfli, 6), Z , „" = mlnHRit d) 

Pnm11 = -(2e„/7r) £ P FlnHRi, 0)xplmd8, 

Pnm
2< = - (2€„/ir) £ P F,n

3(fl;, 0 )^ m dS 

for the simply supported edge. / is the number of the segments in­
cluding the straight line boundaries in the range 6 = 0 to 6 = it and 
Ri is the coordinate r at i'th boundary which is expressed as a function 
of0. 

The frequency equation is obtained by putting the determinant 
of the coefficients of the simultaneous equation to zero 

|Ai(X)| = 0 (12) 

The displacement of the plate is found from the Laplace transform 
inversion integral /(;-, 6, t) = (1/2717) SBrf(r, 6, s)estds, where j = 
V—T. The Laplace transform inversion integral is evaluated by the 

residue theroem. It is difficult to obtain the analytical values for the 
residues because, in general, the integration in equations (10) and (11) 
cannot be found analytically for arbitrarily shaped plates. Therefore 
the integration for finding the Fourier coefficients and the differen­
tiation of the determinant of the coefficients of the simultaneous 
equations for finding the residues are performed numerically. The 
displacement w as a function of time is then shown to be 

w(r, 8, t) = £ R e s (west) 

where SRes shows the sum of the residues. 

(13) 

3 D y n a m i c R e s p o n s e of A r b i t r a r i l y S h a p e d P l a t e s to 
E x p o n e n t i a l l y D e c a y i n g I m p a c t Loads 

As an example, we consider a plate subjected to a uniformly dis­
tributed exponentially decaying impact load q = qo exp (— /3t), where 
go is the intensity of the load and /? is the time decay parameter. By 
applying the Laplace transform, one has q = qo/(s + 13). Hence Fin

 1 

through Fin 3 in equations (7) become 

Fw1 = (w/2a3)[q0r/(s + /5)]|J0(«'-)Y1(ar) - y0(ar)«/i(ar) ) 

- (2lx)[h(ar)Kl(ar) + K0(ar)h(ar)}} >(14) 

F i„ x = 0 for n i l , Fln
2 = FxJ = 0 ) 

Substituting equations (14) into equation (11a) yield 

P0m
n = Tvb4q0P0m*/2\*(s + 0), P 0 m

2 1 = 0 (15) 

where 

(16) 

Pom* = - (1/TT) £ f ' <i*fli*(J0(a*ft*)yi(a*fl£*) 
;=i J e,-i 

- Y0(a*Ri*)Ji(a*Ri*) - (2/ir)[I0(a*Ri*)Ki(a*Rt*) 

+ ifo(a*iJi*)/i(o;*fli*)]} cos mBdd, a* = ab, 

X = (a*)2 = - js(phbVD)1'2, Rt* = Rt/b, r* = rib 

and where 6 is the reference length which is introduced to make the 
expressions to nondimensional forms. The constants A\n and B\n are 
obtained from equation (8a) as 

Am = irb*q0Aln*/2\Hs + /3), Bln = ir&4
goB ln*/2A2(s + 0) 

(17) 

where 

Am* = HB + 1(X)/ | Aj(X)|, Bln* = Hn+N+2(\)/\ Aj(X)| (18) 

-ffn-t-i(X) or i/n+N+2(X) is the determinant shown in equation (9a), but 
in which the elements of (n + l)th or (n + N + 2)th column is replaced 
by (Poo*, -Poi*, • • • PON*, 0 , . . . 0), respectively. Substituting equation 
(17) into (6), w is obtained as 

F N 
w(r, 6, s) = [7r64o0/2X2(s + P)D] £ en{[Hn+1(\)Jn(a*r*) 

+ Hn+N+2(\)In(a*r*)]/\ Ai( \ ) | ) cos nd 

+ 0.5ce*r*[J0(a*r*)Yi(a*r*) 

- y0(o:*r*)J1(a*r*)] - (a*7-*/7r)[/0(a*r*)A'i(a:*r*) 

7 
+ K0(a*r*)h(a*r*)} (19) 

The displacement as a function of time is found from equation (13). 

2 In reference (7), Hn+N+l(\*) should read -ff„+N+2(X*), and equation (26) 
also should read 

W2 = E E |[€„/<X* - iP*)]lHn+1(\*)Jn(a*r,) 
P n -0 

+ Hn+N+2(\*)In(a*r,)]/(dA(X*)/dX*)h,=Xp. exp (i\p*T) cos nd' 

Numerical calculations in reference (7) have been carried out, of course, using 
the corrected expressions. 
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Fig. 2 Geometry of truncated elliptical plates 

For the present case, one of the poles of the integrand is given by s = 
- fi or X = jfl(phb4/D)1/2 and the other poles by the roots of the fre­
quency equation. One has the conjugate poles from the frequency 
equation (12), hence the displacement w(r, 6, t) can be evaluated by 
the residue theorem, in a nondimensional form2 

where 

Wi = (-U-/2/?*2) 

w* = Dw/b\0 =Wi+W2 

" E en\[Hn+l(X)Jn(a*r*) 

(20) 

+-Hn+N+2(X)In(a*r*)}/ 

| Ai(X)11 cos n.0 + 0.5a*r*[J0(a*r*) Yx(a*r*) 

— Yo(a*r*)Ji(a*r*)] — (a*r* /ir)[I0(a*r*)K\(a*r*) 

+ Ko(a*r*)h(ct*r*)] 

W2' ••R»FZ\W. 

X=J/3» 
exp (-0*T) 

/X2(X-jp*)] £ en[Hn+1(X)Jn(a*r*) 
n=0 

+ Hn+N+iWIn(a*r*)] cos nB/(d\Al(X)\/dX)\x=Xp exp O'XpT) 

3* = fiiphbVD)1'2, T = t(D/phbi)1'2 (21) 

and where Re denotes the real part of the expression and Xp is the 
coordinate of the p t h pole in a right half X-plane which is obtained 
from the frequency equation. 

3.1 Example 1: Circular Plates. First, we consider a circular 
plate of radius a subjected to a uniformly distributed exponentially 
decaying load. For the present case, the reference length b is taken 
as the radius of the plate, i.e., b = a, in the previous equations. Hence 
one has the following relations: 

Ri* = Ri/a = 1, 7>- = 9;* (22) 

where 9;* = (9;_i + 9;)/2. 
3.2 Example 2: Truncated Elliptical Plates. As an example 

of arbitrarily shaped plates, we consider a truncated elliptical plate 
as shown in Fig. 2. For this case, the boundary curve is separated into 
two straight lines (boundary 1, 3) and one elliptical curve (boundary 
2). The equation of the elliptical curve of major axis 2a and minor axis 
26 is 

x2/a2 + yVb2 = 1, x = Ri y = Ri sin 6 (23) 

From which one obtains dy/dx = — (b/a)2(x/y). Hence Ri* and 7; are 
denoted by 

Ri* = Rilb = (a/6)/[cos2 6 + (a2/b2) sin2 0]1 '2 

7; = TT/2 - tan" 1 [(6/a)2/tan 9;*] for 9,* < ir/2, 

7* = TT/2 for 9;* = ir/2 

7,- = ir/2 + tan- 1 [ ( i /a ) 2 / | t an 9,*|] for 9,* > TT/2 

(24) 

2M PRESENT RESULT 
EXACT RESULT 

-1-0 -0-8 -0M 0.4 0-8 
X/a 

1-0 

Fig. 3 Comparison between present and exact results for a clamped solid 
circular plate subjected to a uniformly distributed exponentially decaying 
impact load 

for the boundary 2. The following relations can be obtained easily for 
the boundary 1 as 

7,- = 0, R(* = (a — c)/b cos ( (25) 

(26) 

and for the boundary 3 as 

7; = TT, Ri* = — (a — c)/b cos 8 

The angles b\ and 62 are 

5X = tan" 1 {[&/(<*-c)][l~ ( a - c ) 2 / a 2 ] ! / 2 ) , 52 = TT - 5i (27) 

By substituting the expressions for Ri and 7; into equations (11a) and 
(116), Zin

ik and P0m* are expressed as a function of 6 only. Hence the 
integration can be performed numerically, and the displacement w(r, 
0, t) is evaluated from equation (20) directly. 

The results for the other plates can be obtained easily only by ob­
taining the expressions for Ri and 7; as in the same way as previously. 
If the Mindlin plate theory is utilized instead of the classical plate 
theory used in this analysis, the solution for the thick plate can be 
given by the similar technique developed in this paper. 

4 N u m e r i c a l E x a m p l e s 
In this paper the boundary conditions are satisified approximately 

by using the Fourier series although the solution satisfies the equation 
of motion exactly. Therefore the results obtained must be investigated 
with respect to both the convergence and the errors of calculation. In 
the numerical calculation, first three residues are added up and N = 
4 or N = 7 is included according to the convergence of the series. 
Poisson's ratio is taken as 0.3 and the curved boundary is divided into 
20 segments. 

To verify the present results, both present and exact results (see 
the Appendix) are compared with each other for a solid circular plate 
as shown in Fig. 3. In the figure, the present results with N = 4 are 
denoted by the solid line and the exact ones by the small circle. It can 
be noted that the present result coincides with the exact one. As a 
numerical example, vibrations and the dynamic response of a trun­
cated elliptical plate as shown in Fig. 2 are investigated. Tables 1 and 
2 depict the nondimensional natural frequencies ab = (uPb^phlD)114 

of the clamped and simply supported truncated elliptical plates for 
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Table 1 Nondimensional natural frequencies ab(=(a2b,ph/D)1/i of clamped truncated elliptical plates (a> represents the circular 
frequency, * denotes Sato's exact result [10, 11]) 

a/b Mode No. 

c/a 

0 0.1 0.2 0.3 0.4 0.5 0.6 

1.0 

1.2 

1.4 

2.0 

2.5 

3.0 

1 3.197(3.196*) 3.279 

2 4.611 4.826 

1 2.953(2.953*) 3.002 

2 4.055 4.201 

1 2.809(2.809*) 2.835 

2 3.692 3.786 

1 2.616(2.616*) 2.619 

2 3.142 3.163 

1 2.551(2.550*) 2.551 

2 2.939 2.945 

1 2.512(2.512*) 2.512 

2 2.824 2.821 

3, 

5. 

3 . 

4. 

2. 

4. 

2 . 

3 . 

2. 

2 , 

2, 

2 . 

. 479 

.252 

. 1 3 1 

. 5 2 1 

.919 

.030 

.640 

.259 

. 5 5 5 

,980 

.514 

.835 

3 . 

5. 

3 . 

5. 

3 . 

4, 

2. 

3 . 

2, 

3 . 

2 . 

2 . 

. 787 

. 8 6 9 

. 350 

.006 

.074 

,412 

. 6 9 5 

.452 

.579 

,087 

,522 

,887 

4, 

6, 

3, 

5, 

3 . 

4, 

2 . 

3 . 

2, 

3 . 

2 . 

3 . 

. 252 

.422 

.697 

.709 

.334 

.986 

,805 

.777 

. 6 3 5 

, 2 9 1 

,552 

,016 

4, 

6, 

4, 

6, 

3 . 

5. 

3 . 

4, 

2, 

3 . 

2 . 

3 . 

. 962 

. 8 6 1 

.248 

.396 

, 7 6 5 

.846 

,018 

.307 

.757 

,655 

,623 

,270 

6, 

7, 

5, 

6, 

4, 

6, 

3 , 

5, 

3, 

4 . 

2, 

3 , 

. 072 

. 740 

. 1 4 3 

.976 

.496 

. 5 3 5 

.426 

.184 

. 0 1 1 

,299 

.787 

.748 

Table 2 Nondimensional natural frequencies ab of simply suppoted truncated elliptical plates with v = 0.3 (* denotes Sato's exact 
result [10, 11]) 

a / b 

1 .0 

1.4 

2 . 0 

3 . 0 

Mode No . 

1 

2 

1 

2 

1 

2 

1 

2 

0 

2 . 2 2 2 ( 2 . 

3 . 7 2 8 

1 . 9 5 5 ( 1 . 

2 . 9 3 7 

1 . 8 1 7 ( 1 . 

2 . 4 3 2 

1 . 7 3 5 ( 1 , 

2 . 1 1 1 

,222*) 

. 953* ) 

. 818* ) 

. 735* ) 

0 . 1 

2 . 2 9 9 

3 . 9 2 0 

1 .987 

3 . 0 4 2 

1 . 8 2 1 

2 . 4 6 4 

1 .734 

2 . 1 1 2 

c / 

0 . 2 

2 . 4 6 3 

4 . 2 7 1 

2 . 0 7 9 

3 . 2 7 2 

1 . 8 5 8 

2 . 5 9 1 

1 . 7 3 7 

2 . 1 4 0 

a 

0 . 3 

2 . 6 8 2 

4 . 7 7 1 

2 . 2 1 3 

3 . 5 9 7 

1 . 9 2 9 

2 . 7 9 0 

1 . 7 5 9 

2 . 2 3 7 

0 . 4 

3 . 0 0 6 

5 . 4 2 4 

2 . 4 0 8 

4 . 0 6 5 

2 . 0 3 6 

3 . 0 7 7 

1 . 8 0 7 

2 . 3 9 5 

0 . 5 

3 . 4 8 2 

5 . 6 6 2 

2 . 7 0 8 

4 . 7 6 2 

2 . 2 0 6 

3 . 5 1 9 

1 . 8 9 1 

2 . 6 4 1 

0 . 6 

4 . 2 0 9 

6 . 0 9 2 

3 . 1 9 5 

5 . 4 8 5 

2 . 4 9 7 

4 . 2 3 3 

2 . 0 4 1 

3 . 0 6 0 

various aspect ratios, respectively. The results for a solid elliptical 
plate can be calculated when the truncated sides are removed in this 
analysis. The calculated frequencies in such a special case of c/a being 
zero are in very good agreement with the exact ones given by Sato [10, 
11], However as the aspect ratio a/b becomes significantly large, the 
convergence of the series becomes poor, so that it is difficult to obtain 
the good results for such slender plates. 

For the case of truncated plates, the convergence of the series be­
comes poor as compared with the circular plates. Comparisons be­
tween the displacements (Dw/b4qo) X 102 along the x -axis of a trun­
cated elliptical plate subjected to the impact load with a/b = 2, c/a 
= 0.2, /3* = 0.5, and T = 0.2 for N = 5 and N = 7 are as follows: 

It can be observed that the results with reasonable accuracy can be 
obtained when up to eight terms are included in the numerical cal­
culation. Figs. 4 and 5 show the displacements w* = Dw/qob* along 
the x and y-axis for the truncated circular (a = b) and the truncated 
elliptical plates (a/b = 2) subjected to the impact loads q = qo exp 
(—(it). Since the boundary conditions are satisfied approximately in 
the present analysis, the calculated result has, a small error and the 
displacement at the boundary does not vanish exactly as shown in the 
figures. However the errors are significantly small, so that we can 
conclude that the present method gives reliable results for dynamic 

(Dw/b*q0) X 102 
x/a = 0.05 

= 2.699 
= 2.620 

. 0.2 
2.467 
2.385 

0.4 
1.792 
1.718 

0.6 
0.827 
0.746 

0.8 
0.197 
0.089 

for AT = 5 
for N = 7 
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Fig. 5 Displacements along the x and /-axis of a clamped truncated elliptical 
plate subjected to a uniformly distributed exponentially decaying impact load 
with alb = 2 and cla = 0.2 

response p r o b l e m s of a rb i t ra r i ly s h a p e d p la tes . Fig. 6 dep ic t s t h e re­

sponse curves of t h e d i sp l acemen t s for t h e t r u n c a t e d el l ipt ical p l a t e 

w i th alb = 2, c/a = 0.2. 

5 Conclusions 
In th i s p a p e r a d i rec t m e t h o d for solving dynamic response p r o b ­

lems of an a rb i t ra r i ly shaped p la te has been p resen ted . Numer ica l 

ca lcula t ions have b e e n carr ied ou t for a circular or a t r u n c a t e d ellip­

tical p la te subjected to a uniformly dis t r ibuted exponentially decaying 

i m p a c t load. T h e compar i son be tween p r e s e n t a n d exact resu l t s for 

typical p la tes such as t h e circular and the elliptical p la tes shows good 

ag reemen t . T h e m e t h o d developed in th i s pape r is s t ra ight forward 

and the numerical results can be obtained easily for arbitrarily shaped 

plates by using a minicomputer . I t seems therefore the present me thod 

h a s advan t ages as c o m p a r e d wi th t h e o the r general a p p r o x i m a t e 

m e t h o d s . 
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APPENDIX 
By tak ing t h e t e rms of n = 0 only in equat ion (2), the d isp lacement 

of a circular p la t e subjected to a uniformly d i s t r ibu ted exponential ly 

decay ing i m p a c t load is found to be 

w = ( l /2D)EAoJo(<w) + BMotr) 

+ [irq0r/2aHs + ^Joia^Y^ar) 

- YoiarWiiar) - ( 2 / 1 r ) [ J 0 ( a r ) K 1 ( a r ) + K0(ar)h(ar)]\3 (28) 

T h e b o u n d a r y cond i t ions for t h e c l amped circular p la te a re (w)r=a 

= (dw/dr)r=a = 0. One can obta in the unknown constants An and Bo, 

a n d t h e d i s p l a c e m e n t w t h e n can be expressed as 

Dw/qoa* = [w/4aaaHs + /?)] £ - [J0(ar)h(aa) 

+ J\(aa)In(ar)]\Jn(aa)Yi(aa) - Ya(aa)J\(aa) 

- (2/w)[I0(aa)K1(aa) + K0(aa)h(aa)])/ (29) 
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[Jo(aa)Ii(aa) + Ji(aa)Io(aa)] By applying the Laplace transform inversion integral to equation (29), 

+ (r/a)\Jo(ar)Y\(ar) — Yo(ar)Ji(ar) the displacement as a function of time is obtained in a nondimensional 

- (2M[I0(ar)K1(ar) + K0(ar)h(ar)]Q (29) f o r m 

(Cont.) w*=Dw(r,e,t)/q0a
i=W1* + W2* 

where 

Wi* = ̂ - ( ir /4a*3)[J0(a*'-*)/i(a*) + Ji(a*)I0(a*r*)] 

X (J0(a*)Yi(a*) - Yo(a*)Ji(a*) - (2h)[I0(a*)K1{a*) 

+ K"0(a*)/i(a*)])/[J0(a*)/i(a*) + J i (a*) / 0 (a*)] 

+ (7r/4a*3)(r/a)|J0(a*r*)Yi(a:*7'*) - Y0(a*r*)Ji(a*r*) 

- (2/it)[h(a*r*)K1(a*r*) + K0(a*r*)h(a*r*)]\^jff* exp (-/3*T) 

W2* =ReZ 
p 

—K exp (/AT) 

[Jo(u*r*)h(a*) + Ji(a*)I0(a*r*)]\J0(a*)Yi(a*) - Y0(a*)Ji{a*) - (2/-w)[h(a*)K1{a*) + K0(a*)h(a*)]}. 
X : 

2J0(a*)I0(a*) - (l/a*)[Ma.*)h(a*) + Ji(a*)I0(a*)] 

and where Xp is the p t h axisymmetric modal frequency for the solid circular plate. 
-* X=Xp 

(30) 

(31) 
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Critical Damping in Linear Discrete 
Dynamic Systems 
Free viscously damped vibrations of linear discrete systems are studied. The amount of 
damping varies among the various elements of the system resulting in several critical 
damping possibilities. A general method is developed for determining the "critical damp­
ing surfaces" of a system. These surfaces represent the loci of combinations of damping 
values corresponding to critically damped motions, and thus separate regions of partial 
or complete underdamping from those of overdamping. The dimension of a critical damp­
ing surface is equal to the number of independent amounts of damping present in the sys­
tem. Three examples presented in detail illustrate the proposed technique and some of 
the important characteristics of critical damping surfaces. 

Introduction 
Critical damping studies, apart from being theoretically interesting, 

are also important in the design of sensitive instruments which must 
have high amounts of damping (usually critical damping) to avoid 
resonant amplitude distortion. 

When the viscous damping in a linear dynamic system, expressed 
as a percentage of the critical damping, is everywhere the same or is 
given in modal form, the problem of determining the amount of 
critical damping and thus characterize the system as underdamped 
or overdamped is essentially one-dimensional and presents no dif­
ficulties. 

However, for the more realistic model of a linear dynamic system 
with viscous damping varying among its elements the problem of 
determining critical damping becomes much more difficult since there 
are many critical and partially critical damping possibilities corre­
sponding to different critical element damping value combinations. 
The importance of this problem lies in the fact that introduces the 
possibility of controlling the dynamic response more easily and with 
a greater flexibility by differently varying the damping of a number 
of elements. 

Characterization of the free motion of a discrete linear dynamic 
system with different amounts of viscous damping in its elements can 
be accomplished by determining the roots of the determinantal 
equation of the system. Thus real, complex or purely imaginary roots 
characterize the motion as overdamped, underdamped or undamped, 
respectively. This is what is usually mentioned in the literature 
without consideration of the case of critical damping or the case of 

Contributed by the Applied Mechanics Division for publication in the 
J O U R N A L O F A P P L I E D M E C H A N I C S . 
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coexistence of all kinds of the foregoing roots. The only exceptions 
appear to be Crafton [1] and Bishop and Johnson [2] who have con­
sidered two-degrees-of-freedom spring-mass-damper systems and 
studied the behavior of the frequencies for different amounts of 
damping. However, their method of characterization of the motion 
is not convenient for design purposes, since it requires a complete root 
determination for every combination of element damping values as­
sumed. 

The present paper presents a detailed study of the effect of damping 
distributed in an arbitrary manner throughout the structural elements 
on the free motion of the system. A general method is first proposed 
to determine the critical damping surfaces of a viscously damped 
linear discrete dynamic system; these are the loci, in "damping space," 
of amounts of damping leading to critically damped motions. Three 
examples are then presented in detail which illustrate the proposed 
method and lead to some interesting and unexpected results. 

Critical Damping Surfaces 
Consider a viscously damped linear discrete dynamic system of n 

degrees of freedom characterized by the mass matrix [M], the stiffness 
matrix [K], and the damping matrix [C], where the elements of [C] 
are combinations of the m different damping coefficients c& (k = 1,2, 
. . . m) of the various elements of the system. The number m can be 
greater, equal or smaller than n. The determinantal equation of this 
system is 

det [X2[M] + X[C] + [K]] = | X2[M] + X[C] + [K]\ = \D(\)\ = 0, 

(1) 

an algebraic equation of order In in X. 
For partial (complete) overdamping or critical damping some (all) 

of the roots of (1) are of the form 

X = -b, 

and in this case (1) becomes 

6 > 0 (2) 
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b2[M]-b[C] + [K]\ = | D(b,ch) | = 0. (3) 

In the m-dimensional space with coordinates c& (k = 1,2, . . . ,m), 
equation (3) represents a family of m-dimensional surfaces S„. Each 
member of the family corresponds to overdamping or critical damping 
and is characterized by its own value of b, which is a function of the 
Ck 's. The problem is to determine that b which corresponds to the 
"critical damping surface," i.e., the locus of combinations of Ck leading 
to critically damping motion and thus separating regions of partial 
or complete underdamping from those of overdamping. There are 
actually q (q < n) critical damping surfaces since there are at most 
as many partial critical damping possibilities as the number of the 
pairs of roots X in (1) with zero imaginary part. Since critical damping 
represents the threshold between overdamping and underdamping, 
one can conclude that among the S„ surfaces, the critical surface Sa 

is the one for which the damping will be a minimum, i.e., 

(d/db) | D(b,ck) | = (d/db) | D(b,ck) | 

+ £ Wdck) | D(b,ck) | (dck/db) = 0, (4) 
k 

(dck/db) = 0, k = 1,2 m. 

An alternative derivation of (3) and (4) is the following: Consider 
equation (1) with X = -R + jl, (R>0,I = real, j = v ^ T ) , i.e., 

A(X) = M-RJI) = \D(-R +jl) | = 0. (5) 

Expansion of A(X) in Taylor series about the point Xo = (-R,Q) 
yields 

M-RJI) = A(-fl,0) + 0'/) 
dX (-B,O) 2! dX2 (-B,O) 

1 d3A 

3! dX3 (-fl,o) 

which in view of (5) reduces to 

1 d2A 
A ( - R , 0 ) - - / 2 — 

2! dX2 + . . . = 0, 
(-«,o) 

dA 

dX (-fl,o) 3! dX3 

(6) 

(7) 

+ . . . = 0. 
(-R.0) 

For critical damping, for which / = 0, equations (7) lead to equa­
tions 

A(-R,0) = 0, 

(dA/dX)|(_fi,o, = 0 
(8) 

which are the same as (3) and (4). 
In principle, one can solve (4) for b and obtain its critical value fecr 

as a function of the Ck's. Thus the equation of critical damping sur­
faces will be given by (3) with b = bCI, i.e., by 

62
CI[M] - bcr[C] + [K}\= 0. (9) 

In practice, however, the nonlinear system of (3) and (4) has to be 
solved numerically. Thus provided that differentiations in (4) can be 
done analytically, one determines numerically a finite number of 
groups of Ttx + 1 values for bCT and c^ cr satisfying (3) and (4) simul­
taneously, and one is then able to represent critical damping surfaces 
in the m-dimensional cu space as sets of points with coordinates c& cr. 
Eventhough the previous method of determining critical damping 
surfaces is quite general and applicable, in principle, to a rc-degrees-
of-freedom system, the fact that, to the authors knowledge, there is 
no presently available efficient numerical treatment of the differen­
tiations in (4), limits the range of applicability of the method to 
small-order systems. 

However, the particular point ci = C2 = . . . c m = c o f a critical 
damping surface can be very easily obtained for the special case in 
which [C]ck=c is of the Rayleigh type, i.e., of the form > 

m l 

x 

K 

Fig. 1 The two-degrees-of-freedom system of Example 2 

where a\ and a 2 are constants. For this case and for the i th (i - 1,2, 
. . ..,n) mode with underdamping, (1) yields 

(X;2 + a1Xi)/(l + a2X1) = -u ; 0 i 2 , 

where w0i is the ith natural frequency of the system. 
Equation (11) can be solved for X; and give 

where 

X; = -bi ± jwt, 

bi = l /2(ai + a2w0i
2), w,2 = woi

2 - bi2, 

ai + a2 woi
2 ^ 0, j = VZIl. 

(11) 

(12) 

(13) 

It is apparent then, in view of (12) and (13), that at critical damping 
one has 

0£ cr ~ ^oi, 

with <zi and a<i satisfying the relation 

02 cr W0i
2 ~ iW0i + alcr= 0, 

(14) 

(15) 

where a\ cr and a2 cr are their values at critical damping. Equations 
(14) and (15) therefore represent the solution of (4) for the particular 
surface point ci = C2 = . . . c m = c and for systems obeying (10). This 
solution is unique if one of the <xi and a^ is zero. Once the fa; c r 's have 
been computed from (14), a numerical evaluation of the left-hand side 
of (9) for a sequence of values of c leads to the determination of the 
common value c of the c^'s which satisfies (9) for every i. One im­
portant result of this analysis is that, as equation (14) clearly dem­
onstrates, for systems obeying (10), one has q = n, i.e., as many critical 
damping surfaces as there are degrees of freedom in the system. 

E x a m p l e s 
Example 1. For the single-degree-of-freedom system m = n = 

1 so that there exists only one critical damping surface of dimension 
one, i.e., a point. The condition (3) reduces to 

mb2-bc + K= 0. (16) 

Use of (4) provides 6cr = ccr/2m which, in conjunction with (16) leads 
to 

; 2mw0, w0 = (K/m)1/2, (17) 

which is the well-known condition of critical damping for this 
system. 

Example 2. Consider the two-degrees-of-freedom system of Fig. 
1 consisting of a variable torsional stiffness shaft with two flywheels 
and one viscous damper and being in free torsional vibration. This 
system has been taken from reference [2, p. 507] which studies the way 
in which the free motion of the system changes as the damping is in­
creased from zero to infinity by determining the roots of the deter-
minantal equation for a sequence of values of the amount of damping 
present. Here the results of reference [2] will be verified by applying 
the proposed method for determining critical damping. 

The determinantal equation (1) for this system takes the form 
[2] 

A4 + 2aA3 + 6A2 + 6« A + 5 = 0, (18) 

[C]ck=c = 0 l [M] + a2 [K], (10) where 
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Fig. 2 The two-degrees-of-freedom system of Example 3 

A = X/wi, a = c/2/wx, u)i2 = K/I, (19) 

and where / , c, and K stand for the mass moment of inertia of the 
flywheel, the damping coefficient, and the torsional stiffness of the 
shaft, respectively. Use of (3), (4), and (18) with A = — B = —b/wi 
yields 

a = 2B(3 + B2)/3(l + B2), B 6 + 3B4 + 3B2 - 15 = 0. (20) 

The only one real positive root of (20)2 is B = 1.233 for which (20)i 
yields the equation of the only existing here critical damping sur­
face—a point, as 

aCI = 1.474, (21) 

a value which is identical to that obtained in [2]. 
The existence of just one critical damping surface for this two-

degrees-of-freedom system indicates that this actually corresponds 
to partial critical damping. For 0 < a < 1.474 the system is und-
erdamped, for a = 1.474 it is partially critically damped, and for a > 
1.474 it is partially underdamped. Thus no matter how great the 
damping parameter a may be, there is no way to reach complete ov-
erdamping, exactly because, there is no other critical damping surface 
for a > 1.474 

Example 3. Consider the two-degrees-of-freedom spring-dash-
pot-mass system shown in Fig. 2, where K{, ci, and TO; (i = 1,2) stand 
for spring constants, coefficients of viscous damping and masses, re­
spectively, and x\ and x2 represent the two translational degrees of 
freedom of the system. Notice that for C\ = 0 one has a case similar 
to that treated in Example 2. For this system, equation (1) be­
comes 

X4 + 2(& + ft)X3 + (u)!2 + w2
2 + w12

2 + 4ftft)X2 

+ 2(ftw2
2 + ftiu,2 + @2w12

2) X + U J I W = 0, (22) 

where 

wi2 = Ki /mi , iii2
2 = K2/m2, u>n2 = K2/mi, 

ft = ci/2mi, ft= c2/2m2, 

while equation (3) takes the form 

b* - 2(ft + ft)fe3 + (wi2 + W22 + w12
2 + 4f t f t )6 2 

- 2(ftu)2
2 + ft^i2 + ftwi22) b + u>! V •• 

(23) 

0. (24) 

The conditions of critical damping described by (4) yield 

b4 - (3/2K/?! + ft)b2 + (1 /2 )0V + w2
2 + w12

2 + 4ftft)6 

- (l/2)(ftiu2
2 + ftwi2 + ftW) = 0. (25) 

Thus the critical damping surfaces of this system are curves in the 
(ft,ft) plane described by (24) with b = bcr being a function of ft and 
ft which can be obtained by solving (25). Construction of these curves 
can, in general, be accomplished by computing the left-hand sides of 
(24) and (25) for all possible combinations of a finite number of values 
for ft,ft, and 6, and selecting those combinations that simultaneously 
satisfy (24) and (25); these combination's provide the points (ft cr,ft Cr) 
of the critical damping curves. In this case, however, the construction 
of the critical damping curves can be done more easily by solving ex­
plicitly the cubic algebraic equation (25) for b in terms of ft and 
ft. 

Exac t curves 
Appfox. curves 
Asymp. f o r appr. C| 
Asymp. f o r appr. C2 
Asymp. f o r exatf . 

20 40 60 80 (00 (20 l+O 

Fig. 3 Critical damping curves for the system of Fig. 2 

Fig. 3 shows the two critical damping curves C\ and C2 of the two-
degrees-of-freedom system of Fig. 2 in the (ft,ft) plane for the fol­
lowing numerical data: 

Kr = 3000 lb/ft = 
K2 = 4000 lb/ft = 

43,779.528 N/m, 
58,372.703 N/m, (26) 

mi = m2 = 1 lb sec2/ft = 14.593 N sec2m, 

(1 ft = 0.3048 m, 1 lb = 4.448 N). 

The two critical damping curves were constructed with the aid of a 
computer by both the purely numerical method and the one based 
on the solutions of the cubic equation. For ft = ft = ft condition (10) 
is satisfied with a i = 2/3 and a2 = 0, q = n = 2 and (14) and (15) lead 
to 

bi cr = ftr = Woi, (i = 1,2). (27) 

The critical damping curves C\ and C2 divide the plane (ft,ft) into 
the regions Ri,R2, and A3, as shown in Fig. 3. Curve Ci defines a state 
of partial critical damping and separates a region of complete und-
erdamping (region Ri) from a region of partial underdamping (region 
R 2). Curve C2 defines a state of complete critical damping and sepa­
rates a region of partial underdamping (region ^2) from a region of 
complete overdamping (region .R3). The results of Fig. 3 were also 
verified numerically by determining on the computer all the four roots 
of equation (22) with the aid of Newton's iterative method for quite 
a number of possible combinations of numerical values of ft and 

The interesting thing in this example is the fact that region R2 is 
unbounded and that even for values of ft or ft. (but not both) ap­
proaching infinity there is still partial underdamping, while one might 
expect to achieve overdamping if one of the fts is large enough. This 
phenomenon is the two-dimensional counterpart of that of Example 
2 and is amenable to the following physical explanation: At the limit, 
as ft, for example, approaches infinity, the mass mi becomes essen­
tially locked, xi, approaches zero, the system becomes a single-de-
gree-of-freedom one, and one can obtain 

ft cr = w2 = 44.72. 

Similarly, for ft approaching infinity, one can obtain 

\ W + C0122 = 59.16. 

(28) 

(29) 

Equations (28) and (29) are equations for the asymptotes of the 
critical damping curves and indicate that even for infinite values of 
ft (ft) there are values of ft(ft) in region R2, which are less than their 
critical values, for which there is partial underdamping. 

One can approximately construct the curves Ci and C2 by assuming 
that (27) holds true not only for the points ft = ft = (8 of the curves 
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but for any point of them. Thus (24) with 6; cr = w0i finally be­
comes 

ft = ^ ^ . (30) 

where 

At = 2wot (w2
2 + woi

2), 

hi = W0i* + WX
2 W2

2 + Woi
2 (wX

2 + W2
2 + W12

2), (31) 

Ei = Awoi, 

Di = 2w„i (u>\2 + U)i22 + w0i
2), i = 1,2. 

It is evident from (30) that the approximate critical damping curves 
are two equilateral hyperbolas with two branches each and asymptotes 
ft = Di/Ei and 182 = AJEi. Out of the two branches only that for which 
ft = 182 = wBi represents a critical damping curve. 

A plot of the approximate critical damping curves on the basis of 
the numerical data (26) is shown in Fig. 3. The approximate curves 
of course coincide with the exact curves at ft = ft, and they slightly 
depart from them more and more as the fts increase. Such approxi­
mate critical damping curves can be very useful for rapid design cal­
culations, although, unfortunately, no general extensions of their 
validity can be presented here. 

Conc lus ions 
The following remarks can be made on the basis of the preceding 

developments about the free vibrations of linear discrete systems with 
viscous damping varying among their elements: 

1 There exist critical damping surfaces for every system repre­
senting the loci of combinations of damping leading to partial or 
complete critically damped motion and thus separating regions of 
partial or complete underdamping from those of overdamping. 

2 A general method is proposed for determining the equations 
of these critical damping surfaces. The determination of the surface 
point corresponding to equal amounts of damping is considerably 
simplified for systems which, on the assumption that all amounts of 
damping are equal, possess a damping matrix of the Rayleigh type. 

3 The dimension of these critical damping surfaces is equal to the 
number of the independent damping values in the system, while their 
number is less or equal than the number of the system degrees of 
freedom. For a rc-degrees-of-freedom system with a damping matrix 
reducible to Rayleigh type for equal amounts of damping, there are 
at most one completely underdamped region, one completely ov-
erdampled region and n-1 partially underdamped regions. 
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The Rotating Beam Gyroscope 
This paper investigates the dynamics of a novel "multisensor" comprising a two-axis gy­
roscope and a single-axis linear accelerometer. The theoretical analysis indicates that 
the gyroscope has two modes of operation, untuned and tuned, offering, respectively, an­
gular rate and angular displacement measurement capability, depending on the damping 
and mistuning present. In addition to the sensing of two-axis angular motion, the instru­
ment is capable of measuring linear acceleration along a third axis. Experimental tests 
on a prototype instrument show generally good agreement with the theory giving confi­
dence of the development potential of the instrument. 

Introduction 
This paper introduces a novel instrument of extremely simple basic 

design, which can be used simultaneously as a two-axis gyroscope and 
a linear acceleration transducer. The instrument is based on a simple 
rotating cantilever beam, mounted as shown in Fig. 1 with the root 
and tip of the beam situated on opposite sides of the spin axis. In a 
previously published paper [1] the authors investigated the depen­
dence of the natural frequencies of such a beam on the ratio R = r/L, 
of root offset r, to beam length L, and on the spin frequency n. In 
particular it was shown that for values of r/L = R greater than ap­
proximately 0.067 the effect of the centrifugal loading is such that it 
is possible to select a value of spin frequency that coincides with the 
fundamental natural frequency of the cantilever. In this condition 
the cantilever is said to be tuned to the spin frequency. For R < 0.067 
tuning is not possible because the effect of centrifugal loading is to 
stiffen the cantilever so that the fundamental natural frequency is 
always greater than the spin frequency. The present paper investigates 
the possibility of using a rotating cantilever as the basis for a sensitive 
gyroscope [2], which may be used to measure angular rates of turn or 
angular displacements depending on the conditions of tuning and 
damping, and linear acceleration irrespective of the condition of 
tuning. 

Analysis 
Equations of Motion. The main elements of the instrument and 

appropriate frames of reference are shown schematically in Fig. 2. 
Axes OXYZ are fixed in the instrument casing which houses the drive 
motor. A rigid drive member is mounted on the motor shaft and ro­
tates at high speed about OZ with constant angular velocity n, relative 

1 Formerly, University of Newcastle upon Tyne, Newcastle upon Tyne, En­
gland. 
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Fig. 1 Cantilever root offset 

to the casing. Oxyz rotate with the drive member and their position 
relative to OXYZ is defined by rotation nt about OZ. The sensitive 
element consists of a thin uniform elastic cantilever attached to the 
drive member at y = —r as shown. The center line of the undeflected 
cantilever lies along Oy so that it's tip is situated at y = L — r where 
L is the cantilever length. 

It is assumed that the center line of the undeflected cantilever is 
perpendicular to the spin axis and that only linear vibration parallel 
to the spin axis can occur. Rotatory inertia, which can be shown to 
have no effect on the fundamental operation of the instrument, has 
been neglected together with shear deformation and axial extension 
of the beam due to centrifugal loading. Input rotations to the in­
strument can be defined with considerable generality in terms of an 
applied rotation <j>x(t) about the case fixed axis OX. It is assumed that 
i)>x « n. 
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CASING 

DRIVE MEMBER 

Fig. 2 Schematic and reference axes 

Fig. 3 Beam element 

loading term T(£) precludes an exact analytical solution of equation 
(1) in terms of known functions. An approximate solution will 
therefore be constructed using Galerkin's method [3]. A series solution 
of the form 

The equation of motion for the beam is derived in the usual manner 
by considering the equilibrium of an element of length dy, situated 
at distance y' from the root of the cantilever as shown in Fig. 3. The 
acceleration of such an element in direction OZ may be written to 
first-order terms as 

d2Z 
az = L — - — L{R — £)[4>x cos nt — 2nif>x sin nt] + ac(t) 

dt2 

where Z = z/L; £ = y'/L, R = r/L, and ac is the acceleration of the 
instrument casing in direction OZ. Note that R is taken as positive 
for the beam configuration shown in Fig. 1, but would be negative in 
the case where the root and tip were situated on the same side of the 
spin axis with the cantilever directed radially outward as, for example, 
in the case of an aeroplane propeller. 

The equation of motion follows as 

d2Z 

di 2 " 

£ d Z EI d*Z 

H dt ixL4 d£4 d£ 
T(£) 

at 

(R ~ Ol<i>x cos nt — 2n<t>x sin nt] (1) 

where 

m) = M£(2fl - £) - (2R - D] (2) 

represents the centrifugal loading in the cantilever due to the spin. 
EI is the flexural rigidity, fi the mass per unit length, and c is the 
viscous damping coefficient per unit length, all assumed to be con­
stant. 

The boundary conditions associated with equation (1) are 

At£ = 0 

a?: 0; 

A t £ = l 

d 2 Z _ daZ 

d£2 ~ d£ 3 ' 

Solution of Equations of Motion. The presence of the centrifugal 

•0 (3) 

Zn= £ qh(t)4>h{& 
;=i 

(4) 

is assumed where qu (t) are a finite set of generalized coordinates, to 
be determined, and </>/, (£) are the normal modes of the corresponding 
nonrotating cantilever. 

In [1], where the free vibration of an undamped beam was studied, 
a series containing two terms was assumed. In the present paper we 
are primarily interested in the dynamical characteristics of the beam 
at values of spin in the vicinity of the fundamental frequency where 
the motion is predominantly at the first mode. To simplify the analysis 
a series solution of only one term will be assumed. While this results 
in a small loss in numerical accuracy of computed results in the region 
of the tuning frequency, this is felt to be justified by the fact that all 
the main dynamical features can be illustrated simply. 

The fundamental mode of the corresponding nonrotating cantilever 
is given in [4] as 

</>(Y) = cosh (A£) - cos (A£) - <r[sinh (AJ) - sin (A£)] (5) 

where A = 1.8751 and a = 0.7341. 
Free Motion and Tuning. The equation of motion for this case 

is equation (1) with 4>x = 4>x = <*c = 0. Following Galerkin's method, 
substitution of the assumed solution (5) in equation (1) yields the 
following equation for q: 

q + -q + q(pm2 + n2au) = 0 (6) 

where 

and poi = MEI/fiL4)1^2 is the fundamental frequency of the corre­
sponding nonrotating beam. 

The fundamental natural frequency p , of an undamped cantilever, 
follows from equation (6) and may be expressed as 

:poi2 + n2au (7) 

If R = r/L > 0.067, it has been shown in [1] that a n < 1 and tuning 
to the spin frequency is possible. 

Tuning occurs when p = n = nt and is achieved when 
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nt' 
Poi" 

(1 d l l ) 
(8) 

Response to a Constant Applied Rate of Turn. The potential 
usefulness of the device as an angular motion sensor is best illustrated 
by considering its response to a constant rate of turn, <f>x = fi = const, 
oc = 0. Appropriate substitution of equation (4) in equation (1) then 
yields 

q + 2vpq + p2q = — 2nQF sin nt 
where 

(9) 

s1 
Jo 

(R - £)<t>d% and v = c/2/tp. 

p and a n are as defined for equations (6) and (7). 
Consider first the special case of an undamped beam, tuned ac­

cording to equation (8). In this case equation (9) reduces to 

q + n2q = —2nQF sin nt (10) 

The particular integral now takes the special form associated with 
resonance and the general solution of equation (10) may be expressed 
as 

q = go sin (nt + «o) + FQt cos nt 

where <jo and «o are initial condition constants. 
Por a step input of magnitude <j>x = fi 

q = q = 0 at t = 0, 

(11) 

(12) 

from which a>o = 0 and qo = —FQ/n. The general solution is thus 

-(FQ/n) sin nt + FQt cos nt - (13) 

For values of t » 1/n (typically 1/n ~ 10~3 sec) the second term on 
the right-hand side of equation (13) predominates and the amplitude 
of the response is governed chiefly by the total applied turn fit. A 
precisely tuned and undamped instrument would therefore operate 
as an angular displacement measuring device until the amplitude of 
beam vibration reached a level where the linear approximation theory 
became invalid. Furthermore, since the orientation of the axes OXY 
is arbitrary, the phase of the beam vibration relative to a suitable case 
fixed reference determines the axis about which the input rate is ap­
plied. The instrument therefore operates essentially as a two-axis 
device. Physically, the motion of the beam in this case is such that an 
element of the beam, for example, the tip, moves on a path in space 
that is essentially circular, the plane of the circle deviating from the 
initial plane by an angle which increases linearly with time. The axis 
about which the plane of the circle rotates determines the axis of the 
input rate. The motion of the beam is thus akin to that of a free rotor 
which maintains a fixed direction in space. 

The response as given by equation (13) represents the response of 
an ideal gyroscope. In practice however, damping will inevitably be 
present and the instrument will not be operated precisely at the 
tuning frequency. It is therefore more realistic to consider the general 
case where damping and mistiming are present. The response in this 
case follows directly from equation (9) and takes the form: 

q = e'^lP sin pdt + Q cos Pdt] 

-2nQF 

[(p2 - n2) + (2vnp)2] 1/2 
sin (nt — 7) (14) 

where 

7 = tan 
2vnp 

Pd = P(1 „2U/2 

and P and Q are initial condition constants. For a step input fi in 
applied rate of turn at time t = 0 the initial conditions are given by 
equation (12) and P and Q take the values 

P = 
2nFQ [n cos 7 — vp sin 7] 

Pd \(p2 - n2)2 + (2vnp)2] 211/2 
(15) 

-2nFQ sin 7 

[ ( p 2 - n 2 ) 2 + ( 2 m p ) 2 ] 211/2 
(15) 

(Cont.) 

If the mistuning and damping are both small, as they may be in 
practice, we may write 

Pd^p = n(l+rj) 

where ?)(«1) represents the amount of mistuning. Equations (14) and 
(15) may then be rearranged as 

FQr) 

n(t]2 + v2) 
[e "nt cos r]nt — 1] sin nt 

FQv 

n(r]2 + v2) 

FQ.e-"nt 

[1 — e "nt cos rint] cos nt 

n(i}2 + v2) 

FQv2 

[r\ cos nt + v sin nt] sin ~q nt 

[cos t]nt sin nt + sin -qnt cos nt] (16) 
n(rp + v2) 

Por small intervals of times such that vnt « 1, t}nt « 1 equation (16) 
simplifies and the response is given by 

—FQv2 sin nt 
q ~ - - — FQt cos nt (17) 

n(r\2 + v2) 

Comparison of equation (17) with equation (13) shows that for small 
intervals of time the response of the damped mistuned instrument 
is substantially the same as that of a tuned undamped instrument, 
and is governed by the total applied turn fit. 

For longer time periods such that vnt, -qnt » 1 equation (16) may 
be expressed with good approximation as 

-FQ 
q, = - -sin (nt - 7) (18) 

„ ( r / 2 + „2 ) l /2 

with 7 = t a n - 1 (v/rj) and the steady-state response is proportional to 
the applied rate of turn fi. Thus the damping and mistuning limit the 
length of time for which the instrument acts as an angular displace­
ment sensor and strongly affect the sensitivity of the instrument as 
a rate sensor. Furthermore, equation (18) indicates that phase of the 
output signal is critically dependent on the relative magnitudes of the 
mistuning and damping. This means that, if the damping and mis­
tuning were of the same order, a significant error could occur in de­
termining the input axis (about which the input rate is applied) from 
the relative phase of the output vibration. Thus, if the instrument 
were to be used as a rate sensor, one would probably choose r\ » v so 
that 7 —»• 0. The selection of the mistuning parameter would therefore 
involve a tradeoff between sensitivity and accuracy. 

Response to Applied Acceleration. Consider the case where <t>x 
= 4>x - 0 and the instrument is subjected to an applied acceleration 
ac(t) in direction OZ. Following Galerkin's method appropriate 
substitution of equation (4) in equation (1) yields 

q + 2vpq + p2q = -Fiac(t) (19) 

where 

Fi 
1 r l 

L Jo 

Without deriving specific solutions, the following points of interest 
may be noted in relation to the response to linear acceleration. 

The steady-state response of the beam will be proportional to ac. 
The beam therefore acts as a linear acceleration transducer in addition 
to acting as a two-axis angular motion sensor. Since the useful re­
sponse to applied rotation is always at spin frequency n, it is a 
straightforward matter to discriminate between the response to ap­
plied rotation and the response to applied linear acceleration unless 
the applied acceleration has a component at frequency n which will 
excite the beam in the same manner as an applied rate of turn. How­
ever, the bandwidth of ac (±3d(5) will be much less than the natural 
frequency p and in practical applications in which a combined gyro/ 
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accelerometer might be used, only low frequency components of ac­
celeration would be of interest. Thus it will be possible to discriminate
useful acceleration information simply on a frequency basis.

Response to Angular Vibration. It is important to consider the
response of the instrument to angular vibration since it is known to
give rise to measurement errors in other tuned gyroscopes such as the
oscillogyro [4] and the Hooke's joint gyro [5]. Consider the response
of the instrument to an angular vibratory input ;Px = Q sin wt, Uc =
O. Following Galerkin's method, equation (1) yields

ij + 2vpq +p 2q

= ~Q /(2n + w) cos (w + n)t - (2n - w) cos (w - n)tl (20)

where v, F, and P are as previously defined. The.general..solution of
equation (20) for an untuned instrument may be expressed as

q = e-vPt[A cos Pdt +B sin Pdt]

FQ
+ -IR I cos [(w - n)t - (Xl] + R 2 cos [(w + n)t - (X2]1 (21)

2

where Fig. 4( a) Detail of beam of test gyro

RI = [2n - wlll[p2 - (w - n)2]2 + [2vp(w - nlFll /2

R2 = [2n + wlll[p2 - (w + n)2]2 + [2vp(w + n)]211/2

(Xl = tan-112vp(w - n)/[p2 - (w - n)2Jl

(X2 = tan-112vp(w + n)/[p2 - (w + n)2Jl

A and B are initial condition constants and p and Pd are as defined
previously.

In general, the steady-state response, which is represented by the
second term on the right-hand side of equation (21) contains two
frequency components, (w - n) and (w + n). For the untuned in­
strument (p oF n) the input vibration frequencies which cause reso­
nance depend on whether the spin frequency is above or below the
tuning frequency. Below the tuning frequency (n < p) resonance
occurs for values of w in the region ofp +n in the first component and
p - n in the second component. Above the tuning frequency (n >p)
resonance occurs only in the first component when w is in the region
of n + p and n - p.

The response of the tuned instrument (n =p) is of special interest.
For an ideal tuned undamped beam the particular integral solution
of equation (20) follows on simplification of (21) as Flg.4(b) General view of test gyro

As w --+ 0, resonance occurs in both the first and second components
of response and the limiting case when w = 0 corresponds to the re­
sponse to a constant applied rate of turn.

In the case where w = 2n the low frequency component of response
for the ideal instrument takes the form

FQn
q =- (24)

2p 2

so that the beam adopts a steady offset from the original undeflected
position. While this response does not affect the angular motion
sensing capability of the device, it could be interpreted as a constant
applied acceleration in direction OZ if the instrument were used as
an accelerometer as explained in the previous section.

Experiments
The Experimental Gyroscope. A prototype beam gyroscope was

manufactured so that the main theoretical predictions could be tested.
The design was extremely simple and used commercially available
"off the shelf" components where possible.

The main elements of the experimental instrument are shown in
Fig. 4. The sensitive element consisted of a steel cantilever beam,
nominally 86.5 mm long, 10 mm wide, and 0.75 mm thick, mounted
diametrally across the drive plate so that the root offset r was 38.1 mm.
The drive plate and beam were spun by means of an externally
mounted hysteresis motor, the speed of which was controlled by the
electrical supply frequency. The drive plate and beam were enclosed
in a casing which could be evacuated to reduce drag on the rotating
elements.

The deflection of the beam was measured by means of a stationary

(23)

(22)
FQ

q = - [cos (w - n)t -cos (w + n)t]
2w

FQ
q = - cos nt

4n

This should be compared with equation (13) which expresses the
corresponding response to a constant rate of turn. It can be seen that
equation (22) is essentially different from the predominant second
term on the right-hand side of equation (13).

In the presence of damping RI is zero when w = 2n irrespective of
the state of tuning and the beam exhibits a null response in the low
frequency component.

Thus the instrument is immune to twice spin frequency angular
vibration in both the angular displacement and angular rate modes
of operation.

A further point of interest arises when the excitation frequency w
and the spin frequency n are equal. In this case w - n = 0 and the low
frequency component of steady-state response as expressed by
equation (21) becomes

634 / VOL. 47, SEPTEMBER 1980 Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 5 Variation of first natural frequency p with spin n 

inductive proximity transducer mounted in the casing on the spin axis. 
Phase reference signals, used in resolving the pickoff signal into 
perpendicular components, were generated by two inductive prox­
imity transducers acting against an eccentric on the drive shaft. The 
pickoff signals were filtered where necessary so that appropriate 
components of output could be observed. 

During manufacture particular attention was given to heat-treat­
ment of the sensitive element in an attempt to minimize internal 
damping in the steel. In practice it was found that the air pressure in 
the instrument casing did not significantly affect the damping of the 
beam vibration. It was therefore concluded that hysteretic damping 
in the beam material was the principal cause of energy dissipation. 

When manufacture was completed the rotating elements were 
dynamically balanced to minimize vibration levels. 

Constant rate inputs were applied to the test gyroscope by means 
of test tables which were capable of providing stabilized rates of turn 
in a range between a minimum of earth's rate (15°/hr) and a maximum 
of 60°/sec. Angular vibratory inputs were generated by means of a 
special angular vibration test table. 

Three main series of tests were conducted. The first related to the 
tuning condition, the second investigated the response to constant 
applied rates of turn and the third examined the response to angular 
vibration. 

Free Vibration and Tuning. The (approximate) theoretical 
variation of undamped natural frequency with spin is given by 
equation (7) and tuning is achieved when the spin frequency is chosen 
to satisfy equation (8). Experimentally, p and the damping ratio v 
were measured by applying an impulse to the casing and recording 
the resulting free vibration. The measured damping ratio v with the 
casing evacuated and the spin frequency approximately equal to the 
tuning frequency was found to be of the order of 3 X 10 - 3 . As men­
tioned earlier, variation of the absolute air pressure in the casing be­
tween 350 mm Hg and 60 mm Hg did not significantly affect the 
damping ratio. 

In view of the low damping ratio, the undamped natural frequency 
was sensibly equal to the frequency of the damped vibration. Fig. 5 
shows the theoretical relationship between p and n as expressed by 
equation (7), together with experimentally measured points, for a 
range of spin frequencies including the tuning frequency. Satisfactory 
agreement between theory and experiment is demonstrated. 

Constant Rate Input. The steady-state response of the damped 
untuned instrument to a constant rate of turn is expressed by the 
second term on the right-hand side of equation (14). Figs. 6(a) and 
(b) show a comparison of the theoretical steady-state vibration am­
plitude and phase lag, respectively, with representative experimental 
measurements of these quantities, taken over a range of spin 
frequencies including the tuning frequency. Although there is some 
discrepancy between predicted and measured response amplitude, 
the predicted trend is nevertheless adequately confirmed. Fig. 7 
compares the theoretical and experimentally determined sensitivity 

Fig. 6(a) Response to constant rate input; steady-state amplitude versus 
spin frequency 
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Fig. 6(b) Response to constant rate input; phase lag versus spin fre­
quency 

of the gyro to a constant rate input for a range of spin frequencies near 
the tuning speed. In this case also the theoretical trend is confirmed 
and reasonable linearity is displayed. With a mistuning factor of the 
order T] ~ 0.01, the minimum detectable applied rate of turn was of 
the order Q ~ 1 0 - 3 rad/sec. These results tend to confirm the feasi­
bility of using the untuned beam gyro as a two-axis open-loop rate 
gyro. The sensitivity would increase for i\ < 0.01 but in the prototype 
instrument the problem discussed in the following paragraph was 
encountered as the tuning condition was approached. 

It was not possible, with the prototype instrument, to make any 
experimental measurements at the tuning condition. This was because 
the beam was found to resonate when the tuning condition was 
reached, due to a cause other than the applied rate of turn. The most 
likely source of excitation producing the resonance was considered 
to be either the spin axis bearings or the housings in which they were 
mounted. Any imperfection in this area could cause the drive shaft 
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Fig. 7 Response to constant rate input; steady-state amplitude versus input 
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to oscillate along its axis with a component at spin frequency, and in 
fact accelerometer measurements of casing vibration indicated a 
component of axial vibration at the spin frequency. As discussed in 
the section "Response to Applied Acceleration," the beam is very 
sensitive to linear vibration at a natural frequency, which at tuning 
coincides with the spin frequency. It is felt that this effect, which was 
exaggerated by the relative crudity of the prototype gyro, resulting 
from the limited manufacturing facility available, could be minimized 
by appropriately high precision manufacture of the drive system. 

Response to Angular Vibration. The theoretical response of the 
instrument to angular vibration is expressed by equation (21) which 
reveals that the steady-state response consists of two components 
having frequencies equal to the difference and sum, respectively, of 
the spin and input frequencies. The amplitude of each component 
becomes large when its frequency coincides with a natural frequency 
of the beam. Note that because the mathematical model adopted in 
this paper effectively considers the instrument to have only one degree 
of freedom, resonances are only predicted for frequency combinations 
equal to the first natural frequency of the beam. In practice resonances 
associated with the second and higher natural frequencies are also to 
be expected. 

Experimentally, the spin frequency was set at each of a number of 
fixed values, above and below the tuning frequency, and the input 
frequency was varied over the appropriate range. In each case the 
pickof f output was found to consist of the predicted frequency com­
ponents. As the input frequency was varied the predicted two reso­
nances were observed, both occurring in the low frequency component 
when n > nt and one in each component when n <nt. Theoretical 
response curves and representative experimental points for values 
of n > nt are shown in Figs. 8(a) and (b), for ranges of input 
frequencies in the region of the two resonances. These show close 
agreement between theory and experiment, which was also found for 
values of n < nt-

Conc lus ions 
A novel "multisensor" comprising a two^axis gyroscope and sin­

gle-axis linear accelerometer has been proposed, and its fundamental 
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dynamical characteristics have been investigated. The gyroscope has 
two possible modes of operation, namely, tuned and untuned. In the 
untuned mode the instrument behaves, in steady state, as a two-axis 
rate gyroscope and may, for short intervals of time, be used as an 
angular displacement sensor. In the tuned mode the instrument offers 
potential as an angular displacement sensor, its performance as such 
being limited by the amount of damping and the degree of mistuning 
which are inevitably present in a practical instrument. 

In addition to its two-axis angular motion sensing capability, the 
instrument is capable of simultaneously measuring linear acceleration 
along a third (perpendicular) axis. 

Experimental evaluation of a prototype instrument has demon­
strated the practicability of the device as an open-loop two-axis rate 
sensor in the untuned mode. Good agreement has been obtained be­
tween theoretical prediction and experimental measurement, which 
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gives confidence that the instrument is capable of development to 
achieve higher levels of performance. 

Acknowledgments 
The authors acknowledge with thanks the support of the Science 

Research Council (U.K.). 

References 
1 Fox, C. H. J., and Burdess, J. S., "The Natural Frequencies of a Thin 

Rotating Cantilever With Offset Root," Journal of Sound and Vibration, Vol. 
65, No. 2, July 1979, pp. 152-158. 

2 U.K. Patent Application 7702/78, Feb. 1978. 
3 Timoshenko, Young, and Weaver, Vibration Problems in Engineering, 

4th ed., Wiley, New York, 1974,468 pp. 
4 Ormandy, D., and Maunder, L., "Dynamics of the Oscillogryo," Journal 

of Mechanics and Engineering Science, Vol. 15, No. 3,1973, pp. 210-217. 
5 Craig, R. J. G., "Theory of Errors of a Multigimbal Elastically Supported 

Gyroscope," I.E.E.E. Transactions on Aerospace and Electronic Systems, Vol. 
AES-8, No. 3, May 1972, pp. 289-297. 

Journal of Applied Mechanics SEPTEMBER 1980, VOL. 47 / 637 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



F. C. Moon 

Associate Professor, 
Department of Theoretical and Applied Mechanics, 

Cornell University, 
Ithaca, N. Y. 14853., Mem. ASME 

Experiments on Chaotic Motions of 
a Forced Nonlinear Oscillator: 
Strange Attractors1 

The forced vibrations of a buckled beam show nonperiodic, chaotic behavior for forced 
deterministic excitations. Using magnetic forces to buckle the beam, two and three stable 
equilibrium positions for the postbuckling state of the beam are found. The deflection of 
the beam under nonlinear magnetic forces behaves statically as a butterfly catastrophe 
and dynamically as a strange attractor. The forced nonperiodic vibrations about these 
multiple equilibrium positions are studied experimentally using Poincare plots in the 
phase plane. The apparent chaotic motions are shown to possess an intricate but well-de­
fined structure in the Poincare plane for moderate damping. The structure of the strange 
attractor is unravelled experimentally by looking at different Poincare projections 
around the toroidal product space of the phase plane and phase angle of the forcing func­
tion. An experimental criterion on the forcing amplitude and frequency for strange at­
tractor motions is obtained and compared with the Holmes-Melnikov criterion and a heu­
ristic formula developed by the author. 

Introduction 
There has been growing interest in nonperiodic, steady-state so­

lutions of nonlinear differential equations in applications to atmo­
spheric dynamics [1], electrical circuits [2], and elastic structures [3, 
4]. The equations governing these systems are deterministic while for 
certain control parameters chaotic motions appear. The importance 
of these motions is twofold. First, conventional methods for finding 
steady-state solutions to nonlinear differential equations such as 
perturbation schemes, and averaging techniques must be abandoned 
or modified since they assume periodic solutions. The second point 
is that in many physical systems observation of chaotic behavior is 
often ascribed to some randomness in the problem parameters. The 
existence of strange attractor motions of deterministic systems may 
obviate the need for the existence of random "demons" in certain 
dynamical problems. 

Mathematicians have used the name "strange attractor" to denote 

1 Research supported in part by a grant from the National Science Foundation, 
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Department. Manuscript received by ASME Applied Mechanics Division, May, 
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bounded, chaotic, nonperiodic solutions of deterministic, nonlinear 
differential equations in contrast to more predictable motions such 
as those near equilibrium points and limit cycles. Strange attractor 
oscillations have been found for third-order autonomous differential 
equations by Lorenz [1] in developing an atmospheric dynamics 
model. Strange attractor solutions have been found in analog com­
puter simulations of Duffing's equation by Ueda [2, 5] and Holmes 
[3,4]. Ueda, [2], has also observed chaotic behavior in analog computer 
solutions of a forced Van der Pol oscillator. 

Mechanical examples of continuous, nonperiodic, bounded motions 
in deterministic systems can be found in the vibrations of buckled or 
curved plates and beams. These motions occur when the vibration 
amplitude becomes large enough to cause the beam or plate to 
"snap-through." Tseng and Dugundji [6] have studied the nonlinear 
vibrations of a buckled beam with fixed ends and observed both pe­
riodic and nonperiodic motions. They refer to the latter as continuous, 
"intermittent" snap-through under harmonic excitations. In a recent 
paper, the author and Holmes [7] examined the nonlinear forced vi­
brations of a cantilevered beam which is buckled by magnetic forces. 
The harmonic excitation of this model exhibited chaotic snap-through 
behavior similar to strange attractor motions found in analog com­
puter studies. In [6, 7], the Galerkin approximation was used to reduce 
the nonlinear beam equations to Duffing's equation with harmonic 
excitation. 

The work of Tseng and Dugundji [6] was an extension of previous 
work by Cummings [8], and Eisley [9] on large amplitude vibrations 
of buckled and curved plates. Cummings treated the snap-through 
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Fig. 1 Sketch of experimental apparatus 

problem under a pulsed load but did not examine the intermittent 
snap-through discussed in [6]. 

The present paper is an extension of the work of Moon and Holmes 
[7] on the chaotic vibrations of a cantilevered beam buckled by 
magnetic forces, Although there are potential applications for the 
study of magnetically buckled structures, such as in fusion reactors 
(see, e.g., [10]), its main interest in this paper is as one of the simplest 
mechanical examples of strange attractor motions which can be easily 
studied experimentally. In the previous work analysis of the magnetic 
and elastic forces led to a Duffing-type equation for the first mode 
approximation. Briefly, the beam was assumed to have a magnetiza­
tion M induced by the magnetic field of external magnets B°. The 
magnetic field acting on the beam creates distributed magnetic forces 
and couples 

F = M • VB° 

M X B' |0 (1) 

When a one mode Galerkin approximation is used, a magnetic energy 
potential can be found in terms of M, B° 

W- 4/ M • B°dv (2) 

This potential is nonlinear in the modal amplitude " a " and is ex­
panded in a Taylor series in "a;" 

W = -ya2 + -Ba4 + -r]a6. 
2 ' 4 6 

(3) 

The resulting nonlinear modal magnetic forces when added to linear 
modal elastic forces lead to a nonlinear differential equation of the 
form, 

a + 5d + aa + (Sas + rjab = fi2A0 cos fit (4) 

where a is the modal amplitude of the first bending mode of the 
cantilevered beam, Ao is the vibration amplitude of the forced support 
motion, and fi is the frequency of the support motion. Structural 
damping is represented by 5. The control parameters in this problem 
are the spacing of the magnets, damping, forcing amplitude, and 
frequency. As a static problem only the spacing of the magnets is 
relevant. The elastic bending stiffness, magnet field strength, and 
positions of the magnets relative to the beam form a four parameter 
system which admit one to five equilibrium positions of the tip. For 
a given beam stiffness, the locus of points in the plane of magnet 
spacing parameters for which the number of equilibrium points 
changes is known as a butterfly catastrophe, [11], and is shown in Fig. 
2. For the three equilibrium state case only two are stable and the 
governing nondimensionalized differential equation takes the form 

A + yA ~ - (1 - A2)A = f cos u>t 

where the following nondimensional groups are noted: 

(5) 

7 
; 5/coo, A = a/xo 

fiMo 

w0
2x0 

to = fi/coo 

Fig. 2 (a) Equilibrium state regions in the plane of magnet spacing param­
eters; experimental data, (b) Ideal "butterfly" catastrophe set for a potential 
•V = a6 + A4a4 + A3a3 + A2a2 + A,a with A3 = 0, A„ < 0 

The amplitude is normalized by XQ and the time by 27i7coo where xo 
is the static position of the beam tip and u)o is the frequency for small 
vibrations about the buckled position. 

For fixed damping and frequency the motion for small forcing 
amplitudes is periodic but for larger amplitudes becomes chaotic with 
the beam tip jumping from one equilibrium position to the other as 
shown in Fig. 3. A phase plane picture is shown in Fig. 4 and it is clear 
that a continuous history of the motion has very little structure. 

In this paper experiments are described which attempt to charac­
terize the behavior of this chaotic motion and to determine the critical 
parameters for which one might expect chaotic behavior from a sec­
ond-order, single-degree-of-freedom system. Theoretical attempts 
have been made recently to determine the nature of the attracting set. 
In [4] Holmes has developed a necessary criterion for strange attractor 
motions which determines the minimum forcing amplitude as a 
function of forcing frequency. This criterion is compared with ex­
perimentally determined parameters as well as another theoretical 
criterion posited by the author. Experimental Poincare plots in the 
phase plane are used to partially unravel the strange attractor. 

Description of Experimental Apparatus 
The apparatus consisted of a steel (ferromagnetic) cantilevered 

beam suspended vertically. The clamped end was attached to a vi­
bration shaker, (Fig. 1) while permanent magnets, 2.54 cm (1 in.) in 
diameter, were placed below the free end of the beam. The dimensions 
of the beam were 18.8 cm (7.4 in.) long, 9.5 mm (3/8 in.) wide, and 0.23 
mm (0.009 in.) thick. The magnets had a 0.18 Tesla magnetic field 
normal to the magnet face and rested on a steel base. 
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Fig. 4 Phase plane motion for the chaotic motion In Fig. 3; bending strain,
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Fig. 5 Experimental and theoretical thresholds for spontaneous chaotic
motion-moderate damping, 'Y = 0.0168

DAMPING RATIO r=0.0168
BUCKLING DISPL. 2xo =38.5 mm

MOON (Eqn. (12))
a =0.86

2
HOLMES-MELNIKOV, [41 ,NATURAL FREQUENCY ~.; = 9.34 hz

--..!E.qn. (7))Z I

°6[::~7==:L8==:::i9=J==IOL==ILI==1J;:2==:J;13==:J14==---,!15

Forcing Frequency, 2fl7r ' hz.

shows good qualitative agreement. One can imagine a change of pa­
rameters Al(AI, A2) and A2(Al, A2) which will transform the experi­
mental "rabbit" catastrophe Fig. 2(a), into the topologically identical
butterfly set, Fig. 2(b).

Most of the dynamic experiments were run in the three equilibria
regimes in the AI, ~2 plane with two stable and one unstable equilibria.
However a few tests were performed for the five point case. In the
latter case, three are stable equilibria while two are saddle-type points
and are unstable.

Experimental Criteria for Chaotic Motions. Next the range
of vibration base amplitudes and frequencies for chaotic motions was
determined. These data were obtained by fixing the frequency and
varying the shaker amplitude. For small motions periodic orbits of
period one would occur. For larger amplitudes, period one, two, three,
four, or more times the driving period might occur. At a sufficiently
high amplitude, chaotic motions would occur. Such motions might
not persist. Thus, if a periodic motion were disturbed by deflection.
of the beam, a chaotic motion like that in Fig. 4 might appear and
decay to the periodic orbit. However a threshold would occur where
the beam would spontaneously jump out of periodic motion into
nonperiodic or chaotic motions.

This threshold amplitude of shaker motion is shown in Fig. 5 for
different shaker frequencies and damping. The lowest amplitude for

-,,12 \
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Strain gages were attached to the beam near the clamped end while
a linear variable differential transformer was attached to the shaker
platform to measure the forced vibration amplitude of the beam base.
Data were recorded on a storage oscilloscope.

To display motion in the phase plane and to perform a Poincare
map, a differentiator was used. In order to avoid spurious differen­
tiation from high frequency noise, a low pass active filter was built
(Bessel filter) with a 3 db drop in amplitude at 40 hz and less than 1
percent error in phase shift in the operating region. The experiments
were performed at driving frequencies below 15 hz. With no magnets
the beam had natural frequencies of 4.6, 26.6, and 73.6 hz. The am­
plitude and phase shift of the differentiator was checked carefully over
the range of driving frequencies.

To perform a Poincare map, a storage oscilloscope was used. The
scope trace intensity was modulated by a pulse triggered by the vi­
bration shaker amplitude. The bending strain was displayed on the
horizontal axis of the scope while the time rate of strain controlled
the vertical displacement of the scope trace. By modulating the trace
intensity in synchronization with a particular phase of the vibrator
motion, a dot would appear with every cycle and the set of dots over
time would provide a Poincare map or section of the motion.

Results
A number of different experimental methods were used to char­

acterize the nonperiodic motion of the beam including time histories,
Fourier analysis, zero crossing times distribution, Poincare maps, and
determination of chaotic motion threshold for driving amplitude and
frequency.

Static Bifurcations. Static buckling experiments were done as
reported in [7] to determine the critical values of magnet spacing A2
and magnetic offset Al at which the number of equilibrium positions
changed (Fig. 2(a)). The locus of points in the AI, A2 plane where the
number of equilibrium solutions changes is known as a catastrophe
set, [11]. In classic symmetric buckling problems this set is simply a
point, namely, the buckling load. However when one allows other
parameters to vary, such as geometric imperfections, the set becomes
a curve, surface, or hypersurface in the parameter space. The di­
mension of the hyperspace depends on the potential energy func­
tion.

For this problem the magnetic potential (3) implies that four pa­
rameters will be sufficient to describe all the possible bifurcations.
The theoretical set is called a butterfly catastrophe, [11], and a two­
dimensional section is shown in Fig. 2(b), for the potential,

The projection shown in Fig. 2(b) is for A3 = 0, A4 < 0. The number
of equilibrium positions in each region is shown by the circled num­
bers.

Comparison of the experimental and theoretical catastrophe sets
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Fig. 8 Sketch of strange attractor surfaces in the product space of Poincare
plane and forcing amplitUde phase

Fig. 7 Poincare maps of a strange allractor for different phase synchroni­
zation with forcing function

deal of order resembling a line wrapped back and forth on itself. In
analog computer studies [3], Holmes has shown that this parallel line
structure continues to exist when local regions of the phase plane are
magnified, suggesting the property of a Cantor set.

The Poincare map in Fig. 6(b) depends on the phase angle of the
driving motion, (j. For the symmetric problem examined here, the map
should invert itself when (j ~ (j + 71". The change of shape of the strange
attractor for different (j where 0 :5 (j :5 7r, is shown in Fig. 7. One can
see that although the figure at (j = 7r appears to be rotated, the evo­
lution of this change shows that the "arms" of the attracting set de­
form in such a way as to invert the shape.

It should be noted that the motion of the beam must pierce all of
these maps so that the lines in the Poincare plane become sheets in

6=00

A

A

Y=O.0033

y= 0.0168

"'I •
- _,f_ .. ..... ~ .....

.~.

.IlA.
dl

dA
dI

• .' • ....... ~.", ,..".~ I~" •
.. " .. : '. I if .:. t~ ..

,. '.1 • ... ,' "~'\" ."'"
I ••' )" ••) •• ' .:.. :.#-: ''':-,. ..' • ,.. A
'. ~ , " ,~, •~~. ~ ..:. l!.o .''-a----••-10 •• «/'. .. ~.J"" .~, .- ,
i. :\ ,'...... ( ... I .".... I

'.' .' .. f ••• -It.I.,:-1. \' ••1. "'to Of... ,. ""\I.;,-! t "0 lao ., I

• : "t:'" .,. f --: ~.,. t /'1~:~.: :';-'~.. I.~
,it ,,' :, 1.' .,'. i,' ,

':":.\:--:': ..... "f.~:~. 'T:' :..,
.' . ,

u·· Ltt

Fig. 6 Experimental Poincare map of chaotic motion for low damping; ex­
perimental Poincare map of chaotic motion for moderate damping

chaos occurs at a forcing frequency below the natural frequency of
the linearized buckled beam. A comparison of the experimental cri­
teria with theoretical predictions is discussed in a later section of this
paper.

There is some belief that an upper criterion exists where the forced
motion changes from nonperiodic to periodic, [4], but this was not
observed within the range of shaker amplitudes available to the au­
thor.

Poincare Plots. A time history of the bending strain for non­
periodic motions is shown in Fig. 3. This oscilloscope trace shows vi­
bration about the two stable equilibrium positions, the transition
between them, and oscillations about all three equilibrium positions.
A phase plane portrait of this motion is shown in Fig. 4. Motion about
the left, right, and all three equilibrium points can be seen but it is
clear that the plane will become dense with these traces, making any
characterization of the motion difficult to interpret. Instead of looking
at the motion for all times, one can choose to observe the position in
the phase plane at certain multiples of periods of the forcing motion.
A sequence of points or dots on the oscillqscope will appear called a
Poincare map.

A period one Poincare map is shown in Fig. 6(a) for low damping.
One can see that there appears to be little global structure, though
locally small clusters of straight lines of dots can be seen. Thus the
forced nonperiodic motions of the near Hamiltonian system do not
reveal much structure or order in the Poincare map.

To increase the damping, a 0.05 mm (0.002 in.) thick stainless steel
strip was glued to the beam which increased the damping from 'Y =
0.0033 to 'Y = 0.0168.

The Poincare map for the moderate damping case is shown in Fig.
6(b). Here one can see that the period one Poincare map shows a great
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Fig. 10 Experimental strange attractor in the Poincare plane for the five
equilibria case
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Fig. 9 Experimental multlperlod Poincare maps of the same chaotic mo­
tion

the toroidal product space of the Poincare plane and forcing phase
0, Fig. 8.

It is remarkable that a Poincare map synchronized with the forcing
motion appears to organize what appears to be chaotic behavior. It
should be clear that if the map is slightly unsynchronized, points from
different Po maps of the synchronized maps will project onto the
unsynchronized map. The resulting attracting set will appear as a blur
and the structure will be lost.

One of course can obtain multiperiod Poincare maps pin) defined
by

{x, X!O = 2:7r, 4:7r ... }
We note that the maps p(n). n :::: 2 are contained in the pl map but
the question arises as to whether the structure of the strange attractor
as seen in the higher period maps will look like that of the pl map.
Experiments were carried out for n = 2, 3, 4, 5 and indeed the struc­
ture of the attractor looks identical to the pl map as shown in Fig. 9.
For example, the only difference between P(5) and pl is that P(5) took
20 min to obtain, while pl took around four minutes of data. This il­
lustrates again that although the motion appears to be chaotic in
continuous observations, stroboscopic, or pn maps reveal highly
structured features of this motion.

"Butterfly" Strange Attractor. While most of the experiments
were carried out for the single saddle and double sink or three equi­
librium point case, a few experiments were performed for the double
saddle or five equilibria case. As had been discussed by Holmes [4]
and Veda [2], the strange attracting set in the Poincare plane seems
to be organized about the unstable manifold of the saddle point. When
two saddles are present in the phase plane of the unforced motion,
one would expect two organizing centers to appear in the Poincare
map for the chaotic motions. Experimentally this has been observed
as can be seen in Fig. 10.

Fourier Analysis. Frequency analyses of these chaotic motions
were carried out by digitizing the data and using a fast Fourier

642 / VOL. 47, SEPTEMBER 1980

A

Fig. 11 Intersection of the stable manifold M. and unstable manifold Mu of
the Poincare map in the phase plane (see [4])

transform [7]. The chaotic motions exhibit a continuous spectrum of
frequencies below the driving frequencies, including subharmonics.
Similar results were reported earlier by Veda [5] and Holmes [4] for
a forced Duffing's equation.

Threshold Criteria for Chaotic Motions
Various qualitative analyses have demonstrated the existence and

characteristics of chaotic motions in deterministic nonlinear systems.
However there is at present no theory to predict for what range of
parameters these chaotic motions will occur. The engineer would like
a chaotic "Reynolds number" or an equivalent parameter below which
periodic motions would be insured and above which chaotic, non­
periodic motions would occur in the forced nonlinear oscillator.

In [4] Holmes has presented a necessary criteria for the strange
attractor based on the work of Melnikov [12]. For chaotic motions to
occur, the forcing amplitude, driving frequency, and damping in (5)
must satisfy the relation

h = 'YvIz cosh (7r~).37rW v 2
In [4J Holmes showed that the Poincare map itself has a saddle

point and that as the forcing amplitude is increased the stable and
unstable manifolds of the saddle of the Poincare map intersect, giving
rise to infinitely many intersections or homoclinic points as shown
in Fig. 11. It has been shown in [4J that two arbitrarily close points in
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the Poincare phase plane can be widely separated under iterations 
of the Poincare map. 

Comparison of the Holmes-Melnikov criterion with experimental 
thresholds in the driving amplitude-frequency plane for fixed 
damping is shown in Fig. 5. While the theoretical threshold (7) gives 
a lower bound it does not compare well with measurements for low 
damping. Also it predicts that the minimum forcing amplitude occurs 
at a driving frequency greater than the natural frequency while ex­
periments indicate that for low damping the minimum occurs below 
the natural frequency. There is evidence however that this criterion 
may give good results for high damping (7 > 0.1), [4]. 

It should be pointed out that the experimental thresholds were for 
"spontaneous" departure from forced periodic motion about a buckled 
state to chaotic motions. Experiments have shown that under certain 
initial conditions chaotic motion can occur below the spontaneous 
threshold. Thus it is possible that initial conditions could be found 
for which chaotic motion could occur near the Holmes-Melnikov 
criterion. 

As just mentioned, it has been predicted and observed experi­
mentally that multiperiod subharmonic forced oscillations are often 
precursors to the strange attractor behavior. Thus a better criterion 
may be found by studying the stability of subharmonic motions as has 
been reported by Hayashi [13]. Unfortunately the stability criterion 
as reported in [13] does not use / and o> as parameters and it is difficult 
to determine if a subharmonic stability criterion will compare well 
with the threshold in Pig. 5. But this seems to be a worthwhile direc­
tion to go in. 

Finally, we propose a hueristic criterion based in part on a pertur­
bation solution for forced periodic motion, and experimental obser­
vations. First we observe that the criterion sought governs the tran­
sition from forced periodic to nonperiodic motion. Thus, before 
chaotic motions occur, the response amplitude and velocity are known 
functions of forcing amplitude and frequency, i.e., <x2) = g(f, co), 
where ( > indicates time averaged. If a critical amplitude of (x2> or 
(x2> can be found, then / and co can be related when chaotic motion 
is incipient. 

To find the response function we write (5) about the buckled po­
sition A = 1 or —1. If we denote the motion about A = 1 by 

A - 1 = X/x0 

where xo is the static deflected position of the tip of the beam, then 
the equation of motion takes the form 

X + yX + x l l + -11X + -JX2X2\ = x0 / cos (cot + </>0) (8) 

where n = 1/xn. The parameter 11 will act as a perturbation parameter, 
while the phase angle <t>o will be adjusted so that the first-order motion 
is proportional to cos cot. Then using either Duffing's method, or 
Linstedt's perturbation method [13], [14] one assumes a solution of 
the form 

The 

X = Co cos cot + |t(Ci + C2 cos cot) + n2Xi 

resulting force-response relation is found to be 

Co)2 

Xo, 
( 1 - CO2) • 

3 ICo\2 

2 \xn. 
+ y2m'' -f2 

(9) 

(10) 

Finally, it has been observed that over a limited range of frequencies 
close to the natural frequency in the post buckled state, the periodic 
motion seems to change to chaotic at a critical uelocity. This velocity 
was not measured. However we hazard a guess that the critical velocity 
is near the maximum velocity on the separatrix for the phase plane 
motion of the undamped, unforced oscillator. This is certainly a guess, 
but this velocity is a characteristic of the beam and independent of 
the force. In nondimensional units (dA/dt)maK = lli. Thus we assume 
that near the chaotic threshold 

coCn a 

xo 2 

where a is near but less than unity. These assumptions lead to a cri­
terion of the form 

/ i = 
2co 

( 1 - c o 2 ) - - - + 72o>' 
1/2 

(12) 

(ID 

The constant a gives us a "cheat" factor with which to fit the data. 
However what is remarkable, at least to the author, is that with rea­
sonable values of a (near unity) the criterion compares very well with 
the experimental data both qualitatively and quantitatively as shown 
in Fig. 5. In Fig. 5 the dimensional forcing frequency and amplitude 
are given by 

fl = conco, Ao = xo/coo2/fi2. 

It is left to theoreticians to determine whether the assumptions 
implicit in (12) are at all related to the subharmonic stability criterion 
of Hayashi or the Holmes-Melnikov equation (7), or whether (12) is 
simply a fortuitous guess. 

S u m m a r y 
The experiments reported here show that a simple mechanical 

structure can exhibit nonperiodic or chaotic motions even when the 
forcing inputs are highly deterministic. The results are consistent with 
qualitative analysis and analog computer solutions of a deterministic 
forced Duffing's equation. In both the mechanical structure and the 
analog studies reported earlier, the nonperiodic motion exhibits a 
remarkable mathematical structure in the Poincare plane, resembling 
a sheet folded infinitely many times about the saddle point with 
properties of a Cantor set. This structure is preserved in higher-order 
maps of period two or higher. However the maps must be exactly 
synchronized with the phase of the driving motion or else this orga­
nized structure will be blurred or washed out. Experimentally the 
structure of the strange attracting set is more readily observed in 
moderate to highly damped systems. 

The attempt by Holmes [4] to develop a dynamical "catastrophe" 
set of parameters for which strange attractor motions will occur seems 
to give a lower bound for the driving force. An ad-hoc criterion de­
veloped in this paper gives a set of driving amplitudes and frequencies 
closer to the experimental set. However the effects of other parameters 
such as initial conditions have yet to be explored. 

The extension of this work to other nonlinear and multistate me­
chanical systems should reveal similar phenomena. In experiments 
on the dynamics of a magnetically levitated model on a rotating 
guidance track the author has observed similar chaotic behavior [15]. 
Lateral "rattling" motions of trains may also fall into this class of 
problems. 

Whatever the specific example however, it is clear from these ex­
periments and those of others that what appears to be "random" or 
chaotic motion in many mechanical systems may be governed by 
deterministic mathematical models and controlled by nonrandom 
parameters. 

Strange attractor dynamics in other engineering systems such as 
chemical reactors and aerospace applications have been reported in 
[16], including a two-dimensional mechanical oscillator with chaotic 
behavior [17]. 
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An Application of the Poincare l a p 
to the Stability of Nonlinear Normal 
Modes 
The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-
freedom Hamiltonian system is studied by deriving an approximation for the Poincare 
map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as 
an alternative to the usual linearized stability analysis based on Floquet theory. An ex­
ample is given for which the Floquet theory approach fails to predict stability but for 
which the Poincare map approach succeeds. 

Introduction 
This paper is concerned with certain periodic motions, called 

nonlinear normal modes (NNM's), which have been shown to occur 
in a wide class of coupled oscillators [24,18,10]. In particular we shall 
be interested in the stability of NNM's. As usual in discussing the 
stability of periodic motions in a nonlinear system, we shall be con­
cerned only with orbital (and not Liapunov) stability [4], 

The usual procedure for determining stability of a periodic motion 
in a nonlinear system involves perturbing the solution whose stability 
is to be studied, and then linearizing the perturbed equations. The 
resulting linear system of equations has periodic coefficients and lies 
in the realm of Floquet theory; e.g., for small amplitudes of vibration 
the stability problem is often reduced to consideration of the Mathieu 
equation [28, 22, 16]. The question of the stability of a given NNM 
will often depend upon the values of the system parameters (e.g., 
spring constants, geometry, etc.) The parameter space is typically 
decomposed into stable and unstable regions separated by a codi-
mension 1 "transition" surface, (e.g., in the case of the Mathieu 
equation x + (o + e cos t)x = 0 the 8 — e parameter plane has regions 
of stability separated from regions of instability by transition curves 
[12].) In a particular problem, analytical expressions may be obtained 
for the transition surfaces by perturbation methods [26, 21]. 

It is our purpose in this paper to provide an alternate procedure for 
determining the stability of NNM's in autonomous two-degree-of-
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Fig. 1 The system S 

freedom Hamiltonian systems. The procedure is based on using the 
Birkhoff-Gustavson (B-G) canonical transformation to obtain an 
approximation for the Poincare map. We believe that this method 
offers some advantage over the usual Floquet theory approach just 
described. Specifically, the procedure does not require linearization 
in the neighborhood of any particular motion and hence it yields a 
global picture of the flow. Thus it not only permits conclusions to be 
drawn about the stability of NNM's, but it also provides insight into 
the dynamical structure of the system. 

Moreover, there exist systems for which the Floquet theory ap­
proach simply fails to predict stability for a given NNM! We will de­
scribe such a system in this paper. The failure of Floquet theory in 
this case is related to the essentially nonlinear nature of the stability 
problem. We will show that the method based on the B-G transfor­
mation and the Poincare map does, however, predict stability for this 
problem. 

The System 
Consider a nonlinear autonomous two-degree-of-freedom Hamil­

tonian system S which consists of two unit masses constrained to move 
along a straight line and restrained by two anchor springs and a cou­
pling spring, Fig. 1. The positions of the masses are given by gener­
alized coordinates x and y, both of which are taken to be zero when 
the springs are unstretched. We assume that the restoring force F for 
the identical anchor springs is given by F = d + kd3, while for the 
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Fig. 2 A nonlinear normal mode (NNM) 

-> 

—̂ c 

c = - i — -

Fig. 3 Bifurcation of SNM's (y = Cx) tor system S 

coupling spring, F = ds. Here d is the spring deformation and k is a 
parameter. 

The equations of motion for the system S are 

d V •• d V m 

* = - - — , y = - — (l) 
dx dy 

where the potential energy V(x, y) is given by 

V = -(x* + y*) + -(xi + yi) + -Ax-y)\ (2) 
2 4 4 

The system S possesses a first integral corresponding to the conser­
vation of energy, 

H(x, y,x,y) = -(xi + y2) + V(x, y) = h (3) 

where H(x, y, x, y) is the Hamiltonian. 
In a previous work [23] it has been shown that the system S pos­

sesses bifurcating NNM's. In a manner similar to Rosenberg [24] we 
take NNM's to be periodic motions which pass through the origin 0 
and which have precisely two rest points, Fig. 2. NNM's which project 
onto the xy-plane as straight lines have been called similar normal 
modes (SNM's) [24]. 

The system S possesses SNM's, y = Cx, where 

C - l , 
. ! 1 fexVfe(fe~4) 

2 2 
(4) 

When 0 < k < 4 there are only two SNM's, y = ±x. An additional pair 
of SNM's bifurcates out of the y = — x mode when k > 4, and out of 
the y = x mode when k < 0, Fig. 3. 

The stability of the y = — x out-of-phase mode and of the two 
SNM's which bifurcate out of it has been investigated in a previous 

Fig. 4 Stability results from Floquet theory. The stability chart is for the 
Mathieu equation x + (5 + e cos t)x = 0 (S = stable, U - unstable). Solid 
lines represent transition curves, 8 = % ± e/2 + 0(e2). The location of the 
SNM's for varying ft Is displayed as folllows: The dashed line corresponds to 
the out-of-phase mode y = —x; the dark solid line corresponds to the in-phase 
mode y = x (which lies on the transition curve); the dotted lines correspond 
to the pairs of bifurcating modes. Arrows indicate direction of increasing 
fc. 

work [16]. Results were obtained using a linearized stability analysis 
and Floquet theory. The stability analysis, valid for small energies 
h, was shown to finally reduce to the study of a single Mathieu 
equation. This Mathieu equation governs perturbations which are 
orthogonal to the SNM under investigation, and therefore the stability 
being considered is orbital stability [15]. 

It was shown [16] that upon bifurcation at ft = 4 the two new peri­
odic motions enter as stable, while the existing y = —x periodic motion 
changes from stable to unstable. See Fig. 4 which shows the location 
of the SNM's for varying k on a Mathieu equation stability chart. 

The same analysis can also be used to investigate the stability of 
the modes which bifurcate out of the y = x in-phase mode when k = 
0. It has been shown that these modes enter as stable [15], Fig. 4. 

However, this same kind of linear stability analysis fails to predict 
stability for the y = x in-phase mode [16]. In this case the SNM lies 
along a transition curve in the associated Mathieu equation stability 
chart, Fig. 4. 

In what follows we present an alternate method of stability analysis 
which will be shown to yield stability information for the y = x mode 
of system S. 

The Poincare Map 
In this section we will discuss a powerful technique for analyzing 

two-degree-of-freedom problems, the Poincare map. Its purpose is 
to provide a two-dimensional description of a flow which is occurring 
in a four-dimensional phase space. 

Let us consider an autonomous two-degree-of-freedom Hamilto­
nian system. Although the phase space (x, y, x, y) is four-dimensional, 
the first integral H = h, equation (3), restricts the motion to a three-
dimensional surface. If another independent first integral exists then 
the energy manifold, H = h, is fibered by invariant two-dimensional 
tori. These may be pictured in three-dimensional space as a family 
of concentric tori, Fig. 5. 

Now consider the two-dimensional surface 2 which results from 
"slicing" the three-dimensional energy manifold H = h with a plane, 
say x = 0, Fig. 6. 2, which looks locally like a two-dimensional plane, 
will in general intersect a particular motion infinitely often. A motion 
beginning on 2 returns to 2 after making a circuit around the torus. 
This produces a mapping of 2 onto itself. This map is known as the 
Poincare map [20, 9, 2, 1], and the two-dimensional surface 2 = 
\x = 0J n \H = h j is called a surface of section. We will choose y, y as 
coordinates on 2 and will project 2 down onto the y — y-plane for 
convenience. 

In order to insure that the Poincare map gives a realistic picture 
of the flow in the neighborhood of a given motion, we require that the 
motion intersect the surface of section 2 transversally (nontangen-
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Fig. S In a two-degree-of-freedom Hamlltonian system, the existence of a 
first Integral which Is Independent of the Hamlltonian Implies that the three-
dimensional energy manifold will be flbered Into Invariant tori; a given motion 
remains on a single torus for all time 

/ I 

A 
Fig. 6 A motion starting at P on the surface of section 2 = \x = 0|n|H = 
h) reintersects S at 0 producing a Poincare map 

tially) [5]. A motion will fail to intersect 2 transversally whenever the 
normal to the "slicing" surface (i.e., x = 0) is perpendicular to the 
tangent of the motion. The normal to the surface x = 0 is (1,0, 0, 0) 
and the tangent to the motion (x, y, x, y) is (x, y, x, y). Thus 
transversality is violated whenever (x, y, x, y) • (1,0,0,0) = 0 or x = 
0. We impose the additional restriction that x > 0 when x = 0 in order 
to insure that the motion always pierces 2 from the "same side." 
Therefore successive intersections of a motion with the y, y surface 
of section 2 lie inside the region x(y, y,h) > 0. This region is bounded 
by the curve x (y, y, h) = 0, obtained by solving the equation H(0, y, 
x, y) = h equation (3), for x. 

Periodic motions which pierce the surface of section 2 once per 
cycle appear as fixed points of the Poincare map. More complicated 
periodic oribts may appear as re-cycles of the map, i.e., as fixed points 
of the map composed with itself n times. 

Suppose a periodic motion which corresponds to a fixed point of 
the Poincare map is stable. Then in phase space the closed curve 
which corresponds to the periodic motion will be enclosed by tori 
which contain neighboring motions. The Poincare map will reveal the 
fixed point to be surrounded by concentric closed curves. Thus stable 
periodic motions become centers in the y — y- plane. Similarly un­
stable periodic motions appear as saddle points in y — y- plane. It is 
important to recognize that the dynamic on the y — y- plane is that 
of a map and not of a flow, and although we speak of centers and 
saddles these must not be confused with the singular points associated 
with the flows of phase plane analysis (cf. [14]). 

The Poincare map can be found analytically as follows: Let f(x, y, 
x, y) = c be a first integral which is independent of the energy integral 
H = h. The intersection of the f = c surface with the surface of section 
2 represents the invariant curves of the Poincare map. For fixed en­
ergy h these invariant curves may be written 

Hy.y) = /(0,y, x(y, y, h),y) = c. (5) 

Note that if no such independent first integral / = c exists then the 
energy manifold will not, in general, be fibered by invariant tori, and 
the motion may even be ergodic. 

Fig. 7 The Poincare map for the linear system L for h = 1; each invariant 
curve Is associated with a value of c 

To familiarize the reader with the Poincare map we will now con­
sider a well-known integrable two-degree-of-freedorri linear system 
L. The system L consists of two unit masses which are constrained 
to move along a straight line and which are restrained by two linear 
anchor springs and a linear coupling spring. All three springs have a 
spring constant of unity. 

Choosing generalized coordinates x, y as in Fig. 1, the potential 
energy for L becomes 

V(x, y) = x2 + y 2 - xy. (6) 

The general solution to the equations of motion (1) consists, of course, 
of a superposition of the two linear normal modes: here the x = y in-
phase mode has frequency 1 and the x = — y out-of-phase mode has 
frequency V 3 [6. p. 370]. 

In addition to the conservation of energy for the entire system, H 
= h, equation (3), the system L possesses an independent first integral 
corresponding to conservation of energy in either mode alone. Taking 
the x = y in-phase mode, conservation of energy gives 

V2 u
2 + 1/2 u2 = c (7) 

where u = ( lA/2)(* + yl That is, 

fix, y, x, y) = y4 (x + y)2 + V4 (* + y)2 = c. (8) 

To generate the Poincare map, set x = 0 in equations (3) and (6) 
and solve for x(y, y, h): 

x= (2h - 2y2 - y2)1'2. ' (9) 

Then set x = 0 in equation (8) and use equation (9) to obtain 

f(y, y) = V4 [(2/1 - 2y2 - y 2 ) " 2 + yf + V4 y
2 = c (10) 

For fixed h, say h = 1, equation (10) represents a one-parameter 
family of invariant curves with c as parameter, Fig. 7. These curves 
fill the interior of the region in the y — y plane bounded by the el­
lipse 

2y2 + y 2 = 2 f t (11) 

obtained by setting x = 0 in equation (9). 
From Fig. 7 we see that the system L exhibits two stable periodic 
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Fig. 8 The surface of section 2 for system L is topologically equivalent to 
a 2-sphere. Here we see a "side" view of 2 (the y-axls Is directed into the 
paper). Solid lines are invariant curves which lie on the x > 0 ("front") side 
of 2 . Dashed lines lie on the x < 0 ("rear") side of 2 . Dotted lines represents 
* = 0. 

motions, c = 0 (x = —y) and c = 1 (x = y). There are no other periodic 
motions since the natural frequencies are incommensurable. For 0 
< c < 0.25 the invariant curves are closed and surround the out-of-
phase mode c = 0, while for 0.5 < c < 1, they surround the in-phase 
mode c = 1. However for 0.25 < c < 0.5 the invariant curves are 
composed of two disconnected pieces. Nevertheless the motions which 
correspond to these disconnected curves are not qualitatively different 
from the other nonperiodic motions of the system. Their disconnected 
appearance is due to the topology of the energy manifold H = h, 
equation (3). We offer the following description of this situation. 

The energy manifold H = h for the system L is topologically 
equivalent to a 3-sphere. By slicing it with the 3-plane x = 0 we pro­
duce a surface of section 2 which is topologically equivalent to a 2-
sphere. The Poincare map of Fig. 7 is a projection of this surface onto 
the y — y- plane. The front half of 2 corresponds to x > 0 while the 
rear half corresponds to x < 0. Since we have taken x > 0 in equation 
(9) we see only the front half of 2 in Fig. 7. The bounding curve x = 
0 separates the front half of 2 from the rear half. As mentioned pre­
viously, any motion which intersects 2 at x = 0 does so nontransver-
sally. Thus every disconnected invariant curve in Fig. 7 has a motion 
associated with it which intersects 2 nontransversally. 

In fact any such disconnected invariant curve in Fig. 7 forms a 
closed connected curve on 2 . Such a curve includes points on both the 
front and rear halves of 2 . Due to the symmetry of the system L, the 
invariant curves on 2 are symmetric with respect to the origin. 
Therefore the rear half of 2 (* < 0) looks just like the front half (x > 
0) turned upside-down, Fig. 8. 

The stability of a periodic motion follows directly from the nature 
of the invariant curves in the neighborhood of a fixed point of the 
Poincare map. It has been shown that stability results which are ob­
tained from a linear stability analysis and Floquet theory are equiv­
alent to results obtained by expanding the Poincare map about a fixed 
point and neglecting cubic and higher-order terms [15, 8, 13,19]. In 
cases where Floquet theory fails to predict stability (e.g., system S), 
the Poincare map will still give stability results if higher-order terms 
are retained in expansions about a fixed point. We will return to this 
point when we find the Poincare map for system S. First, however, 
we will use the B-G transformation to determine an approximate first 
integral for the system S. 

T h e B i r k h o f f - G u s t a v s o n T r a n s f o r m a t i o n 
In this section we will use an approximate method developed by 

Birkhoff [3] and extended by Gustavson [7]. The idea of the method 

is to choose new dependent variables via a generating function in order 
to simplify the form of the Hamiltonian. Although the method can 
be continued to all orders of accuracy, we shall neglect terms of 0(6), 
i.e., terms of the form x "y^x ~>ys where a, /?, y, 8 are non negative in­
tegers and a + fl + y + S'ifi. As a result, our conclusions will only be 
valid for small energies h. In order to simplify the notation in this 
section, we will write 

x = xi, y = x% x = xi, y = x2. (12) 

The Hamiltonian for system S, equation (3), may be written 

H = H(xj, xj) = H& + ff<4> (13) 

where ff<"> is a homogeneous polynomial of degree n. We first 
transform variables from (XJ, XJ) to ((•/, i)j) by a near-identity ca­
nonical transformation based on the generating function xi?ji + xtf)2 
+ W«Hxi, rn); 

£,• = xj + 
drjj 

m + -
dff'4 ' 

dx: i = i, 2. (14) 

Substituting (14) into (13) we find, neglecting terms of 0(6). 

HM(xjt XJ) = - L xj2 + Xj2 

2 i = l 

= 1 E J/' + V + flffHilfciB) 
i i = i 

where 

and 

D - v d 

j = i d£j drij 

H^(xj,xj)=H^j,Vj)-

(15) 

(16) 

(17) 

Note that the replacement of Xj by £j in the argument of W(4) is valid 
to 0(6). 

Before judiciously selecting IV(4), we perform a second canonical 
transformation which will simplify the operator D. We transform from 
(tj, Vj) t° (Qj, Pj)--

h = {qj + iPj)/y/2 , Vj = ("Jj + P; ) /V2 (18) 

where i = V^-l • The transformed Hamiltonian K(qj, pj) becomes 

K(qj, Pj) = K&Hqj, Pj) + EW»Hqj,.Pj) + K^(qj, Pj) (19) 

where 

K^(qj,Pj)=H^j,Vj) = i £ PjQj 

EW^iqj, Pj) = flff% Vj) 

2 

j - i \ ?>qj 
•Pj 

dpjl 

and where K^(qj, pj) is H(4\^j, %•) transformed to q, p variables. 
We now choose W(4> so that the transformed Hamiltonia K has a 

simple form which will yield a first integral. A typical term of 1V(4) is 
Ca(37jQi"Q2/3PiTP2{, where a + fi + y + 8 = 4. It will be more conve­
nient to work with IV'4' as a column vector, which we may do in view 
of the isomorphism between the space of homogeneous polynomials 
ofsdegree four and iJ36, see Table 1. 

From equation (19) we would like to choose W^ so that 

EW^ = -K<4>. (20) 

Here E is a 35 X 35 diagonal matrix with typical diagonal term i(a 
+ /3 — y — 8), W 4 ' is a 35-column vector whose elements are to be 
determined, and Kw is a 35-column vector with known elements. 

It if were possible to choose Ww to satisfy equation (20) then 
equation (19) would be immediately integrable. However, the matrix 
E is singular. There are nine diagonal terms of E which vanish. They 
correspond to the following values of a, (3, y, 8: 
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Table 1 Isomorphism between the space of homoge­
neous polynomials of degree four and JR3 5 . A basis vector 
in the former space may be wri t ten qiag2^PiyP2S where 
a + fi + y + d = i, and is represented in the table by 
(afiyS). The corresponding basis vector in It3 5 is en = (0, 
0 , . . . , 0 , 1 , 0 , . . . , 0), in which the n th element is unity and 
all o thers a re zero. e„ is represented in the table simply 
by n. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

XotPyb) 

(0004) 
(0013) 
(0022) 
(0031) 
(0040) 
(0103) 
(0112) 
(0121) 
(0130) 
(0202) 
(0211) 
(0220) 

n 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

WyS) 

(0301) 
(0310) 
(0400) 
(1003) 
(1012) 
(1021) 
(1030) 
(1102) 
( H I D 
(1120) 
(1201) 
(1210) 

n 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

(otffyS) 

(1300) 
(2002) 
(2011) 
(2020) 
(2101) 
(2110) 
(2200) 
(3001) 
(3010) 
(3100) 
(4000) 

(afiyb) = (0202), (0211), (0220), 

(1102), (1111), (1120), 

(2002), (2011), (2020). 

Thus equation (20) has no solution for a general K(4>. 
Nevertheless we may choose W(4) to simplify the transformed 

Hamiltonian K, equation (19), as much as possible. We proceed as 
follows: 

Since E is a diagonal matrix, its null space and range are comple­
mentary spaces. Let P be a projection operator onto the range of E 
and let Q be a projection operator onto the null space of E. Then we 
may write 

X<4> = pxW) + QKW. (22) 

Now instead of equation (20) we may choose W(4) so that 

EW^ = -PK«\ (23) 

The general solution to equation (23) is not unique, since any vector 
in the null space of E may be appended to a given solution. However 
if we require W(4) to lie in the range of E then a unique solution 
emerges. (The transformation which maps the right-hand side of 
equation (23) into W 4 ) is called the pseudo-inverse ofE, [25]). It is 
to be noted that any first integral which is independent of the Ham­
iltonian H is never unique since, e.g., functional combinations of H 
and itself may be added to it. The nonuniqueness of W<4) reflects this 
fact. 

If W<4) is chosen so as to satisfy equation (23), then equation (19) 
becomes 

K = K <2> + QK<4>. (24) 

By direct computation for system S we obtain the following ex­
pression for the projection of K<4) onto the null space of E (i.e., the 
space spanned by the basis vectors of equation (21)), 

QK< 4 ) = Cl(j22P22 + C2<?22PlP2 + C3(?22Pl2 

+ C49K72P22 + C5QlQ2PlP2 + C6<7l<72Pl2 

+ C7Ql2p2
2 + C8Ql2PlP2 + C 9 q i 2 p i 2 (25) 

where 

Cl 

c2 

= C9 = 

= C4 = 

c3 = 

c5 

-m + D/8 
• ce = cg = 

c-i = - % 

= - % . 

% 

To determine a first integral corresponding to the approximate 
Hamiltonian K, we note that 

EKV> = 0 

and therefore, using equation (24), 

EK = EK&> + EQRW = 0. 

Next we note that 

2 

K™(qj, Pj) = i £ (pjqj + p;<7,) 

(26) 

(27) 

. 2 5K dK 

j = l l dqj dpj I 

-EK. (28) 

From equations (27) and (28) we see that K<2> = 0 and therefore K™ 
= constant is a first integral. Moreover, since K = constant is also a 
first integral, we may with greater convenience choose the difference 
K — K(2) = QK^ = constant as a first integral corresponding to the 
system based on the approximate Hamiltonian K. As far as the orig­
inal system S is concerned, QK^ = constant is an approximate first 
integral valid when terms of 0(6) are neglected. 

Using the inverse of the canonical transformation (18) and again 
neglecting terms of 0(6), we may transform the expression (25) for 
QK(4) back to the original variables. In this way we find the approxi­
mate first integral to be 

fix, y, x, y) = (1 + fe)[U2 + * 2 ) 2 + (y2 + y2)2] 

+ 4(x2 + a;2)(y2 + y2) - 4(x2 + x2 + y2 + y2)(xy + xy) 

+ 2(x2 - x2)(y2 - y2) + 8xyiy 

= c. (29) 

A simple computation shows that df/dt = 0 if terms of 0(6) are ne­
glected. 

As a check, we note that system S is integrable when k = 0. Setting 
u = (Hyf2)(x + y) and v = (l/\/2)(—x + y) uncouples the two equa­
tions of motion (1) in this case. It turns out that for k = 0 

F(x, y, x,y) = x2 + x2 + y2 + y2 - 2(xy + xy) + (x - y ) 4 

= constant (30) 

is an exact first integral independent of the energy integral (3). If we 
set ft = 0 in our approximate first integral (29), we find that 

f = F2 + 0(6) (31) 

which confirms that / is a first integral to 0(6). 
Note that we did not have to find IV<4) in order to obtain the ap­

proximate first integral (29). This situation usually occurs only for 
the low-order 1:1 or 3:1 resonance cases, i.e., for systems in which the 
linearized normal modal frequencies are in the ratio 1:1 or 3:1. (System 
S has a 1:1 resonance.) In all other cases the B-G method proceeds in 
a slightly different manner. There follows a brief outline of the B-G 
procedure for such cases. 

In systems without 1:1 or 3:1 resonances, the transformed Hamil­
tonian K of equation (19) has been shown by Birkhoff [3] to be a 
function only of the product terms wi = P\q\ and -7T2 = P2</2- This 
result implies that in and ir2 are two independent first integrals, 
since 

and 

and therefore 

P; = -

<lj 

i>K 

dqj 

dK 

dPj 

-Pi 
i>K 

dirj 

1j 
dK 

*7 = Pjqj + PJV = o. 

(32) 

(33) 

(34) 

Thus, for such systems TT\ and 7T2 are chosen as the two independent 
first integrals. They represent the energies in each of the approxi­
mately uncoupled oscillators. In this case, however, W(4)(£j, 7/y) is 
needed in order to transform back to the original variables xj, Xj to 
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0(6). We note that since K(2> = 0, we could again choose QK(4> = K 
— K(2) as an approximate first integral to 0(6). Here, however QK^ 
could be zero, whereas it is generally not zero in the 1:1 and 3:1 reso­
nance cases. 

Application 
In this section we will use the approximate first integral (29) to 

obtain an approximate Poincare map (valid for small energies h) for 
the system S. 

To generate the Poincare map, set x = 0 in equations (2) and (3) 
and solve for x(y, y, h): 

k+ 1 1/2 
> 0 . (35) 

Then set x = 0 in equation (29) to obtain 

/(y, y) = (1 + k)[x* + (y2 + y2)2] + 2x2(y2 + 3y2) 

—4xy(x2 + y2 + y2) 

= c (36) 

in which x = x(y, y, h) is given by equation (35). For fixed h, k, 
equation (36) represents a one-parameter family of invariant curves 
with c as parameter. These curves fill the interior of the region of the 
y — y- plane bounded by the curve 

y2 + 
:+ 1 

yi + y2 = 2h (37) 

obtained by setting x = 0 in equation (35). 
NNM's appear as fixed points of the Poincare map which lie on the 

y-axis (y = 0). This follows from the requirement that a NNM pass 
through the origin (x = 0, y = 0). At any fixed point, the level curves 
Hy, y) = c possess a singularity. Thus, for a NNM, we require 

^ ( 0 , y ) = 0, ^ ( 0 , y ) = 0 (38) 
dy dy 

From equations (35) and (36) we see that f(y, y) = /(—y, y) so that the 
first condition of (38) is satisfied identically. The second condition 
of (38) gives, after some algebra, 

±V5, y2 = fc(l±——-J. (39) 

These values of y, together with the condition y = 0, give the position 
on the Poincare map of all the NNM's which occur in system S. The 
in-phase modey = * corresponds toy = \fh, the out-of-phase mode 
y = —x corresponds to y = — -\ZJi, and the bifurcating modes of 
equation (4) correspond to the last two values of y in equation (39). 
This analysis proves that system S possesses no other NNM's than 
the SNM's referred to in equation (4) (subject to the assumption that 
h is small.) 

In order to investigate the stability of these NNM's, we will examine 
the nature of the invariant curves of the Poincare map in the neigh­
borhood of the corresponding singular points. 

First we move the origin to the fixed points by substituting 

= y - y o (40) 

in the expression for /, equation (36), where yo is one of the NNM 
values of equation (39). Then we expand / in a Taylor series about y 
= 0, w = 0, and neglect cubic and higher-order terms. 

For the out-of-phase mode y — —x this procedure gives 

(k — 4)w2 — y2 = -•eo 
8^ 

(41) 

where CQ = 2h2(k + 8) is the value of c at the fixed point. For k < 4, 
equation (41) is a family of ellipses while for k > 4 it is a family of 
hyperbolas. Thus the out-of-phase mode is stable for k < 4 and un­
stable for k > 4, a result which is in agreement with the Floquet theory 
approach, cf. Fig. 4. 

For the in-phase mode y — x, however, the same procedure gives 

-»Y 

k<0 0<k<4 k>4 
Fig. 9 Sketches of the Poincare map for system S for different ranges of the 
bifurcation parameter k; the upper (lower) fixed points correspond to the in-
phase (out-of-phase) mode and to the modes which bifurcate from It 

'Co 

Sh 
(42) 

where now Co = 2h2k. Thus the invariant curves in the neighborhood 
of the fixed point appear to be parallel lines and therefore equation 
(42) fails to predict stability. This result agrees with Floquet theory 
which also failed to predict stability for this mode. 

In the case of the Poincare map, however, we may consider the ef­
fect of nonlinear perturbations about the periodic motion in the fol­
lowing manner. As noted previously, equations (35) and (36) show that 
J(y, y) is an even function of y. We therefore set 

:y* (43) 

and substitute (40) and (43) into (35) and (36). Expanding / i n a 
Taylor series about z = 0, w = 0 and neglecting higher-order terms, 
we obtain 

8hkw2 + 8^/hkwz + [2k + 1 - hk(l + k)]z2 = c - c0 (44) 

The nature of this conic section depends upon the sign of the 
discriminant of (44) which equals 

-32hk + 0(h2) (45) 

To 0{h2), when k < 0 the discriminant is positive, the conies (44) are 
hyperbolas and the singularity in w — z coordinates is a saddle. The 
two separatrices of this saddle f or z ~Z 0 map into two separatices in 
w — y coordinates and hence in w — y coordinates the singularity is 
a (nonlinear) saddle. For k > 0 the discriminant is negative and the 
conies (44) in w — z coordinates are ellipses. In w — y coordinates this 
singularity becomes a (nonlinear) center. Therefore the Poincare map 
predicts that the in-phase mode is unstable for k < 0 and stable for 
k>0. 

The stability of the bifurcating NNM's may be investigated in a 
similar fashion. Sketches of the Poincare map for various values of 
k are given in Fig. 9. 

Conclusion 
We have investigated the dynamical structure of a pair of nonlinear 

coupled oscillators S by generating an approximation for the Poincare 
map via the B-G canonical transformation. In particular we investi­
gated the existence and stability of NNM's and found that the system 
S admits only 2 or 4 NNM's, depending upon the value of the pa­
rameter k. The bifurcating modes enter as stable while the mode from 
which they bifurcated changes from stable to unstable upon bifur­
cation. 

It is to be noted that all these results are valid only for small h. This 
is not only because the B-G method is a perturbation method valid 
for small h, but also because KAM (Kolmogorov-Arnold-Moser) 
theory tells us that the invariant tori generally do not fill the energy 
manifold H = h in systems which are not integrable [17,1]. The set 
of motions which lie on invariant tori typically have decreasing 
measure as h is increased. For large enough h the Poincare map (ob-
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tainable by numerical integration) loses all semblance of order and 
appears to be filled with "noise," i.e., with motions which seem to be 
ergodic. 

It is also to be noted that although we used the B-G method to 
generate the approximate Poincare map, it could have been obtained 
by other equivalent methods. We mention Whittaker's adelphic in­
tegral [27] and the method of Lie transforms [11] and refer the reader 
to [15] where all three methods are compared and are shown to be 
equivalent to lowest-order terms. 

Finally, we note,that for negative k system S admits additional 
equilibrium points besides the origin x = y = 0 [15]. In order that the 
energy manifold H = h be compact (i.e., closed and bounded) for 
negative k, it is necessary to restrict the energy h to be smaller than 
a limiting value dependent on k. If the energy manifold is not compact, 
the bounding curve for the Poincare map will generally possess 
branches which reach to infinity. In such a case the system S will not 
be physically realistic. 
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Natural Frequencies of Mindlin Circular Plates 

T. Irie,1 G. Yamada,2 and S. Aomura3 

The natural frequencies of vibration based upon the Mindlin plate 
theory are tabulated for uniform circular plates with free, simply 
supported, and clamped edges for the first several tens modes. 

The natural frequencies of uniform thin circular plates of a ho­
mogeneous isotropic material are usually calculated by the classical 
plate theory, in which the rotatory inertia and shear deformation are 
not considered. Leissa [1] have presented the numerical values in his 
monograph and, recently, Itao and Crandall [2] have also presented 
the values for the first 701 modes of vibration of circular plates with 
free edges. However, the numerical values obtained by the classical 
theory cannot present accurate values for the higher modes' vibration. 
For obtaining more accurate values, one should calculate numerically 
on the basis of the Mindlin plate theory in which both of the rotatory 
inertia and shear deformation of plate are taken into consider­
ation. 

The design data present the natural frequencies (the dimensionless 
frequency parameters) of uniform Mindlin circular plates with several 
plate thickness under free, simply supported, and clamped edge 
conditions up to the higher modes. 

The equations of free vibration of a Mindlin circular plate are 
written as [3,4] 

dMr^ldMr0 Mr-Ms Ph\ 

dr r d0 r 12 

dMr« l d M » '2M r9 n , 2r- , _ 
— H — H Qe + ai2-^-i / 'e = 0 

dr r d0 
!M_2 

12 

dQr ldQ„ Q , 
1 — H 1- uzphW = 0 

dr r do r 
(1) 

where p is the mass per unit volume, h is the plate thickness, and o> 
is the radian frequency. The components of the moments and shearing 
forces are 

Mr = D 
dr • ; ( * • $ 

(2) 
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-"M^ 
D 

MrS = - (1 • 

and 

r \ dd V ) dr 

'ViS 
lV;^ 

(Cont.) 

(3) 

• ! » ) • -

<2Gh 

<2Gh 

in terms of the transverse deflection W and the angular rotations \pr 

and ipe of the normal to the neutral surface in radial and circumfer­
ential directions, respectively. E is Young's modulus, v is Poisson's 
ratio, and D is the flexural rigidity of the plate expressed by D = 
Ehs/I2(l - v2). G is the shear modulus and K2 = ir2/12 is the shear 
coefficient. The appropriate solutions of (l)-(3) have been obtained 
for the deflection and rotations by Mindlin and Deresiewicz [3,4] as 
follows: * 

tr = ((71 - 1) —1+ (<72 • 
dr 

dw2 1 dws 

dr r d0 

1 dwi 
\pe= ( ( 7 i - l ) - — — + (<72-

r W 
i - i l i^ 2 . . 

r d8 ' 
dw3 

W = W\ + U)2 (4) 

using the functions 

= AyjAbA 

-(4 
Wl 

U>2 = A2J, 

U>3 = A3J, (5) 

where At are arbitrary constants and Jn(x) expresses Bessel function 
of the first kind. For simplicity of the analysis, the following dimen­
sionless parameters have been introduced: 

5i2, S22 = - X4[fl + S ± |(fl - S)2 + 4 X-*!1/2] 

5 3
2 = 2 ( i ? X 4 - S - i ) / ( l - y ) 

(7i, 0-2=•• (82\ 8i>) (R\* - S-1)-1 

R=(h/a)2/12, S = D/K2Ga2h • {2/wHl - v)\{h/a)2 
(6) 
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DESIGN DATA AND METHODS 

Table 1 Frequency parameters \ n s
 2 of uniform Mindlln circular plates with free edge; v = 0.3 

n s 

0 1 
2 
3 
4 

1 1 
2 
3 
4 

2 0 
1 
2 
3 

3 0 
1 
2 
3 

4 0 
1 
2 
3 

5 0 
1 
2 
3 

6 0 
1 
2 
3 

0 

9.003 
38.443 
87.750 
156.818 

20.475 
59.812 
118.957 
197.872 

5.358 
35.260 
84.366 
153.306 

12.439 
53.008 
111.945 
190.692 

21.835 
73.543 
142.431 
231.031 

33.495 
96.755 
175.735 
274.252 

47.378 
122.570 
211.789 
320.299 

0.05 

8.969 
37.787 
84.443 
146.758 

20.260 
58.215 
112.984 
182.271 

5.330 
34.598 
81.185 
143.557 

12.311 
51.537 
106.405 
175.921 

21.492 
70.799 
133.628 
209.863 

32.766 
92.172 
162.643 
245.198 

46.031 
115.473 
193.265 
281.762 

h/a 

0.1 

8.868 
36.041 
76.676 
126.274 

19.711 
54.257 
99.935 
152.750 

5.278 
33.033 
73.875 
123.771 

12.064 
48.227 
94.531 
147.991 

20.801 
64.891 
115.957 
172.453 

31.270 
82.722 
137.951 
197.055 

43.255 
101.480 
160.361 
221.721 

0.15 

8.710 
33.674 
67.827 
106.397 

18.917 
49.341 
86.235 
126.047 

5.205 
30.942 
65.510 
104.471 

11.722 
44.116 
81.930 
122.486 

19.871 
58.043 
98.446 
140.255 

29.334 
72.464 
114.962 
157.766 

39.831 
87.201 
131.416 
175.011 

0.2 

8.505 
31.111 
59.645 
90.059 

17.978 
44.434 
74.331 
105.033 

5.114 
28.668 
57.722 
88.530 

11.314 
39.960 
70.862 
102.270 

18.816 
51.545 
83.801 
115.568 

27.255 
63.253 
96.513 
128.421 

36.351 
74.982 
108.984 
140.806 

0.25 

8.267 
28.605 
52.584 
76.936 

16.979 
39.948 
64.462 
88.312 

5.008 
26.427 
50.956 
75.651 

10.866 
36.110 
61.613 
86.155 

17.724 
45.819 
71.918 
96.464 

25.221 
55.458 
81.864 
102.979 

33.113 
64.981 
91.436 

112.962 

As a frequency parameter 

X4 = pha4(M2/D 

is adopted here. 
The boundary conditions at the edge r = a are written as 

Mr = Mro = Qr = 0 for a free edge 

Mr = Mro = W = 0 for a simply supported edge 

</v = i>e = W = 0 for a clamped edge 

(7) 

(8) 

By eliminating the coefficients Ai of (5) from the equation which is 
obtained by substituting (2)-(5) into the boundary conditions (8), one 
can obtain the frequency equation 

C l l Cl2 C13. 

C21 C22 C23 

C31 C32 C33 

Elements of the determinant of (9) are 

(9) 

Cu = (er; - Wn"(8i) + vJm'(Si) - vn*Jn(8i)\ 

C2i = -1n(ai - l)|J„'(Si) - J„(5;)l 

Cm = OiJn'(bi) 

Cis=>n(l-»)UB '(88)-JB(5s)} 

C23 = -\Jn"(h) ~ Jn'ih) + n*Jn(h)\ 

CS3 = nJn(S3) (10) 

for a circular plate with free edge, 

Cu = (a - D\Jn"(k) + vJn'(bi) - vn* Jn(h)\ 

C2i=-2n(<Ti-l)\Jn'(&i)-Jn(Si)\ 

Cm = Jn(8i) 

C13 = n(l-V){Jn'(S3)-Jn(d3)} 

C23 = -\Jn"(h) - Jn'ih) + nV„(53)) 

C33 = 0 (11) 
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DESIGN DATA AND METHODS 

for a plate with simply supported edge, and 

•CU = (o-, - 1) «/„'(«;), C2i = n((Ti - 1) Jn(&i) 

C3i = Jn{bi), C13 = nJn(h), C23 = Jn'{h) 

C33 = 0 i = 1, 2 (12) 

for a clamped plate. 
Though the values of <5i2 are always positive in sign, the values of 

^22 and $32 become negative and hence 82 and 83 have imaginary values 
for X4 < l/RS. Within this range of X, the function Jn {x) in the pre­
ceding equations should be replaced with modified Bessel function 
In(x) of the first kind. 

Tables 1-3 present the frequency parameters X„s2 obtained by the 
Mindlin theory for uniform circular plates of Poisson's ratio v - 0.3 
with several thickness ratios h/a. In the columns marked with an as­
terisk, many intricate frequencies appear under the influence of the 
rotatory inertia and shear deformation of plate. When the thickness 
ratio h/a tends to zero, the quantities R, S; a\, a<i are all zero, and Si 
-* \\,hi -*• J X 0' = V—l) and 83 becomes an infinite imaginary number 

of the order of 1/S. In this case, (9) reduces to the determinant with 
2 X 2 elements representing the frequency equation [1] of thin plate 
derived by the classical plate theory where the rotatory inertia and 
shear deformation are not taken into account. The eigenvalues of thin 
plate are also written on the left-most columns of Tables 1-3 for ref­
erence. 

One can quote the natural frequencies of circular plates which given 
boundary conditions and dimensions from the tables. 
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Effect of Blunt Chamfers on Contact Pressure 
Distribution and Elastic Limit 

H. A. Francis1 

The interfacial pressure profile is derived analytically, and the 
elastic load limit is evaluated numerically, for plane strain fric-
tionless elastic contact between a flat surface and a symmetric 
trapezoidal body whose obtuse corners are replaced by tangent cir­
cular arcs. The shape of the pressure distribution depends only on 
plateau and arc widths. The results enable design of radiused 
chamfers to give peak-to-mean pressure ratios as low as 1.2 and 
elastic mean pressure limits up to 1.5 times the yield stress. Con­
versely, the pressure peak and elastic limit can be predicted for any 
microscopically blunt chamfer. 

I n t r o d u c t i o n 
In many engineering applications it is desirable to be able to control 

or predict the contact pressure distribution within an interface be­
tween two solid bodies. For example, interfacial pressure peaks could 
be beneficial in reducing fluid leakage, but detrimental in terms of 
wear and fretting processes. It is often necessary to insure that a 
pressure-dependent variable such as thermal or electrical contact 
conductance per unit area is reasonably uniform over the interface. 
Finally, subsurface regions of high deviatoric stress are associated with 
contact pressure peaks, and these may be undesirable with regard to 
plastic flow, creep, cracking, or fatigue. 

For any frictionless elastic contact region on an initially plane 
surface, there will be a pressure singularity (infinite spike) at the 
contact periphery wherever the opposing surface has a sharp edge, 
90° or greater [1]. At the other extreme, for the same contact region, 
there is always some shape of opposing surface which will give a uni­
form contact pressure distribution. However, the required surface 
geometry is, in general, difficult to machine accurately. As a practical 
means of avoiding contact stress concentrations, a chamfer (bevel) 
or a "radius" (circular segment) is usually designed to replace a 90° 
edge, since they are both easy to machine. Goodier and Loutzenheiser 
[2] derived the pressure distribution for plane strain elastic contact 
between a plane surface and a flat surface with radiused edges. 
However there has been no comparable analysis of chamfers. A survey 
of six common mechanical engineering handbooks yielded no guidance 
on the design of chamfers or radii. 

It may be inferred from the elastic contact behavior of a wedge [3] 
that a perfectly sharp chamfer, or indeed any slope discontinuity, 
within an elastic contact will produce a pressure singularity. However, 
in practice the pressure spike will have a finite maximum because (a) 
a machined chamfer will be blunt at some small scale, and (6) a suf­
ficiently sharp chamfer will effectively be blunted by local plastic flow 

1 The Charles Stark Draper Laboratory, Inc., 555 Technology Square, 
Cambridge, Mass. 02139. 

Manuscript received by ASME Applied Mechanics Division, February, 1980; 
final revision, March, 1980. 

in one or both surfaces during the first loading of the contact. Thus 
every real chamfer is bridged by a curved segment, whether by design 
or accident. 

This paper presents an analytic solution for the plane strain, elastic, 
frictionless contact between a semi-infinite flat body and a symmetric 
body whose profile consists of a plateau, each end of which is con­
nected with continuous slope to a straight chamfer by a convex cir­
cular segment. These results can be used to design a radius-chamfer 
profile which will give a required pressure distribution or elastic limit, 
or else to predict the contact mechanics of an existing chamfered part, 
using the circular segment to approximate the measured microscopic 
apex profile. Contact with a blunt wedge emerges as a special case. 
It should be noted that a completely analogous derivation could be 
carried out for the axisymmetric case (i.e., the contact of the end of 
a radiused and chamfered cylinder) using a method devised by 
Sneddon [4]. Similar efforts, using iterative numerical techniques, 
have been applied to the problem of predicting the contact pressure 
distribution for an axisymmetric rollej of specified profile loaded 
radially against a flat surface [5-7]. 

D e r i v a t i o n 
Consider a plane strain frictionless contact between two elastic 

bodies which can be approximated as half spaces. The z -axis is normal 
to the interface, and all displacement is in the xz -plane (eyy = 0). Let 
the contact region be — a < x < +a, and let £ = x/a. Let w(x) be the 
overlap of the undeformed surfaces {dw/dy = 0), and define the di-
mensionless shape function $(£) = \w(£) — w(\)]/h, where h = w(Q) 
— w(l). Muskhelishvili [8] has shown that provided the end pressures 
p(—1) and p ( + l ) are not infinite, the contact pressure distribution 
is given by 

P(g) 
E* 

M I - B I / 2 r+1 

4~K s: -&{s)ds 

- l (s - | ) (1 - s2)1 /2 

and the mean pressure is given by 

E* 2J-iE* a 8 J-i 

+1 -s$'(s) ds 

(1 - s2)1'2 

(1) 

(2) 

where *'(£) = d*/d£, \/E* = J[(l - *<i2)/Ei + (1 - v2
2)/E2], andEh 

E% v\, V2 are the Young's moduli and Poisson's ratios of the two 
bodies. 

Fig. 1 shows the undeformed overlap geometry w(x) for the sym­
metric plateau-radius-chamfer contact. The two Regions I (\x \ <x{) 
constitute the flat plateau, the two Regions II (x\ < \x\ < X2) are 
circular segments of radius R, and the two Regions III (£2 < M < o) 
are straight chamfers of slope G. The surface slope is continuous at 
the junctions x\, %2- For most practical cases, the circular segment can 
be approximated by a parabolic segment of apex radius R; for G < 
0.20, the errors in segment dimensions are less than 1 percent. The 
undeformed surface dimensions are then related by the expression 
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w(x) - w(a) 

Fig. 1 Overlap profile w{x) of the two undeformed surfaces; the plateau (I) 
and chamfer (III) are both tangent to the circular segment (II) 

X\ — Xi = GR. Table 1 lists the various contact configurations which 
constitute special cases of the general symmetric six region geometry. 
Note that the contact mechanics, as described by equations (1) and 
(2), depends only on the shape of the overlap w(x), thus one surface 
does not necessarily have to be flat. 

The integrals in equations (1) and (2) can each be written as the sum 
of five definite integrals, with $'(£) taking the forms 

: ? [ * ' = C r , & [ * ' = -Cv, ±fU*' = o, 

where 

=&[*' = C(- f - fi), tg[*' = -C2(f - fi), 

aG 1 

' h ~l-i(h + & 

1 

Rh = ( f a - £ i ) [ i - i t t i + &)] 
c2 = — 

(3) 

(4) 

(5) 

— H?2??2 - 4H7i + arcsm (£2i)i - £11)2)] 
R* a 8 

(7) 

In computing p(£), singularities may be avoided using the following 
rules: 

1 When £ = £i, set hi - £117 = 1 and set ?/ - r/i = £x. 
2 When £ = £2, set £r;2 - £2?? = 1 and set T\ - t]2 = £2-
3 When £ = £1 = 0, all In terms are zero. 
4 When£ = £2 = l , p = 0 . 

Equations (5) and (6) show that the shape of the contact pressure 
distribution (which is symmetric about £ = 0) depends only on the two 
quantities £1 = x\ja and £2 = x2/a, while the magnitude is set by £1, 
£2, and the aspect ratio h/2a of the undeformed overlap of the surfaces 
(Pig. 1). However, it is important to note that for a given surface ge­
ometry (specified by any three of x\, X2, G, R), £t and £2 are not con­
stants and will decrease as the load per unit y length Q, the contact 
half-width a, and the ratio h/a simultaneously increase. From equa­
tions (5) and (7), Q (= lap) can be expressed as a function of o, and 
the resulting equation can be solved numerically to give the value of 
a for a given load. Equation (4) then gives the value of hi a needed to 
evaluate p(£). 

Plastic flow commences in the softer body 1 when the maximum 
value (with respect to position) of a stress quantity denoted by Yj 
reaches the value of the uniaxial yield stress Yi of material 1. For the 
von Mises yield criterion, in plane strain, 

Yj = B(<7„ - <JXXY + l(o-„ - cyy? + l(cxx - ayy)* + 3rx,2]i/2 

0Vy = v\{azz + <rxx) 

(8) 

(9) 

Introducing the complementary variable 1/ = (1 - £2)1/2, the resulting 
formulas are 

E* <X4TT 

+ £ln 

£ 2 m 
17 + 172 

- £ i l n 
17 + 1)1 

T J - T J 2 

(hi + Em) (hi - £217) 

(£i/i-£ii7)(£i72 + i;2ij) 

1)-1)1 

+ 2i) arcsin (£21)1 _ £ii)2) (6) 

For each contact geometry, the stresses axx, azz, TXZ were evaluated 
on a grid of subsurface points using the formulation of Bell, et al. [9], 
in the plane strain limit, for a 200 point piecewise linear approxima­
tion to p (£). This provided the value of the critical yield stress (Yj)max, 
and its location (±£y, fy), where f = z/a and 2 is the depth coordi­
nate. 

R e s u l t s 
The most convenient way to plot the results for all practical corn-

Table 1 Special cases of the general symmetric plateau-arc-chamfer contact shown in Fig. 1 

Surface Profile w(x) 

Rectangle with sharp 
corners 

Wedge with sharp 
apex 

Trapezoid with sharp 
corners 

Parabola (Hertzian 
cylinder) 

Rectangle with 
rounded corners 

Wedge with rounded 
apex 

Trapezoid with 
rounded corners 

Regions 

I 

III 

1 + III 

II 

I + II 

II + III 

I + II + III 

h - xi / a 

e1 -1 

£i = ° 

0 < q < 1 

0 < 5 X < 

C2 = x2/a 

*2ml 

52 = 0 

-Z2< 1 

c 2 - i 

0 < K2 < 1 

Pressure Singularities 

""? p(l - E) « em (-1/2 < m < 0) [1] 

^ P ( ± c ) «-*n|e| [3] 

^ p ( 5 1 ± E , «-*»|e| 

None 

None 

None 

None 
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Fig. 2 Ralio of dimensionless mean contact pressure p/E" to the overlap 
variable h/a, plotted against arc width £2 - f 1 (or various values of plateau 
half width £n 

0.01 0.02 0.05 0.1 0.2 0.5 1 

Fig. 3 Dimensionless peak value pmax/p and standard deviation <rp/p of 
contact pressure, plotted against arc width £2 ~ £1 for various contact con­
figurations 

binations of £1 and £2 is to take as abscissa the dimensionless projected 
arc width £2 - £1 = U2 - x{)/a, a measure of the bluntness of the 
chamfer. In Fig. 2, the ratio of dimensionless mean pressure p/E* to 
the deformation variable h/a is plotted as a function of £2 — £1 for 
various cases. The plot shows that for a given h/a, p increases with 
plateau width 2£i, and that as arc width decreases, p approaches a 
constant value, except when there are no chamfers within the contact 

Two measures of the nonuniformity of the pressure distribution 
p (£) are the ratios Pmax/p and a pip, where ap is the standard devia­
tion of p(£), defined as ap

2 = Jo[p(£) — p]2d£. Both quantities are 
plotted against £2 _ £1 in Fig. 3. For £2 - £1 < 0.1, the relative pressure 
variation ap/p is effectively independent of £2 — £1 (excepting the 
curve £2 = 1), while the relative height of the two identical pressure 
spikes increases with decreasing arc width according to pmaJp <* (£2 
— £ i ) - 1 ' 2 for £2 = 1 (no chamfer) and weaker power laws for £2 < 1. The 
flattest pressure profile that can be achieved with radii and/or 
chamfers obtains for the case £ 2 = 1 and 0.2 < £1 < 0.5, i.e., no cham­
fers and wide arcs in contact. This optimum geometry offers a small 
improvement, in terms of pressure uniformity, over a plane strain 
Hertzian contact (£1 = 0, £2 = 1). A perfectly flat pressure distribution 
(Pmax/p = 1, Oplp = 0) for plane strain contact would be given by the 
symmetric transcendental profile shape function [10] 

0.01 0.02 0.05 0.1 0.2 0.5 1 

Fig. 4 Dimensionless critical yield stress (Yj)max/p plotted against arc width 
£2 — £1 'or various surface geometries, taking Vi = 0.3; the softer body 1 
deforms elastically as long as ( Vjtmax < K1 

i 1 1 1 1 r 

Fig. 5 Depth £V of the positions of maximum Yj, where plastic flow initiates, 
plotted against arc width £2 — £1 for selected values of £1 

* ( £ } = l - ^ T ^ K 1 + £ > l n (l + f) + ( l - & In U - &] 2 In 2 

( - 1 < £ < + 1 ) (10) 

for which p/E* = 0.567 h/a. 
In Fig. 4, the dimensionless critical yield stress (Yj)maJp is plotted 

against £2 — £1, and the curves have the same general configuration 
as pmax/p in Fig. 3. The surface geometry giving the lowest pressure 
peaks permits loading up t o p = 1.5Yi before plastic flow nucleates 
in the softer body 1. Figs. 5 and 6 show the coordinates (fy, ±£y) of 
the two symmetric positions of maximum Yj, and the location ±£ p 

of the two interfacial pressure maxima, for the various contact 
geometries specified by £1, £2. Fig. 5 shows that as the arc width £2 -
£1 decreases to zero, fy also goes to zero, i.e., plastic flow nucleates 
nearer the interface. Fig. 6 shows that for £2 - £1 < 0.8, the lateral 
positions of (Y,/)max and pmaK are both near the center of the arc, |(£i 
+ £2). There is only one pressure peak (at £p = 0) when £1 = 0 
(rounded wedge), and there is only one initial yield position (£y = 0, 
fY > 0) when either £1 = 0 or £2 - £1 > 0.85. 

Applicability of the Results 
The results presented in this paper for an infinite strip interface 

can be applied to finite rectangular, annular, and cylindrical contact 
interfaces provided the conditions of plane strain and half-space ge­
ometry are adequately satisfied. The specific geometric limits imposed 
by these conditions could be found only by a full three-dimensional 
finite-element solution for a particular pair of finite bodies in contact, 
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Fig. 6 Lateral coordinates of the symmetric positions of initial yield, ±£y, 
the contact pressure peaks, ±£p , and the arc midpoints, ±2 (i-^ + f 2), all three 
plotted against arc width £2 — £, for various plateau widths 2 ^ 

however the general requirements can be stated semiquantitatively 
without analysis. 

Consider first the conditions for plane strain for each of the three 
contact regions shown in Fig. 7, using the coordinate system defined 
earlier. For a rectangular contact area, Fig. 7(a), it is obvious that all 
displacement lies in the xz -plane if the y dimension of both bodies 
is 26 everywhere in the xz -plane. If one body extends beyond y = ±6, 
then there will be pressure singularities along y = ±6. In this case the 
deviation of the stresses and displacements from the plane strain 
solution will be smallest on the x-axis and will decrease as a/6 de­
creases. For an axially symmetric annular contact, Fig. 7(6), the plane 
strain solution will be a good approximation if the contact width 2a 
is sufficiently less than the inner radius R\. For the full cylindrical 
contact surface of Fig. 7(c) (e.g., a sleeve shrink-fitted onto a shaft), 
again plane strain contact will be approached in the limit a/Rc —• 
0. 

Now consider the requirement that the two bodies extend far 
enough from the interface in the xz -plane for the contact mechanics 
to be close to the half-plane solution. Suppose that for body 1 two 
chamfers of slope G terminate at "cliffs" x = ±LX, while body 2 is 
semi-infinite. As Lx/a decreases, or as G increases, the loss of the 
elastic material outside these free surfaces will reduce the constraint 
to displacement of the contact surface in body 1, thus lowering the 
value of the function p/E* versus hi a. Hence both a/Lx and G must 
be sufficiently small not to alter appreciably the deformation be­
havior. 

Conclusions 

Relationships have been derived and illustrated which enable 
quantitative design of a symmetric, continuous-slope, plateau-ra­
dius-chamfer surface profile which, when loaded against a flat surface 
under conditions approximating plane strain, will give nearly any 
required degree of contact pressure uniformity. Conversely, the results 
can be used to predict the contact pressure distribution for a given 
blunt chamfer profile. In addition, the stress analysis results, Figs. 
4-6, can be used to design the contact geometry so as to prevent plastic 

Fig. 7 Three finite interface geometries for which the infinite strip contact 
results are applicable: (a) rectangular, (b) annular, (c) cylindrical contact 
regions 

flow near the pressure peaks. Provided specific geometric conditions 
are met, the results are applicable to finite rectangular, annular, and 
cylindrical contact interfaces between finite bodies. 

The symmetric shape of the pressure distribution (and hence the 
symmetric shape of the subsurface stress distribution) is determined 
solely by the width and position of the two curved segments within 
the contact interface, while the mean pressure p depends additionally 
on the slenderness h/2a of the undeformed overlap profile. The 
critical yield stress (Yj)max, which is the minimum value of yield stress 
Yi for which plastic flow will not occur, depends on the contact con­
figuration in the same general manner as does the pressure peak 
heightpm ax. By maintaining arcs wider than 0.3a in the contact, it is 
possible to keep the two pressure peaks below the value 1.5p, to keep 
the RMS pressure deviation below 0.3p, and to load up t o p = I.4Y1 
without plastic flow. As the arc width decreases, the two pressure 
peaks and the two symmetric positions at which yield initiates move 
toward the center of each arc. 
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Wave Propagat ion in a Plaste 
With Periodic S t ruc tu re : 
Antiplane St ra in Model 

M. Oravinski1 

where co represents the circular frequency and /? denotes the shear 
wave velocity. The upper and lower faces of the plate are either 
stress-free, or fixed. The former case implies the following type of the 
nonmixed boundary conditions: 

<jyz(x, 0,co) = 0 , Uyzix, zmn, OJ) = 0, z„ i = n £ hj 
y'-i 

(2) 

I n t r o d u c t i o n 
Wave motion in a periodic layered medium may be of considerable 

interest in problems involving nondestructive testing of composite 
materials [1, 2]. However, most of the analytical studies deal with 
waves in an infinite elastic medium [3,4], In this work, the wave mo­
tion in a plate of finite thickness and infinite length, with periodic 
structure, is considered. The main objectives of the present analysis 
are 

1 To establish a simple, general method to determine the dis­
persion relations for wave in periodically layered plates. 

2 To determine the influence of the basic cell upon the overall 
dispersion relation for the plate. 

Each layer is assumed to be linearly elastic, isotropic, and homoge­
neous. Perfect bonding between the layers is understood. The method 
employed in this work is essentially due to Haskell [5], and is used 
frequently in geophysics and earthquake engineering. 

S t a t e m e n t of P r o b l e m 
A plate of infinite length (| x | < ° ° ;0<z <zmn) consist of n identical 

cells. The fundamental cell is composed of m different layers. Perfect 
bonding is assumed between the layers and the cells; therefore, the 
sandwich structure consists of n X m layers of infinite extent along 
the y-axis. The steady-state wave motion is assumed to be of the an-
tiplane-strain type with the displacement field specified by ux = uz 

= 0 and uy = v(x, z, o>). Each layer in the unit cell is characterized by 
the density, pj, the shear velocity, @j, and the thickness, hj, j = 1,2, 

The steady-state wave motion is governed by 

d2 d2 o;2\ , 
(1) 

1 Research Associate, Department of Civil Engineering, University of 
Southern California, Los Angeles, Calif. 90007. 

Manuscript received by ASME Applied Mechanics, November, 1979; final 
revision, March, 1980. 

S o l u t i o n of P r o b l e m 
For waves in the plate, the following form of displacement field v(x, 

z, o>) is assumed: 

v(x, z, a>) = <j>(z)elkx, (3) 

where k represents the wave number in the x-direction and the factor 
e_"" ' is understood. Substituting (5) into the equation of motion (1), 
the displacement and stress field in the jth layer of the fundamental 
cell are given by 

Uj(x,z,u>) = (aj cos qjZ + bj sin qjz)e'kx, (4) 

oyzJ(x, z, co) = fijqj[-am sin qjZ + bm cos qjz]eikx. (5) 
with 

<7,-2 = — - f e 2 , ; '= 1, 2,". ..,m. (6) 

An elastodynamic state, Vr, is introduced [6], associated with the in­
terface z = zr: V r

T = [v, oyz\z = zT±, r = 0 , 1 , 2 , . . . , m • n, where su­
perscripts ± denote that z approaches zr from above or below, re­
spectively. The two elastodynamic states for the r th layer are related 
through [5] 

Vr = ArVr_i, r = l , 2 , 

where the matrix Ar is defined by 

sin qrhr cos qrhr 

Hrqr 

—firqr sin qrhr cos qrhr 

. ,m, • n, 

r= 1,2,.. 

(7) 

(8) 

Similarly, the elastodynamic states at the top and bottom of the 
(r — l) th layer are related by 

m • n. (9) Vr- Ar-iVr-.2, r = 1, 2, 

The continuity of the displacement and stress fields at each interface 
implies Vr

+ = Vr~, so for the elastodynamic states V, and Vr_i it fol­
lows that 
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k 10 

Fig. 1 Dispersion curves for stress-free boundary conditions: single two-layer 
cell; /S-, = pi = h-, = h2 = 1, (82 = p2 = 2 

Fig. 2 Dispersion curves for stress-free boundary conditions: double two-
layer cell; $i = pi = h-, = h2 = 1, /82 = p2 = 2. 

Vr = ArAr- iV, - ! , 1,2,. (10) 

The elastodynamic states at the top and the bottom of the sandwich 
plate are related by 

"m-n **m.n Am.n — l A m . n — 2 . . • A m (n — l ) A m ( n — 1)—2 • »m(n-2) • 

A m A m - i . . . AiVo (11) 

Due to periodicity in the structure of the plate, equation (11) can be 
replaced by 

Vm.„ = A"V0, A = A m A m - iA m _ 2 , . . . , Ai, (12) 

where A is a characteristics matrix of a fundamental cell. Using the 
boundary conditions (2), it follows from (11) that the corresponding 
dispersion equation is 

^ 2 1 = 0, (13) 

where the j4y, i, j = 1, 2, represents elements of the matrix A. defined 
by JA. = A". Using the indicial notation, the dispersion relations (13) 
can be expressed through 

AaAijAjk .. . ArsAsl = 0, i, j , . 1,2, (14) 

where, if not stated differently, summation over the repeated indices 
is understood and the left-hand side of (14) consists of n matrices A. 
For example, a sandwich plate which consists of one, two, three, etc., 
fundamental cells, the dispersion equations that follow from (14) 
are 

n = 1, A2i = 0 

n = 2, A2iAkk = 0 

(15a) 

(156) 

n = 3,A2i(.AlrAri + A22Akk) = 0 (15c) 

n = 4, A2i[AirArsAsi + A22(AlrArl + A22Akk)] = 0 (15d) 

; 5, A2i\AlrArsAstAti + A22[AlrA 

+ A22(AlrArl + A22Akk)]}: 0. (15e)' 

It is evident from (15) that the dispersion relation of a fundamental 
cell can be factored out. Similar results follow for the fixed-fixed plate. 
Therefore, to find the roots (the wave numbers) of the dispersion 
equation for any number of cells, one evaluates first the roots for the 
single cell and proceeds with the roots associated with the presence 
of additional cells. 

• For a given frequency co, there are, in general, several wave numbers 
k which satisfy the frequency equations (14). The wave numbers form 
the normal modes of propagation in the k — OJ space for the model 
under consideration. The frequency equation (15) imply that the 
modes of a single cell are "preserved" in a multicell plate for nonmixed 
boundary conditions (2). Thus the normal modes for a plate composed 
of several fundamental cells consists of modes associated with a single 
cell and the modes which account for the presence of supplementary 
cells. 

Evaluation of Results 
As an illustration, plates which consist of two-layered fundamental 

cells are studied in more detail. The top layer is taken to be of unit 
thickness, with shear wave velocity, /3, and density, p, all equal to one. 
Dimensionless shear wave velocity, density, and thickness for the 
bottom layer of the cell are assumed to be fi2 = 2, p2 — 2, and h2 = 1. 
The characteristics matrix A (equation (12)) is given by A = A2Ai, 
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where A2 and Ai are defined by (8). From (8) and (12), the charac­
teristics matrix follows explicitly. Substitution of the elements of the 
matrix A into (15) provides the dispersion relations for the sandwich 
plate which consists of one, two, three, etc., number of cells. 

The roots of the frequency equation (the dimensionless wave 
numbers k) are assumed to be either real or pure imaginary; the for­
mer implying progressing type ofwaves in elastic medium, while the 
latter describes locally standing waves [6] which exponentially decay 
with increasing x. 

For plates that consist of one and two fundamental cells and the 
stress-free boundary conditions (2), the dispersion relations are 
presented by Figs. 1 and 2. The results depicted in Fig. 1 demonstrate 
progressing and the locally standing waves for a one cell plate. It can 
be seen that at each frequency w there exists a finite number of pro­
gressing modes and an infinite number of locally standing modes (for 
the sake of illustration, only the first few modes are presented). This 
is an analogy compared to the case of a single layer plate, where the 
progressing modes reduce to the family of hyperbolae, and the locally 
standing modes to the family of circles [6]. For a sandwich plate, which 
consists of two fundamental cells, part of the dispersion curves are 
presented by Fig. 2. This is only the part due to factor Akk in (15). A 
complete set of dispersion relations is obtained by superposition of 
the results presented by Figs. 1 and 2. 

The lines k = OJ and k = /3i//32to separate the dispersion curves for 
progressing waves in the k-ui space into two physically different re­
gions (see Figs. 1 and 2): 

1 ' ft/foco < k. 
2 k < /VA-o). 

For values of (k, co) in Region 1, the z dependence of the displacement 
field in the top (bottom) layer can be expressed in terms of circular 

Shear and Rotatory Inertia 
Effects on the Large Amplitude 
Vibration of the Initially 
Imperfect Plates 

Z. Celep1 

In this paper, the free flexural vibration of an elastic rectangular 
plate having initial imperfection is investigated including the effects 
of transverse shear and rotatory inertia. It is assumed that the vi­
bration occurs with large amplitudes which leads to nonlinear dif-
ferantial equations. On the basis of an assumed vibration mode, the 
modal equation of the plate is obtained and solved numerically. 

I n t r o d u c t i o n 
Chu and Herrmann [1] studied the free vibration of a rectangular 

plate with hinged and immovable edge. The effect of.large amplitudes 
on both free and forced vibrations of the rectangular and circular 
plates having a variety of boundary conditions were investigated by 
Yamaki [2]. A similar study was made by Hung [3] who used the 
method of successive approximations. Vendhan [4] applied the 
higher-order Galerkin's approximation to the solutions of these vi­
bration problems. Recently, Prathap and Varadan [5] have investi­
gated the nonlinear vibrations of rectangular plates using an averaging 
technique which helps to satisfy some of the boundary conditions. 

The classical plate theory neglects the effects of shear deformation 
and rotatory inertia. Mindlin [6] extended this theory to cover these 
effects on the dynamic behavior of the plates. Kumbasar [7] suggested 
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(hyperbolic) functions (see equations (3)-(6)). For the wave numbers 
in Region 2, the z dependence of the displacement field in both layers 
is of the sinusoidal character. 

The fact that the dispersion equation for a single cell can be factored 
out provides a significant advantage in the evaluation of dispersion 
relations numerically. For a high number of layers in a cell, often the 
lower modes are very close to each other at higher frequencies. 
However, factorization of the dispersion equation for a one cell plate 
simplifies the procedure considerably by allowing evaluation of the 
two factors of the dispersion equation separately (see (15)). 
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the inclusion of these effects by using equations of three-dimensional 
theory of elasticity and gave a solution to the free vibration of simply 
supported rectangular plates. Iyengar and Raman [8] and the author 
[9] studied the effects of shear deformation and rotatory inertia on 
the vibration of rectangular and circular plates by applying the 
method of initial functions. The large amplitude vibration of rec­
tangular plates including the transverse shear and rotatory inertia 
effects was investigated by Singh, Das, and Sundararajan [10] and 
Sathyamoorthy [11]. 

Further, the classical theory is based on the assumption that the 
plane has no imperfections. The statical and dynamical behavior of 
imperfect plates is very much dependent on the size of the initial 
imperfection. This dependence becomes important in plates having 
large initial imperfection. The first attempt to investigate the free 
vibration of such plates was made by the author [12,13]. 

There is a close similarity between the governing equations of ini­
tially imperfect plates and those of shallow shells, when the in-plane 
displacements of the shell are neglected. Reissner [14,15] studied the 
vibration of shallow shells assumming that the vibration takes place 
principally in the direction of the shell normal. Grossman, Koplik, 
and Yu [16] derived the variational equation for axisymmetric vi­
bration of spherical shells. A more general investigation was presented 
by Singh, Sundararajan, and Das [17] for moderately thick, straight, 
and curved elements in a unified way. Further, they included the 
transverse shear and rotatory inertia effects. 

In the present Note the influence of transverse shear and rotatory 
inertia on the large amplitude vibration of plates having large initial 
imperfection is studied. A similar investigation was carried out by the 
author [18] using a simple generalization of Timoshenko's beam 
theory. 

G o v e r n i n g E q u a t i o n s 
Consider a plate of rectangular shape having an initially imper­

fection Wo = wo(x,y) as shown in Fig. 1. u, v, and w are used to repre­
sent the displacement components of the plate. In order to consider 
the effects of transverse shear deformation and rotatory inertia in the 
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the inclusion of these effects by using equations of three-dimensional 
theory of elasticity and gave a solution to the free vibration of simply 
supported rectangular plates. Iyengar and Raman [8] and the author 
[9] studied the effects of shear deformation and rotatory inertia on 
the vibration of rectangular and circular plates by applying the 
method of initial functions. The large amplitude vibration of rec­
tangular plates including the transverse shear and rotatory inertia 
effects was investigated by Singh, Das, and Sundararajan [10] and 
Sathyamoorthy [11]. 

Further, the classical theory is based on the assumption that the 
plane has no imperfections. The statical and dynamical behavior of 
imperfect plates is very much dependent on the size of the initial 
imperfection. This dependence becomes important in plates having 
large initial imperfection. The first attempt to investigate the free 
vibration of such plates was made by the author [12,13]. 

There is a close similarity between the governing equations of ini­
tially imperfect plates and those of shallow shells, when the in-plane 
displacements of the shell are neglected. Reissner [14,15] studied the 
vibration of shallow shells assumming that the vibration takes place 
principally in the direction of the shell normal. Grossman, Koplik, 
and Yu [16] derived the variational equation for axisymmetric vi­
bration of spherical shells. A more general investigation was presented 
by Singh, Sundararajan, and Das [17] for moderately thick, straight, 
and curved elements in a unified way. Further, they included the 
transverse shear and rotatory inertia effects. 

In the present Note the influence of transverse shear and rotatory 
inertia on the large amplitude vibration of plates having large initial 
imperfection is studied. A similar investigation was carried out by the 
author [18] using a simple generalization of Timoshenko's beam 
theory. 
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Fig. 1 Coordinate system and supporting types of the rectangular plate 

plate theory, the displacement components for a point off the middle 
surface are taken in the following form: 

u(x,y,z,t) = uo(x,y,t) + za(x,y,t), 

v(x,y,z,t) = vo(x,y,t) + zfi(x,y,t), 

w(x,y,z,t) = w(x,y,t) (1) 

where Uo and Do represent the displacement of the middle surface and, 
a and /3 stand for the bending slope in the x and y -directions. The 
strain components of the plate are 

«x0 + 2 a , tyo + zfi,y 0, 

7*y = 7 0 + 2 ( a , y + | 8 , x ) , 7yz = (3 + W,y, 7xz=CX + W,x, (2) 

where exo, £yo, and 70 denote the strains of the middle surface of the 
plate and they are defined as 

(xo = u0,x + 0.5[(u>0 + w),x]
2 - 0.5(w0,x)2, 

CyO = U0,y + 0.5[(U)0 + «'),y]2 ~ 0.5(u>0,y)2, 

70 = "0,y + VO.x + ("'O + ">),* (^0 + >»),y ~ U>o,x ">0,y 

The stress-strain relations on the middle surface become 

CiO = E((X0 + P-CyO), <7y0 = E(ty0 + pCxCl), To = Gy0, (3) 

where crxo, ffyo, and TQ denote the normal and shear stresses of the 
middle surface. E, G, and p are the usual material constants. The 
relations between the moment and shear resultants and the strains 
are taken as follows: 

Mx = D(a,x + Ay). My = D(P,y + M«x). 
Mxy = 0.5D(l-fi)(ay + l3,x), 

Qx = kGh(a + w,x), Qy = kGh(P + w,y), (4) 

where k and h denote the well-known shear coefficient and the 
thickness of the plate, respectively. The equations for free vibration 
of the plate become 

1 

12 

ph3 

••0, Mxy,x + My,y-Qy-^P = Q, 

Qx,x + Qy,y + <rxoh(w0 + w)iXX + (ryoh(w0 + w)tyy 

+ 2T0h{wo + w),xy - phiii = 0. (5) 

Neglecting the in-plane inertia of the plate, and assuming a potential 
function as 

"xO - 0,yy, OyO : (6) 

DaiXX + 0.5D(1 - n)a,yy + 0.5D(1 + /a)/3,Xi 

khE 
- 0 . 5 -

1 + H 
-(a + w,x)-

ph3 

12 

£>/S y y +0.5D( l - /* )#„ 

+ 0.5D(1 + n)a,yy - 0.5 ^ - (fi + wy)- — \ 
1 + p. ' 12 

L(<j>, wo + w) + -
kE 

• (a,x + |8,y + Aw) - pw = 0, 

= 0, 

(8) 
2(1 + M) 

where L is a nonlinear operator and defined as 

L(<t>, W) = 4>iXx lU.yy - 2</>ixyWixy + <t>,yyW%xx 

The equations of the perfect plate are obtained, if the initial imper­
fection vanishes in equations (7). Eliminating a and @ from equations 
(8), it follows: 

D ph2 

- AAw = - — A* + • [L(u>o,</>) + L(w,<t>) - pw], (9) 

where 

khE \ 12 dt2 j 

The nonlinear vibration of the initially imperfect plates with large 
amplitudes is controlled by equations (7) and (9) which have been 
obtained by the author [18] by generalizing Timoshenko's beam 
theory for initially imperfect plates. If one assumes that the ampli­
tudes and imperfection are small, then equation (7) is satisfied 
identically and equation (9) appears as 

D A A 2(1 + n) Iph3 d2 \ ph2
 A 

- AAu; + — — DA\pw -^—Aw + pw = Q, 
h khE \ 12 dt2 j 12 

which was deduced by Mindlin [6] and by the author [9] by using two 
different methods. 

Boundary Conditions 
Two types of boundary conditions are considered for the deflection 

function w(x,y,t), as well as for the stress function cj>(x,y,t). The 
conditions for the deflection function are as follows: 

(1) Plate Having All Edges Simply Supported 

,i« = 0, w xx = 0, along x = 0 and x = a, 
and 

lii = 0, wtyy = 0, along y = 0 and y = b, 

(2) Plate Having All Edges Clamped 

, w = 0, w x = 0, along x = 0 and x = a, 
and 

w = 0, wiy = 0, along y = 0- and y = b. 

The boundary conditions for the stress function <f> are as follows: 

the in-plane equilibrium equations of the plate are fulfilled identically. 
Using the compatibility equation, the following four equations are 
obtained from the foregoing equations for the unknown functions <f>, 
w, a, and /?: 

AA0 + EL(w0, w) + 0.5EL(w,w) = 0, (7) 

and 

(1) Plate Having Movable Edges 

<piXX dx = 0 , I <t>,yydy = 0 , 
0 •Jo 

which means that the resultant forces at the edges have to vanish, 
(2) Plate Having Immovable Edges 

f ° \4>,yy - p.<t>,xx ~ 0.5E{(w0 + w),x]
2 + 0.5E(w0,x)2}dx = 0, 

f \4>,xx- P-<t>,yy - 0.5E[(w0 + w),y]
2 + 0.5E(w0,y)2}dy = 0. 

The combination of these boundary conditions gives four types of 
supporting conditions for the plate as shown in Fig. 1. They are simply 
supported plate with movable edges (SM-plate), simply supported 
plate with immovable edges (S/-plate), clamped plate with movable 
edges (CM-plate), and clamped plate with immovable edges (CI-
plate). 

Approximate Solution 
The solution of the coupled nonlinear governing equations (7) and 
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(9) under the given boundary conditions is a difficult task, if not im­
possible. Therefore w(x,y,t) and <j>(x,y,t) are selected in such a way 
that equation (7) and at the same time the supporting conditions are 
satisfied. Then, Galerkin's method is applied to equation (9) in order 
to eliminate the spatial coordinates of the problem. To illustrate the 
solution procedure, a plate having an initial imperfection 

u>o(x,y) = 8oR(x,y) 

is considered, where the shape function are 

R(x,y) = sin CCQX • s h i f t s , for SM and SI plates, 

R(x,y) = sin2 aox-sin2 j30y, for CM and CI plates, 

where «o = ir/a and ft, = ir/b. The deflection of the plate is assumed 
to be w{x,y,t) = 6(t)R(x,y), where 0o and 8(t) indicate the initial 
imperfection of the plate and the deflection of the middle of the plate. 
The stress function <j> is determined using equation (7) and the cor­
responding supporting conditions as 

E 

E 

^M.{e2 + 2mls^^ + ^l^.)+E^l+EyE 
32 

(02 + 20o0) 

1 

ao 

1 //5o2 

^ cos 2a0x + - 5 - cos 2fty 
.32 \a0

2 ft)2 

«oW 

ft,4 ) IE 2E 

for SM and SI plates, 

2 

Off . - COS botnX H — COS 4ft>V + -
512 W A,2 I 32 l(4a0

2 + ft,2)2 

X cos iaox • cos 2ftjy + 

« o % 2 

16(«o2 + ft)2)' 

(ao2 + 4ft,2)2 

cos 2aox • cos 2ft>;y 

cos 2ao* • cos 4/30y 

Pxy
2 Pyx

2 

+ -^— + -JL—, 
IE IE 

for CM and CI plates, 

where the average values of the normal stresses obtained using the 
supporting conditions are 

Px K ( 0 2 + 2 0 O 0 ) 

E V 
(«o2 + M/5o2), -± 

E 

Py /C(02+20O0) 

1 - u 2 (ft,2 + pa0
2), 

where K = 0 for SM and CM plates, K = Vs for SI plates and K = %2 for 
C7 plates. It remains to determine 0(f) by satisfying equation (9) as 
accurately as possible. Applying Galerkin's method to equation (9) 
as 

b\D 

Jo Jo \h 
AAu; • 

ph2 

12 
Aw — u[L(wo,4>) 

+ L(w,<j>)] — pw wdx dy = 0, 

With the nondimensional parameters 

0o 
fo = - f = 

h' 
D — X - -
ph a2 b' 

_h 

where 

-(f2 + 2f0f) + <7* 
r2X2 

(f2 + 2foO + 9». 
16 ' 1 6 

While qz and Qy vanish for SM plates, and for SI plates they are 

<7* = *" ~ - ( l + /uX2), 9y = T 7 7 ; ^(M + A2). 
8(1 -p.2) 8(1 - M2) 

A similar modal equation is obtained for CM and CI plates as fol­
lows: 

ir*r* 2r2 
1 + (1 + X2) 

W2f 1CT4 
— | + — [3(l + X4) + 2X2]f 
dr* 9 

+ 167r 2 ( l - M
2 ) (Q I + X 2 Q y ) ( f 0 +f) 

- - •7 r 4 X 4 ( l - / i 2 ) 
1 

.(4 + X2)2 (1 + 4X2)2 

(1 + X2)2 (fo + fltt2 + 2fof) + 
1 + p. d4f 

1 2 ( l - / i 2 ) d T 4 

dr2 [(Q, + X2Qy)(f0+f)] 

9 

1 

(1 + \2)'' 

(4 + X2)2 (1 + 4X2)2 

d2 

dr2 Uh+MP + Hofi] 
4 T T V , , „ d 2 f 7T6,, , 

+ 1 + X2 — - + — X V 
31-p.2 dr2 3 

24X4 1 

4X4(5X2 + 18) 4X4(5 + 18X2) 

\4 + X2 1 + 4X2/ 

+ 9X2(1 + X2) 
(4 + X2)2 (4X2 + l ) 2 

' + 17(1 + X6)](f2 + 2f0f) 

+ j T*r*(l + \2)(QX + X2Qy)(f0 + f) = 0, (106) 

where 

•(J* + 2fofl 
17 X4 

64 4 

X4 

1 
- + • 

1 

Qy=y«* + 2fofl 

2(1 + X2)2 

17X2 X2 

+ — 
64 4 

(4X2 + l ) 2 2(4 + X2)2 

+ Qx, 

1 1 

X2 

2(1 + X2)2 

(4 + X2)2 2(1 + 4X2)2 

+ qy. 

The quantities qx and qy vanish for CM plates, and for CI plates they 
denote 

1* = 3 i r 7^7-, 57 ( 1 + <"x )• 9y = 37 r 777: ^ (M + x )• 32(1 - M
2) 3 2 ( 1 - ^ ) 

the following modal equation which governs the nonlinear vibration 
of SM and SI plates is obtained 

•w'-r'-
1 + (1 + X2) 

12 
d 2 f 
— -J 
dT

2 

"(1 + X2)H + 12TT2(1 - /x2)(Qx- + X2Qy)(fo + 0 

1 + M 

6fe i * /4
 2 ^ + T 2 r J 7 1 ^ + x2^Hfo+ 0] 

12(1 - /a2) a r 4 d i ' 1 

7r2r2 , x „ d 2 f 
+ (1 + X2 —^ 

l-p2 dr2 

+ 37rflX2r2(l + X2)(f0 + f)(f 2 + 2foD 

+ 12TT4/-2(1 + X2)(QX + X2Qy)(r0 + f)l = 0, (10a) 

N u m e r i c a l R e s u l t s and Conc lus ions 
To obtain the period of the flexural vibration of the plate, equation 

(10) has been solved numerically on the B3700 Computer at the 
Computer Center of the Technical University, Istanbul, Turkey. The 
numerical solution is carried out for the square plate, i.e., for X = 1, 
using the method of Runge-Kutta and assuming k = % and p. = 0.3. 
Moreover, the fourth derivatives with respect to time in equation (10) 
have not been taken into account because of the negligible effect on 
the period. The initial conditions of the free vibration are assumed 
to be f(r = 0) = fs, f (r = 0) = 0, where fs represents the initial am­
plitude of the plate. The results of the numerical calculation are 
plotted in Figs. 2 which give only the variation of the nondimensional 
period of the SI plates versus the initial amplitude, i.e., TO = To(f»), 
where TO denotes the period of the initially imperfect plate relative 
to the period of the corresponding perfect plate at the small ampli-
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tudes. The curves on the figures illustrate the effects of transverse 
shear and rotatory inertia. As it is seen, three values are considered 
for the thickness-length ratio r. The vanishing ratio corresponds to 
the thin plate for which shear and rotatory inertia effects are ne­
glected. The results of the perfect thin plate are the same as those of 
Chu and Herrmann [1], Hung [3], and Yamaki [2]. Further, the results 
of the perfect plate having a nonvanishing thickness-length ratio r 
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A Note on the Flow of a 
Viscoelastic Liquid Near an 
Oscillating Infinite Porous Plate 

D. N. Mukhopadhyay1 and T. K. Chaudhury2 

I n t r o d u c t i o n 
In view of the growing importance in chemical industries, different 

models of viscoelastic fluids have engaged attention of many inves­
tigators. Stress-relaxing liquid of Oldroyd [1] is a rate-type model 
satisfying the condition of material frame-in-difference [2]. In the 
approximation of very short relaxation time, this model reduces to 
the second-order fluid model of Coleman and Noll [3]. The present 
problem considers the unsteady flow Of a viscoelastic liquid of Oldroyd 
near an infinite porous plate oscillating in its own plane. The purpose 
of the study is to gain some information about the influence of re­
laxation time in the presence of mass transfer through the surface. 
The corresponding problem for a second-order fluid is governed by 
a differential equation of third-order with two boundary conditions 
and can only be solved by a method of successive approximation de­
veloped by Beard and Walters [4]. However for an Oldroyd fluid, with 
a particular solution for one normal stress component consistent with 
the second-order fluid model, the differential equation obtained is 
of second-order and can be completely solved. This solution gives the 
solution for a second-order fluid as an approximation and we believe 
that our solution is a more general one in respect of the stress-relax­
ation property of the fluid. The most interesting feature of our solu­
tion is that for the mass transfer parameter within a certain range 
there exists a critical-relaxation parameter beyond which the role of 
the stress-relaxation property of the fluid is reversed. 

F o r m u l a t i o n and S o l u t i o n of the P r o b l e m 
The constitutive equation for a viscoelastic fluid of Oldroyd [1] has 

the form 

Pij = -poij + Tij 

Tij + \i I—1 + VkTilh - ViikThJ - Vj,kT^ = 2Voeij (1) 

where Py- and ey are, respectively, stress tensor and rate-of-strain 
tensor, Vt is the velocity component, Ai is the relaxation time, and )jo 
is the viscosity coefficient. With ac-axis along the plate parallel to the 
direction of motion and y-axis perpendicular to it directed into the 
fluid, the velocity components for the problem are taken as (u, - no, 
0) where u = u(y, t) and -u0 is the constant suction. 

The differential equation for u will be obtained by elimination of 
stress component Txy between (1) and the momentum equation. This 
elimination is affected by taking the particular solution Tyy = 0, which 
means vanishing normal stress Tyy at the line of entry (or exit) of the 
fluid through pores of the boundary. 
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Fig. 1 Velocity profiles of Newtonian and viscoelastic fluid near an oscillating 
porous plate for r = TT/2 (Case 1) 

Fig. 2 Velocity profiles of a viscoelastic fluid near an oscillating porous plate 
forT = 7r/2(Case 1) 

We assume the motion to be entirely due to the oscillation Uoemt 

(real part) of the plate. Now introudcing the nondimensional quan­
tities u = U/UQ, £ = y Vui /v , T = <i)t,R = Vol\fwv, X = Aito, where 
R is the mass transfer parameter, X is the relaxation parameter, and 
v = W P > w e have for u the equation 

du „ du , d2u 
R — + X — ~ ~ 2 \ R 

d r d£ drz d a£2 (2) 

and the boundary conditions u(0, T) = e,T, u = 0 when §-*<». It is 
evident from (2) that this flow problem divides itself into three cases, 
namely, XR2 = 1. In the first case, i.e., when the relaxation time Ai < 
v/Vo2, the flow considered is possible for both blowing and suction 
at the oscillating plate; while in the second case, i.e., when Ai = v/Vn2, 
the flow is possible only for blowing. In the remaining case, i.e., when 
Ai > v/V0

2, no solution is possible for suction while for blowing the 
problem is indeterminate in the sense that the boundary conditions 
cannot determine the arbitrary constants uniquely. 
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Fig. 2 Velocity profiles of a viscoelastic fluid near an oscillating porous plate 
forT = 7r/2(Case 1) 

We assume the motion to be entirely due to the oscillation Uoemt 

(real part) of the plate. Now introudcing the nondimensional quan­
tities u = U/UQ, £ = y Vui /v , T = <i)t,R = Vol\fwv, X = Aito, where 
R is the mass transfer parameter, X is the relaxation parameter, and 
v = W P > w e have for u the equation 

du „ du , d2u 
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and the boundary conditions u(0, T) = e,T, u = 0 when §-*<». It is 
evident from (2) that this flow problem divides itself into three cases, 
namely, XR2 = 1. In the first case, i.e., when the relaxation time Ai < 
v/Vo2, the flow considered is possible for both blowing and suction 
at the oscillating plate; while in the second case, i.e., when Ai = v/Vn2, 
the flow is possible only for blowing. In the remaining case, i.e., when 
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F o r X i ? 2 < l , 

u = e~A( cos (T - B£), (3) 

where 

y/2R + S 4 + 2V2 XfiS 
A _ 2 v / 2 ( 1 - X f i 2 ) ' _ 2 V 2 S ( 1 - X f l 2 ) ' 

S = \ / r + fl2-4X, r = V ( f l 2 - 4 X ) 2 + 16. 

ForXi?2 = l a n d f l < 0, 

u = e-A*i cos ( T - B * £ ) , (4) 

where 

X „ 1 + 2X2 

A* = , B* = . 
fl(l + 4X2) fl(l + 4X2) 

If we take Coleman and Noll's second-order fluid the governing dif­
ferential equation of the present problem will be 

bu bu _ b2u b2 Ibu bu\ 

VT ~ d£ ~ dP ~ bj2 Id7 ~ dfj' 
where now X = —vacc/rio, VO being the coefficient of viscoelasticity. By 
successive approximation (5) gives the solution 

u = Re\l + \£ e"-<"{ to the first power in X, (6) 

\ R — 2m / 

where 

R + Vf l 2 + 4t 

It can be easily seen that the solution (6) may be obtained from our 
solution (3) by taking X to be small and retaining terms upto the first 
power in X. 

Discussion 
It is found from computation of bA/b\ that for blowing (R < 0) the 

amplitude of velocity increases with the increase of X while for suction 
{R > 0) the amplitude at first increases with X but after critical value 
of X(= Xc) it begins to decrease with X. This critical value of X de­
creases as R (i.e., suction) increases and for R > 0.5958 = Ri*,Xc be­
comes negative. Therefore, when R > R\* the amplitude decreases 
with X within the entire range of validity of the solution. 

Similarly, from the computation of bB/bX it is found that for suc­
tion (R > 0) B increases, i.e., the phase lag with respect to the plate 
motion increases with the increase of X; while for blowing (R < 0) the 
phase lag at first decreases with X but after a critical value of X(= Xc') 
it increases with X. This critical value of X decreases as R (<0) increases 
(i.e., — R decreases) and for R > —0.5366 = Ri*, Xc' becomes negative. 
Therefore, when 0 > R > R2*, the phase lag increases with X within 
the entire range of validity of the solution. From computation, we find: 
fori*! = 0.25, Xc = 3.9212; for R = 0.5, Xc = 0.6317; and fori? = - 1 , Xc' 
= 0.7468. Thus, for small suction, the amplitude of the velocity in­
creases with the increase of the relaxation time of the fluid but when 
relaxation time exceeds certain value, the stress-relaxation property 
of the fluid begins to dampen the amplitude. For large suction the 
stress-relaxation property of the fluid always acts as a damping agent. 
For blowing, however, this stress-relaxation property of the fluid al­
ways behaves as an amplifying agent. The critical-relaxation pa­
rameter does not arise if mass transfer is not involved. It is further 
observed from computation that although the two cases Xfl2 < 1 and 
XiJ2 = 1 are governed by two entirely different differential equations, 
the solution in the first case smoothly changes over to that of the 
second case in the valid region. 
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Axisymmetric Plume Flow in a 
Vertical Uniform Free Stream 

A. V. Appalaswamy1 and Y. Jaluria2 

Introduction 
The axisymmetric plume that arises from a point heat source has 

been studied [1, 2]. In many systems of practical interest, however, 
the plume flow does not occur in a quiescent ambient medium but is 
affected by the existence of an externally induced flow. This paper 
considers the circumstance when the external flow is aligned with the 
plume flow and aids or opposes the natural convection mechanisms. 
This problem is of interest in heat removal from heated elements, such 
as electronic components, where an external flow is generated in ad­
dition to the natural convection flow in order to restrict the temper­
ature level-attained by these elements [3]. 

The effect of mixed convection on the heat transfer, for various flow 
circumstances, has been considered [4, 5]. These studies determined 
the effect of natural convection mechanisms on a dominant forced 
convection circumstance and vice versa. The present study considers 
the effect of an external flow on the plume flow, for the two Prandtl 
number values of 7.0 and 0.7 and at various levels of external flow. Of 
particular interest was the effect on the velocity field, on the center-
line temperature and on the boundary-layer thicknesses. 

Analysis 
The boundary-layer equations that govern the flow, in an axisym­

metric plume above a point heat source, are written in terms of the 
vertical and radial velocity components u and v, temperature t, the 
vertical coordinate from the point source x, and the radial distance 
y, from the axis of symmetry, as 

— (yu) + — (yv) = 0 (la) 
ox by 

bu bu v a I bu\ „ , , , , 
u — +v — = - — \y—\+gP(t-t„) (lb) 

ax ay yby\ by I 

bt bt a b I bt\ 
, u \-v — = — — \y— (lc) 

ox by y by\ by] 

where g is the gravitational acceleration, /3 the coefficient of thermal 
expansion, v the kinematic viscosity, a the thermal diffusivity, and 
£» the temperature of the ambient fluid. In the foregoing equations, 
Boussinesq approximations have been employed and the pressure and 
viscous dissipation terms in the energy equation have been ne­
glected. 

Consider a steady thermal input Qo at x = 0 and y = 0 in an ex­
tensive ambient medium at temperature t •». Then the thermal energy 
Q(x) convected in the resulting plume must be the same for all x > 
0 and equal to Qo, since there are no sources or sinks in the plume. The 
center-line temperature is denoted by t0(x). Employing the similarity 
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y, from the axis of symmetry, as 

— (yu) + — (yv) = 0 (la) 
ox by 

bu bu v a I bu\ „ , , , , 
u — +v — = - — \y—\+gP(t-t„) (lb) 

ax ay yby\ by I 

bt bt a b I bt\ 
, u \-v — = — — \y— (lc) 

ox by y by\ by] 

where g is the gravitational acceleration, /3 the coefficient of thermal 
expansion, v the kinematic viscosity, a the thermal diffusivity, and 
£» the temperature of the ambient fluid. In the foregoing equations, 
Boussinesq approximations have been employed and the pressure and 
viscous dissipation terms in the energy equation have been ne­
glected. 

Consider a steady thermal input Qo at x = 0 and y = 0 in an ex­
tensive ambient medium at temperature t •». Then the thermal energy 
Q(x) convected in the resulting plume must be the same for all x > 
0 and equal to Qo, since there are no sources or sinks in the plume. The 
center-line temperature is denoted by t0(x). Employing the similarity 
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variable n, the generalized temperature (j>(rj) and the dimensionless 
stream function /(?)) are 

^ = i Z * f L > f = xf(r,), V = y-{Gxx)^ (2) 
to-1^ x 

withyu = fa, yv = - fa, and Grx = gfixa (to - ta)/v
2 

The total convected thermal energy at any location is given by 

Q(x) = f pCp(t - t„)u2wydy 

= 2irvpCp(t0-t„)x f <j>f'dr\ = QQ (3) 

where p is the density of the fluid and Cp the specific heat at constant 
pressure. Therefore, the center-line temperature varies as x~x for an 
axisymmetric plume and is given as 

t o - * » = -
Qo 

where J : 

So r4d* (4) 
2-irixCpI x 

The governing differential equations for to~ t„ = N/x, where N is 
a constant, are obtained as 

7'V 

( # ' ) ' + Pr (M' = 0 

where the primes denote differentiation with respect to i]. 
The velocity components are obtained as 

(5a) 

(56) 

and - - ( G r j i / i 
x 

f 
(6) u = - VGlV - I aim v w^xl"' 

X Ul X \7J 
The five independent boundary conditions for the aforementioned 
system of equations can be shown to be [2] 

0'(O) = / ( 0 ) = /'(0) • 0(0) = - ( » ) : 
V 

0 (7) 

Let us now consider a laminar vertical stream flow past an axi­
symmetric plume. The problem then concerns a steady thermal input 
Qo at x = 0 and y = 0 in an extensive laminar vertical stream flow at 
velocity u^ and temperature £„. The boundary-layer equations are 
the same as those previously' given, equation (1). However, the 
boundary condition pertaining to the vertical velocity in the ambient 
medium is altered. 

This gives 

where 

± Uv, as r) -

± e(x) as r\ —>- =° (8) 

Rex 

The foregoing parameter, Rex/VGrT, indicates the relative magni­
tude of the forced convection effects, compared to the natural con­
vection mechanisms. The plus sign refers to aiding flow and the 
negative to opposing flow. Since this parameter, denoted as e(x), is 
obtained as a function of x for the vertical surface, similarity solutions 
can not be obtained. 

However, in the present case, an interesting circumstance arises. 
As has been shown by Fujii [1] and others, the center-line velocity is 
not a function of x in an axisymmetric plume but is a constant. This 
result arises because of the fact that Grx varies with x as x2, the 
temperature dependence on x being x'1, and this results in u being 
independent of x from equation (6). The external velocity u„ is also 
taken as independent of x. The relative magnitude of forced con­
vection compared to natural convection is, therefore, expected to be 
independent of x. Since € is independent of x, the constancy of Q (x) 
downstream is maintained for a linear decrease in the center-line 
temperature. 
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Fig. 1 Axial and radial velocity profiles for aiding and opposing flows at 
Pr = 7.0 

Therefore, the problem of the axisymmetric plume flow in the 
presence of the perturbing effect of an external laminar stream is 
governed by equation (5), along with the boundary conditions 

0'(O) = / (0) = / '(0) = 1 - 0(0) = 0, 
and 

• ±e (9) 

where 6 is a constant. A perturbing effect is considered so that the 
basic natural convection mechanisms dominate. Numerical solution 
was obtained by means of the fourth-order Runge-Kutta integration 
scheme and the results obtained are discussed as follows. 

N u m e r i c a l R e s u l t s 
Results were obtained for Prandtl number values of 7.0 and 0.7, 

which correspond essentially to water and air, and at various values 
of the forced convection parameter t. Fig. 1 shows the corresponding 
profiles for Pr = 7.0. The axial velocity component approaches the 
free-stream velocity outside the boundary layer and the radial velocity 
component rises from its value of zero at the center line, due to sym­
metry, to indicate the entrainment at the edge of the boundary layer. 
With aiding forced convection effects, a positive free-stream velocity 
is present and with opposing a negative one. The center-line velocity 
is found to increase with aiding effects and to decrease with opposing 
effects. Opposing flow tends to curb the vertically rising natural 
convection flow and thus cause a thickening of the boundary layer. 

A very similar behavior is seen in Fig. 2 for Pr = 0.7. The effect on 
the center-line velocity is, however, found to be essentially negligible 
in this case. This is obviously related to the larger viscous effects in 
the case of the higher Prandtl number. The effect on the temperature 
field is shown for Pr = 7.0 in Fig. 3. The effect is obviously quite small 
over the range of e considered. An aiding flow, with a narrower 
boundary layer and a more effective heat transfer mechanism, gives 
rise to lower temperatures in the boundary layer. 

The percentage effect on the center-line velocity and temperature, 
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Fig. 4 Comparison of the computed values of N and Umax, for the present 
problem, to those of an axisymmetric plume, as functions of c 

as compared to those for an axisymmetric plume, is shown as a func­
tion of f in Pig. 4. Aiding flow increases the center-line velocity, Umm, 
by about 5 percent for Pr = 7.0 at e = 0.1, whereas the effect is only 
about 1 percent for Pr = 0.7. Opposing flow decreases the center-line 
velocity in a similar manner. The center-line temperature given in 
terms of N, where to ~ t„ = N/x, indicates an increase of about 5 
percent at Pr = 0.7 for opposing flow at € = 0.1. The effect is smaller 
at Pr = 7.0. Similarly, aiding flow decreases the center-line temper­
ature as just discussed. This study, therefore, indicates the effect of 
an externally induced flow on the plume flow parameters and deter­
mines the resulting profiles as a function of the mixed convection 
parameter e, for circumstances where the external flow is a small 
perturbation on the natural convection flow. 
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Fig. 1 Tresca yield condition 

cross section, whose rigid-plastic face sheets obey the Tresca yield 
condition, was recently presented [1]. The optimality criterion, a 
generalization of the constant energy dissipation theorem [2], was 
developed by allowing the thickness of each face sheet to vary inde­
pendently, and applied to a conical frustrum with rollers at its outer 
edge and constrained against rotation at its inner edge. 

In the present Note, the theory [1] Is applied to conical frustrums 
with hinged and clamped outer edges. 

Ba s i c E q u a t i o n s 
For axisymmetric loading, the nondimensionalized2 equations of 

equilibrium are 

d(rTx)/dr - Tg + r(px + s) = d{rBx)/dr - B0 + r(px - s) = 0, 

Tx + Bx + 4s = Awlr. (1) 

To equations (1), we adjoin the compatibility conditions on the gen­
eralized strain rates 

tx - d(rtg)/dr = bx - d(rbg)/dr = r(tg - bg)/4, (2) 

and the optimality conditions 

Txtx + Tgtg = h, Bxbx + B0be = f2. (3) 

With the adoption of the Tresca yield condition (Fig. 1), Euler's 
theorem for homogeneous functions, flow law, and equation (3) may 
be used to show that 

U = dft/dTi, bi = df2/dBt (i = x, d) (4) 

Equations (l)-(4), subject to continuity of Tx, Bx, tg, and bg are 
solved by assuming that appropriate stress regimes apply for certain 
regions of the shell. For example, the stress regime (A, d), together 
with equations (2) and (3) will yield a solution for the strain rates. If 
the resulting strain rates satisfy the normality requirements imposed 
by equations (4) and if the stresses obtained from equations (1) lead 
to non-negative thicknesses, then the solution obtained will be op­
timal. 

It has been previously established [1] that the only stress regimes 
compabible with equation (4) are: 

1 Any combination of corners, excluding B and E. 
2 Side CD (AF) and corner c (/). 
3 Side bc(ef) and corner C(F). 

E x a m p l e s 
In each of the following examples, it is assumed that a central boss 

is rigidly attached to the shell's inner edge, and that the load w(r) is 
non-negative. 

Hinged Outer Edge. The boundary conditions at the inner radius 
ra are tg = bg = 0. Equations (2), evaluated at ra implies tgtx > 0 and 
bgbx > 0 near /•„. Therefore, the appropriate regime must consist of 
the corners A or D and a or d. Anticipating that Nx > 0, Mx < 0 and 

2 For a definition of all nondimensionalized variables used in this Note, see 
Reference [1]. 

t$ = bg + tg < 0, where eg is the strain rate associated with Ng, it follows 
that the regime for the inner region ra <r < ri is (A,d), hence equa­
tions (2) furnish 

to,x = (r2 T r a
2 ) /2r 2 =F (r + 2ra)(r - r„)2/12r2 > 0, 

bo,x = ~ ( r 2 =F r a
2) /2r 2 =F (r + 2ra)(r - r a)2 /12r2 < 0. (5) 

It can easily be shown that these inequalities are satisfied provided 

n < r* = 3 - rj% + [(ra/2 + 3)2 + 2r„2]1/2, (6) 

where r* satisfies tg(r*) = 0 and bg(r*) < 0. 
Since equations (5) require tg < 0 for ra < r < r\, the kinematic 

condition at the hinged outer edge bg(rb) + tg(rb) = 0 can be satisfied 
only if the solution consists of at least one more regime. At the outer 
edge Mx vanishes and Nx is positive. Thus, both Tx and Bx are posi­
tive near rt, so that the only admissible regimes are (A or F; a or / ) . 
Assuming the solution consists of but two regimes, bg(r{) < 0 and €«(/•(,) 
= 0 requires that tg(rb) i 0. This suggests choosing (A/) for the outer 
region ri < r < rt, so that 

tg = r-^[CJ2(^Tr) + C2K2(V~r)} > 0, tx = 1 - t, > 0, 

- 1 < bg = r ~ ! [ - 4 + CMVr') + C2K0(Vr~)] < 0, bx = 1, (7) 

where /„ and Kn are modified Bessel functions of the first and second 
kind, respectively. The constants C\ and C2, determined from the 
continuity requirements on tg and bg, are 

d = -ntenKoiy/Tj + (vn - 4)x2(V^)]/2, 

C2 = r iKn/o(VFD + (Vi - 4)h(Vr~i)]/2, (8) 

where 0 < £ = tg(ri) <rj = bg(r{) < 1. The critical radius r\ separating 
the two regions and determined from tg{rb) = 0, must be such that the 
inequalitites in (6) and (7) are satisfied. 

The determination of r i is best accomplished numerically. However, 
it can be shown that C\ > 0, and if we let rmax be the solution to C\ = 
0 for r i , then r± < rm a x < r* and r\ -* rmSLX corresponds to rt -»• °°. 
Furthermore, it may be shown that inequalities (7) are always satis­
fied, so that the two regime solution (5) and (7) is always kinematically 
admissible. 

The generalized stresses are determined from the equilibrium 
equations (1), Tx - Tg, Bx = Bg for r < ri and Bg = 0 for r > ri subject 
to continuity of Bx at ri and the statical condition Tx(rb) = Bx(rt). 
If the resulting stresses satisfy Tx > 0 everywhere and Bx < 0 for r 
< ri and Bx > 0 for r > r\, then they are minimal. In particular, if the 
loading consists of a concentrated load applied to the central boss, 
w = u>o, it is straightforward to show that these inequalities are indeed 
satisfied. 

Clamped Outer Edge. Suppose now that the outer edge r = rt 
is clamped. Arguments identical to those for the preceding example 
again lead to the regime (A, d) for the inner region ra <r < n, where 
r\ satisfies inequality (6) and the strain rates are given by equation 
(5). 

At the outer edge, the support conditions require tgirt,) = bg(ri,) 
= 0. Evaluation of equations (2) at ri shows that txtg < 0 and bxbg < 
0 near the outer edge. The regime near that edge, therefore, consists 
of the corners C or F and c or /: Anticipating that A^ > 0, Mx > 0 and 
tx - bx + tx > 0, the regime (C, /) for the outer region r2 < r < /•(, is 
obtained. Integration of equations (2) now furnishes 

1 > tg = (l/4r)(r - rb)(r - rb - 4) > 0, tx = - 1 , 

- l < 6 „ = ( l / 4 r ) ( r - r 6 ) ( r - r 6 + 4 ) < 0 > 6* = 1. (9) 

Equations (9) will satisfy their appropriate inequalities if r2 > rm in 

where 

\rb + 4 - 2(4 + n)1'2 for rb < 12 
rmin = { • . (10) 

(rb - 4 for rb > 12 

For rb < 12, tg(rmiJ = 1 and for rb > 12, b0(rmin) = 0. 
Since tg(n) + bg(n) < 0 and tB(r2) + b0(r2) > 0, it follows that n 

< r2 and at least one intermediate region r1 < r < r2 exists. Assuming 
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a three-regime solution, the condition to(r2) > 0, — 1 < bg{r{) < 0 and 
Nx>0 lead to regime (A, /) for the middle region. Therefore the strain 
rates are still given by equations (7) and (S). The two critical radii n 
and r2 are determined from continuity of to and b0 at r2. Thus 

Ci = -r2[pr2KQ(y/72) + (yr2 - 4 )K 2 ( v
/ ^) ] /2 , 

C2 = r 2 [p r 2 / 0 (y73 + (yr2 - 4)I2(VF2)}/2, (11) 

where p = te(r2) and y = -be(r2). The existence of ri and r2 where ry 
< ''max and r2 > r m j n may easily be established numerically be solving 
equations (8) and (11) for given ra and rt-

Once again, it may be shown that the inequalities imposed by (7) 
on the strain rates are satisfied, so that the three regime solution (A, 
d), {A, f) and (C, /) is always kinematically admissible. If the stresses, 
obtained from equations (1) corresponding to each regime satisfy Tx 

>0,BX < 0 tor r<n,Tx >0,BX > 0 for n < r < r2 and Tx <0,BX 

> 0 for r > r2, then they are the minimal stresses. In particular, these 
inequalities will be satisifed for a concentrated load applied to the 
central boss. 

S u m m a r y 
Optimal designs for cones which are either hinged or clamped at 

the outer edge have been presented for a certain class of loads. The 
designs are completely determined by the sequence of minimal re­
gimes. For the hinged shell these regimes were {A, d) and (A, / ) , and 
for the clamped shell they were found to be (A, d)(A, {) and (C, / ) . If 
rb » ra, which is often the case, the region governed by the regime {A, 
f) will consist of almost the entire domain of the shell. The regime (A, 
d) is necessary merely to meet the fixed inner edge condition, and in 
the case of the clamped shell the regime (C, f) is needed near the outer 
edge for the same purpose. 
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Taylor-Gortler Instability of 
Turbulent Wall Jets Along 
Concave Surfaces 

Ft. Kobayashi1 and N. Fujisawa2 

Turbulent wall jets have attracted considerable attention, because 
they are concerned in boundary-layer control and heating, cooling, 
drying or thermal insulation of solid surfaces. The purpose of this 
Note is to consider a critical condition for Taylor-Gortler instability 
of a turbulent wall jet along a concave wall, as a result of which lon­
gitudinal vortices are expected to occur as secondary flow in the wall 
jet. The appearance of the longitudinal vortices might influence 
momentum, heat, and mass transfer in turbulent wall jets. Tani [1] 
first found experimentally the longitudinal vortices appearing in 
turbulent boundary layers along concave walls, and Sandmayr [2] 
made theoretical consideration for the instability problem of the 
turbulent boundary layer, in which an eddy-viscosity concept was used 
for the Reynolds stress. For wall jets, Kahawita [3] and Kobayashi and 
Tomita [4] studied a laminar flow case. Kobayashi, et al. [4], also 
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Fig. 2 Neutral stability curves for turbulent wall jet 

considered a turbulent wall jet in a still fluid. Wall jets are often ap­
plied in a moving stream, where a ratio (/3) of the.free-stream velocity 
to the maximum velocity in the wall jet varies downstream. We con­
sider here the Taylor-Gortler instability of turbulent wall jets for 
various values of the ratio /3. 

Theory 
An orthogonal curvilinear coordinate system (x, y, z) is taken as 

shown in Fig. 1. A free stream with a uniform velocity C/„ and also a 
two-dimensional incompressible wall jet are directed along the axis 
x. The radius R of the curvature on the wall remains constant in the 
x -direction and is far larger than the thickness b of the wall jet. In 
turbulent wall jets, it is known that a location of zero Reynolds stress 
(TR = 0) does not coincide with a position of maximum velocity. Al­
though an eddy-viscosity concept breaks down at the position of 
maximum velocity, we use the eddy-viscosity e for the turbulent wall 
jets, as the primary consideration, in order to relate the Reynolds 
stress to the basic flow field. We shall now suppose that the basic 
turbulent wall jet is slightly perturbed with the type of longitudinal 
vortices, which may be expressed as 

u = U(y) + u(y)eyt cos az, 

v = 6{y)e~'t cos az, w = w(y)eyt sin az (1) 

with the wavenumber a and a measure y of the growth rate of the 
disturbances. We obtain finally a set of perturbation equations gov­
erning the present linear instability problem in the neutral state 
(7 = 0) as follows: 

Mu" + M'W - <T2MU = U'U, (2) 

MJ<4> + 2M'v'" + (M" - 2a2M)u" - 2a2M'V 

+ <r2(M" + o-W)v = -2a2G2Uu, (3) 

V+o-W=Q, (4) 
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a three-regime solution, the condition to(r2) > 0, — 1 < bg{r{) < 0 and 
Nx>0 lead to regime (A, /) for the middle region. Therefore the strain 
rates are still given by equations (7) and (S). The two critical radii n 
and r2 are determined from continuity of to and b0 at r2. Thus 

Ci = -r2[pr2KQ(y/72) + (yr2 - 4 )K 2 ( v
/ ^) ] /2 , 

C2 = r 2 [p r 2 / 0 (y73 + (yr2 - 4)I2(VF2)}/2, (11) 

where p = te(r2) and y = -be(r2). The existence of ri and r2 where ry 
< ''max and r2 > r m j n may easily be established numerically be solving 
equations (8) and (11) for given ra and rt-

Once again, it may be shown that the inequalities imposed by (7) 
on the strain rates are satisfied, so that the three regime solution (A, 
d), {A, f) and (C, /) is always kinematically admissible. If the stresses, 
obtained from equations (1) corresponding to each regime satisfy Tx 

>0,BX < 0 tor r<n,Tx >0,BX > 0 for n < r < r2 and Tx <0,BX 

> 0 for r > r2, then they are the minimal stresses. In particular, these 
inequalities will be satisifed for a concentrated load applied to the 
central boss. 

S u m m a r y 
Optimal designs for cones which are either hinged or clamped at 

the outer edge have been presented for a certain class of loads. The 
designs are completely determined by the sequence of minimal re­
gimes. For the hinged shell these regimes were {A, d) and (A, / ) , and 
for the clamped shell they were found to be (A, d)(A, {) and (C, / ) . If 
rb » ra, which is often the case, the region governed by the regime {A, 
f) will consist of almost the entire domain of the shell. The regime (A, 
d) is necessary merely to meet the fixed inner edge condition, and in 
the case of the clamped shell the regime (C, f) is needed near the outer 
edge for the same purpose. 
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Taylor-Gortler Instability of 
Turbulent Wall Jets Along 
Concave Surfaces 

Ft. Kobayashi1 and N. Fujisawa2 

Turbulent wall jets have attracted considerable attention, because 
they are concerned in boundary-layer control and heating, cooling, 
drying or thermal insulation of solid surfaces. The purpose of this 
Note is to consider a critical condition for Taylor-Gortler instability 
of a turbulent wall jet along a concave wall, as a result of which lon­
gitudinal vortices are expected to occur as secondary flow in the wall 
jet. The appearance of the longitudinal vortices might influence 
momentum, heat, and mass transfer in turbulent wall jets. Tani [1] 
first found experimentally the longitudinal vortices appearing in 
turbulent boundary layers along concave walls, and Sandmayr [2] 
made theoretical consideration for the instability problem of the 
turbulent boundary layer, in which an eddy-viscosity concept was used 
for the Reynolds stress. For wall jets, Kahawita [3] and Kobayashi and 
Tomita [4] studied a laminar flow case. Kobayashi, et al. [4], also 
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Japan. 

2 Graduate student of Tohoku University. 
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Fig. 1 Wall jet and coordinate system 
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Fig. 2 Neutral stability curves for turbulent wall jet 

considered a turbulent wall jet in a still fluid. Wall jets are often ap­
plied in a moving stream, where a ratio (/3) of the.free-stream velocity 
to the maximum velocity in the wall jet varies downstream. We con­
sider here the Taylor-Gortler instability of turbulent wall jets for 
various values of the ratio /3. 

Theory 
An orthogonal curvilinear coordinate system (x, y, z) is taken as 

shown in Fig. 1. A free stream with a uniform velocity C/„ and also a 
two-dimensional incompressible wall jet are directed along the axis 
x. The radius R of the curvature on the wall remains constant in the 
x -direction and is far larger than the thickness b of the wall jet. In 
turbulent wall jets, it is known that a location of zero Reynolds stress 
(TR = 0) does not coincide with a position of maximum velocity. Al­
though an eddy-viscosity concept breaks down at the position of 
maximum velocity, we use the eddy-viscosity e for the turbulent wall 
jets, as the primary consideration, in order to relate the Reynolds 
stress to the basic flow field. We shall now suppose that the basic 
turbulent wall jet is slightly perturbed with the type of longitudinal 
vortices, which may be expressed as 

u = U(y) + u(y)eyt cos az, 

v = 6{y)e~'t cos az, w = w(y)eyt sin az (1) 

with the wavenumber a and a measure y of the growth rate of the 
disturbances. We obtain finally a set of perturbation equations gov­
erning the present linear instability problem in the neutral state 
(7 = 0) as follows: 

Mu" + M'W - <T2MU = U'U, (2) 

MJ<4> + 2M'v'" + (M" - 2a2M)u" - 2a2M'V 

+ <r2(M" + o-W)v = -2a2G2Uu, (3) 

V+o-W=Q, (4) 
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Fig. 3 Variations of G in neutral state with the velocity ratio /3 

where^the primes denote differentiation with respect to r) (= y/ym), 
and U = U/Um, u = u/Um, v = uym/v, w = wym/v, a = aym, G = 
ReVym/R, Re = Umyjv, M = {jx + pt)/fi (p: the density of the fluid, 
H\ its viscosity, v. the kinematic viscosity). G is called the Gortler 
parameter, and Re is the Reynolds number. 

The boundary conditions which arise from the requirements of no 
slip at the wall (?) = 0) and of disappearance as 77 —• <= are u, = u = u' 
= 0 in view of continuity equation (4). 

Results and Discussions 

The present instability problem is now reduced to find the Gortler 
parameter G as an eigenvalue together with two components u(rj) and 
v(n) of the perturbation velocities as eigenfunctions. w(r\) is then 
obtained from equation (4). The set of the differential equations (2) 
and (3) was numerically solved by finite-difference technique and 
successive approximation procedure. Fig. 2 shows neutral stability 
curves in relation of the Gortler parameter G to the dimensionless 
wavenumber a of the longitudinal vortices for several values of the 
velocity ratio /3 = U„/Um, where the stable range is below each neutral 
curve. Because detail data for distributions of the velocity U(y) and 
the Reynolds stress in the turbulent wall jet along a concave wall are 
absent, we used in the present calculations the experimental results 
by Bradshaw and Gee [5] for a turbulent wall jet along a flat plate in 
a case of /? = 0, by Irwin [6] for /3 = 0.377 and by Kruka and Eskinazi 
[7] for (3 = 0.2,0.4, and 0.6. Fig. 2 indicates that, as the velocity ratio 
/5 increases, the stable range becomes smaller and the critical Gortler 
parameter (Gc) and the associated wavenumber (<xc) are decreased. 
Fig. 2 is in a case of the Reynolds number Re = 104. Calculations for 
different values of the Reynolds number (Re = 5 X 103 ~ 2 X 106) 
show that the value of G in the neutral state increases with increasing 
Reynolds number as a function G ~ Re" with n = 1.0 ~ 1.1 for /3 = 
0 - 0 . 6 . 

Further calculations were carried out for /3 = 1, which corresponds 
to a turbulent boundary layer. Experimental values of the Reynolds 
stress by Klebanoff [8] were used in order to obtain a neutral stability 
curve. It was found that the parameter G in the neutral condition 
increases with Re, where n is 0.3 ~ 0.5 in the same range of Re in the 
wall jets. 

Fig. 3 shows the effect of the velocity ratio /3 to the parameter G in 
the neutral condition for a = 1, 2,2.5, and also at the critical condition. 
It is concluded from Fig. 3 that turbulent wall jets are more stable for 

occurrence of the longitudinal vortices than turbulent boundary 
layers, and that turbulent wall jets with less /3 are more stable. The 
fact comes from an increase of the eddy-viscosity e in wall jets with 
less (3. 
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A Remark on the Use of the 
Decomposition F = F e F p in 
Plast ici ty 

J. Casey1 and P. M. Naghdi2 

General Background 
The nonlinear theory of elastic-plastic materials developed by 

Green and Naghdi [1, 2] employs the total strain and plastic strain 
among its independent kinematical variables.3 Another theory by Lee 
[3] utilizes an intermediate stress-free configuration, together with 
the associated multiplicative decomposition of the deformation gra­
dient. As pointed out by Green and Naghdi [4], Lee's development 
is valid only for initially isotropic materials. Other authors, among 
them Mandel [5] and Lubliner [6], have more recently made use of 
the multiplicative decomposition and have claimed that the theory 
of Green and Naghdi is unduly restrictive in that (see, e.g., [6, p. 165]) 
it is applicable only to "certain special cases of isotropy." The main 
purpose of this Note is to show that if full invariance requirements 
are invoked, then the theories employing the multiplicative decom­
position lose the generality attributed to them [5, 6] relative to the 
development in [1, 2]. In addition, although a complete list of refer­
ences on the subject is not cited, some aspects of the present discussion 
will serve to clarify certain misunderstandings in the literature on 
plasticity involving the use of the multiplicative decomposition 
without satisfying full invariance requirements. 

Let X be a particle of an elastic-plastic body SB and denote by X and 
x, respectively, the positions of X in a fixed reference configuration 
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and corresponds to a second form of the theory discussed in Section 4 of [2]. 
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where^the primes denote differentiation with respect to r) (= y/ym), 
and U = U/Um, u = u/Um, v = uym/v, w = wym/v, a = aym, G = 
ReVym/R, Re = Umyjv, M = {jx + pt)/fi (p: the density of the fluid, 
H\ its viscosity, v. the kinematic viscosity). G is called the Gortler 
parameter, and Re is the Reynolds number. 

The boundary conditions which arise from the requirements of no 
slip at the wall (?) = 0) and of disappearance as 77 —• <= are u, = u = u' 
= 0 in view of continuity equation (4). 

Results and Discussions 

The present instability problem is now reduced to find the Gortler 
parameter G as an eigenvalue together with two components u(rj) and 
v(n) of the perturbation velocities as eigenfunctions. w(r\) is then 
obtained from equation (4). The set of the differential equations (2) 
and (3) was numerically solved by finite-difference technique and 
successive approximation procedure. Fig. 2 shows neutral stability 
curves in relation of the Gortler parameter G to the dimensionless 
wavenumber a of the longitudinal vortices for several values of the 
velocity ratio /3 = U„/Um, where the stable range is below each neutral 
curve. Because detail data for distributions of the velocity U(y) and 
the Reynolds stress in the turbulent wall jet along a concave wall are 
absent, we used in the present calculations the experimental results 
by Bradshaw and Gee [5] for a turbulent wall jet along a flat plate in 
a case of /? = 0, by Irwin [6] for /3 = 0.377 and by Kruka and Eskinazi 
[7] for (3 = 0.2,0.4, and 0.6. Fig. 2 indicates that, as the velocity ratio 
/5 increases, the stable range becomes smaller and the critical Gortler 
parameter (Gc) and the associated wavenumber (<xc) are decreased. 
Fig. 2 is in a case of the Reynolds number Re = 104. Calculations for 
different values of the Reynolds number (Re = 5 X 103 ~ 2 X 106) 
show that the value of G in the neutral state increases with increasing 
Reynolds number as a function G ~ Re" with n = 1.0 ~ 1.1 for /3 = 
0 - 0 . 6 . 

Further calculations were carried out for /3 = 1, which corresponds 
to a turbulent boundary layer. Experimental values of the Reynolds 
stress by Klebanoff [8] were used in order to obtain a neutral stability 
curve. It was found that the parameter G in the neutral condition 
increases with Re, where n is 0.3 ~ 0.5 in the same range of Re in the 
wall jets. 

Fig. 3 shows the effect of the velocity ratio /3 to the parameter G in 
the neutral condition for a = 1, 2,2.5, and also at the critical condition. 
It is concluded from Fig. 3 that turbulent wall jets are more stable for 

occurrence of the longitudinal vortices than turbulent boundary 
layers, and that turbulent wall jets with less /3 are more stable. The 
fact comes from an increase of the eddy-viscosity e in wall jets with 
less (3. 
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A Remark on the Use of the 
Decomposition F = F e F p in 
Plast ici ty 

J. Casey1 and P. M. Naghdi2 

General Background 
The nonlinear theory of elastic-plastic materials developed by 

Green and Naghdi [1, 2] employs the total strain and plastic strain 
among its independent kinematical variables.3 Another theory by Lee 
[3] utilizes an intermediate stress-free configuration, together with 
the associated multiplicative decomposition of the deformation gra­
dient. As pointed out by Green and Naghdi [4], Lee's development 
is valid only for initially isotropic materials. Other authors, among 
them Mandel [5] and Lubliner [6], have more recently made use of 
the multiplicative decomposition and have claimed that the theory 
of Green and Naghdi is unduly restrictive in that (see, e.g., [6, p. 165]) 
it is applicable only to "certain special cases of isotropy." The main 
purpose of this Note is to show that if full invariance requirements 
are invoked, then the theories employing the multiplicative decom­
position lose the generality attributed to them [5, 6] relative to the 
development in [1, 2]. In addition, although a complete list of refer­
ences on the subject is not cited, some aspects of the present discussion 
will serve to clarify certain misunderstandings in the literature on 
plasticity involving the use of the multiplicative decomposition 
without satisfying full invariance requirements. 

Let X be a particle of an elastic-plastic body SB and denote by X and 
x, respectively, the positions of X in a fixed reference configuration 
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K0 and the current configuration K at time t. Let F, which for conve­
nience we express as a function of X and t, be the deformation gra­
dient relative to the configuration Ko and recall that det F > 0, where 
det stands for determinant. The transpose and inverse operations will 
be denoted by superscripts T and - 1 , respectively, and I is the unit 
tensor. 

Now it may be observed that if H is any tensor function of X and 
t with det H > 0, then F = (FH_1)H with the property that det (FH_1) 
> 0. Hence, F can always be decomposed—with evident nonunique-
ness—as a product in which both factors have positive determinants. 
Such a decomposition, namely, 

F = FeFp , (1) 

with det Fe > 0, det Fp > 0 is used in plasticity theory. However, the 
use of (1) in plasticity is supplemented with further restrictions which 
reduce the extent of nonuniqueness but result in possible nonexistence 
of the decomposition. To elaborate, let dX be an arbitrary material 
line element of S in the neighborhood of the particle X and let dX and 
dx = F dX be the corresponding line elements in the configurations 
Ko and K, respectively. Pu t dy = Fp dX. Then, dx = Fe dy by (1). Con­
sidering all material line elements dX at X in S, we can form a local 
configuration from the elements dy; the collection of such local con­
figurations (for all X in 35) is usually referred to in the literature on 
plasticity as an intermediate stress-free configurationK; in the special 
case of homogeneous deformations for which Fe and Fp are indepen­
dent of X, K will be a global configuration of 15. We observe that as part 
of the definition of K, it must be required that 

(a) For each x, the portion of 35 that occupies an arbitrarily small 
neighborhood of x be reduced to a state of zero stress;4 and 

(b) The quantity 

E p = ^ ( F p T F p - 0 . (2) 

called plastic strain, has the same value6 at the particle X in/c and K. 
The deformation of dX into dy is then interpreted as plastic and that 
of dy into dx as elastic. Let e; and e^ be fixed orthonormal bases as­
sociated with the configurations K and Ko, respectively. Then, the 
components FIA of F referred to these bases satisfy the compatibility 
conditions dFiA/dXs = dFis/dXA with respect to reference position 
X = XA^A, while the tensors Fe and Fp in general do not satisfy any 
compatibility conditions; and, consequently, the configuration K 
cannot be mapped smoothly into Ko or K. 

I s sues Invo lved in the U s e of (1) 
Three main issues are involved in the use of the multiplicative de­

composition (1). These are: (i) existence of a configuration such asK, 
(ii) uniqueness of K or equivalently of the factors Fe, Fp, and (Hi) the 
invariance requirements under superposed rigid body motions to be 
satisfied by Fe, Fp and their consequent effects on the constitutive 
equations. We discuss these issues separately. 

(i) Existence. As was pointed out in [4], it is possible to reduce 
the stresses in a material element to zero without changing Ep if and 
only if the origin & in stress space lies in the region cF bounded by the 
yield surface d£. It is not always the case that 0 belongs to <£ and 
therefore if (1) is assumed, it will involve a restriction on possible 
constitutive equations and/or possible deformations. On the other 
hand, if such restrictions are not imposed, then the decomposition 
(1) will not always exist. 

(ii) Uniqueness. It follows from the requirement (b) that in any 
two intermediate stress-free configurations corresponding to the same 
current configuration K, E P has the same value at the particle X. 

4 The reduction to a state of zero stress is in the context of the purely me­
chanical theory only. The corresponding reduction in the thermodynamical 
theory can be discussed similarly. 

5 This requirement, as already noted by Green and Naghdi [4], is implied by 
the usual statement that the total strain associated with the element dy is a 
"plastic strain" and is equal to the plastic strain associated with the element 
dx. 

Hence, in view of (1) and (2), Fp and Fe are not unique to the extent 
that they are determined only to within a proper orthogonal tensor 
function6 Z of X, t so that FeZT, ZFP also satisfy (1) and leave the 
left-hand side of (2) unchanged. It then follows that the configuration 
K is locally determined at time t only to within a rigid displace­
ment.7 

(iii) Invariance Requirements. First, we recall that in response 
to certain remarks made by Lee [3], Green and Naghdi [4] studied the 
possibility of accommodating the decomposition (1) within the 
framework of their general thermodynamical theory [1, 2] in which, 
in addition to temperature 8 and work-hardening parameter K, the 
kinematical variables were the total strain E = \ (FTF — I) and the 
plastic strain Ep introduced as a primitive variable. In [1, 2] Ep and 
K were assumed to be unaltered under superposed rigid body motions. 
It was established in [4] that by assuming the decomposition (1) and 
making the identification between the primitive quantity Ep in [1, 
2] and the defined quantity Ep in (2), that a theory utilizing the 
variables Fe and Fp could be derived from that of Green and Naghdi 
[1,2]. 

With reference to the invariance requirements, we recall that 
physical considerations demand that certain fields and functions 
entering the theory be indifferent8 to any transformation which takes 
the present configuration K of a body rigidly into a configuration K+. 
Since K is locally just another configuration, then by the same physical 
reasoning, it was assumed in [4] that these fields and functions are 
also indifferent to a transformation that independently replaces the 
intermediate configuration K by a configuration K+ related toK through 
a superposed rigid body motion. Let K^>- K+ and K~^K+ by indepen­
dent superposed rigid body motions. Then, we have the transforma­
tions F -» F+ , Fe -> F e

+ and Fp -» F p
+ with 

F+ = Q(t)F = Fe + Fp+, Fe+ = Q(t)FeQ
T(t), Fp+ = Q(i)Fp, (3) 

where Q(t) and Q(t) are proper orthogonal tensor-valued functions 
of time only corresponding, respectively, to the arbitrary rigid body 
rotations in the motions through which K^* K+ andic —• K+. Clearly, 
Ep in (2) and E will remain unaltered under the foregoing transfor­
mations and the work-hardening parameter K is assumed to also re­
main unaltered. Furthermore we assume that the stress tensor which 
appears in the constitutive discussion, namely, the symmetric 
Piola-Kirchhoff stress S for both configurations K and K, remains 
unaltered under the transformations K —• K+, K —>• K+ . It is then clear 
that K satisfies requirements (a) and (b) if and only if K+ does, 
i.e., K+ is an intermediate stress-free configuration if and only if K is. 
In particular, since we can now conclude that S = 0 in K+ if S = 0 in K, 
it follows that requirement (a) does not further reduce the lack of 
uniqueness mentioned under (ii). 

The invariance requirements, (3) were observed by Green and 
Naghdi [4]9 and were later used by Naghdi and Trapp [9] in effecting 
an essential reduction in the form of the strain-energy response 
function. In contrast to the full invariance requirements, those 
adopted by many authors correspond to (3) but with Q(t) = I. In some 
cases, for example [3], erroneous results were avoided because the 
analysis was restricted to isotropic materials. However, Mandel [5] 
introduces the idea of an10 "isoclinic" stress-free intermediate con­
figuration k, i.e., one that has a fixed orientation relative to a set of 
axes in space, and adopts invariance requirements corresponding to 

6 There is a dependency on X since the stress-free configuration is local. 
7 At this stage of our discussion, it cannot be said whether the requirement 

(a) can reduce this lack of uniqueness. We return to this later; see the end of 
the paragraph containing (3). 

8 We use the term indifferent for brevity to mean unaltered or unaltered 
apart from orientation as defined in [7]. The notations F+, E+, etc., here are 
in line with.those in [7] and correspond to F*, E*, etc., in [4]. 

9 Invariance requirements of the form (3) were also adopted independently 
by Sidoroff [8], although he appeals to the principle of material frame-indif­
ference. 

10 Actually, Mandel [5, p. 728] employs the terminology "configurations 
isoclines." 
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(3) withQ(i) = I. The notion of a fixed orientation used in [5] is itself 
not an invariant one. For Mandel's scheme to have any physical rel­
evance, his results must be indifferent to the choice of fixed orienta­
tion. This leads one to demand that the full invariance requirements11 

(3) be satisfied. We discuss this further in the following, but note here 
that Mandel's scheme is adopted by Lubliner [6] who repeats the 
criticisms of [1, 4] stated in [5]. 

We have already indicated that the definition of a stress-free con­
figuration (involving the requirements (a) and (6) noted earlier) de­
termines K only to within a rigid displacement at time t. In this con­
nection, it is perhaps natural to ask if by introducing a further as­
sumption one could choose a unique* from among all possible inter­
mediate stress-free configurations and thereby obtain a unique choice 
for Fp. In examining this possibility, one is immediately led to con­
clude that unless a nonuniqueness of rotation Q remains inx, the full 
invariance requirements (3) will not be satisfied. To elaborate, con­
sider for example a possible additional assumption that Fe be sym­
metric positive-definite. Then, application of (3)2 shows that F e

+ is 
not symmetric positive-definite unless Q(t) is set equal to Q(t) in (3). 
But, such a stipulation on the invariance requirements (although it 
may be specified mathematically) is unduly restrictive on physical 
grounds. Similarly, an assumption that Fp be symmetric positive-
definite is not an invariant idea since F p

+ will not be symmetric 
positive-definite. It should be kept in mind that the invariance re­
quirements (3) embody the idea that at time t all intermediate 
stress-free configurations differing from one another by a rigid dis­
placement are physically indistinguishable and there are no physical 
grounds for choosing one of them rather than another. However, while 
K and hence Fp cannot be chosen uniquely, it is important to note that 
Ep can be chosen uniquely, for example through the definition (2). 

I m p l i c a t i o n of I n v a r i a n c e R e q u i r e m e n t s S t a t e d 
U n d e r (Hi) 

In what follows we shall need to have available some results from 
[1, 2, 4]. Interpreting the isothermal case of the theory in [1, 2] as 
corresponding, to the purely mechanical theory we obtain 

dt2< 
\p = fa£, Ep, K), S = Po — , (4) 

dE 

as properly invariant constitutive equations for the strain energy per 
unit mass and the symmetric Piola-Kirchhoff stress tensor S, where 
po is the mass density in the configuration Ko- It is understood that the 
response function \p in (4) is expressed as a symmetric function of E. 
In addition, for fixed values of Ep and K, the yield surface d£ in stress 
space is given in invariant form by 

0(S, Ep, K) = 0. (5) 

In the theory of Green and Naghdi [1,2], Ep is a primitive kinematical 
quantity and no kinematical relation between E and Ep is assumed. 
The limitations concerning existence discussed under (1) do not arise 
in this general framework; and, if only for this reason, it seems to be 
preferable in a general theory of plasticity to employ E and Ep rather 
than Fe and Fp. Again for the same reason, it seems preferable when 
using E and Ep not to introduce stress-free configurations as part of 
the general theory.*2 As soon as the identification between the 
primitive Ep of [1, 2] and the defined quantity Ep in (2) is made, the 
theory of [1, 2] loses some of its generality and the discussion (i) of 
existence becomes relevant. In the remainder of this Note we assume 
that this identification has been made. 

11 It is clear that any chosen isoclinic configuration k at time t may be regarded 
as corresponding to Q(t) = I. A different choice of orientation will then result 
in a differentQ(t). If this choice is to be arbitrary, then Q(£) must be arbitrary 
also. 

12 In special cases, of course, it may be desirable for purposes of interpretation 
or experimental identification to make use of such stress-free configurations 
in order to identify Ep by the form (2). Another way of identifying plastic strain 
is through the use of an assumption which would require that Ep reduce to E 
when S = 0 (see property 3 on p. 122 of [2]). 

We now recall polar decompositions of the invertible tensors F, Fe, 
and Fp and define deformation tensors C, Ce, and Cp as follows: 

F = RM, C = FTF = M2, (6) 

Fe = ReMe, Ce = Me
2 , 

and 

Fp = RpMp, Cp = Mp
2 = 2EP + I, (7) 

where R, Re, Rp are proper orthogonal tensors and M, Me, Mp are 
symmetric positive-definite tensors. We note that in view of (1), (6), 
and (7), C may be expressed as 

C = MpRpTCcRpMp. (8) 

When K -*• K+ , K —• K+ , then R —» R+, M —• M+, etc., and it can be de­
duced from (3), (6), and (7) that 

R+ = Q(t)R, M+ = M, C + = C, E+ = E, 

Re
+ = Q(t)ReQT(i), Me+ = Q(t)MeO

T(t), Ce+ = Q(t)CeQ
T(t), 

Rp+ = Q(t)Rp, Mp+ = Mp, Cp+ = Cp, Ep+ = Ep. (9) 

Once the decomposition (1) is admitted, the strain energy \f/ may 
be expressed in the equivalent forms 

f = fa(Fe, Fp, n) = fa(F, F P , K ) . (10) 

Since tp must remain unaltered under the transformations K -* K+, K 
—• K+, then considering first the function fa in (10)i we obtain 

^ = V = fa(?e+, Fp+, K + ) = fa(Q(t)FeQ
T(t), Q(t)Fp, K) (11) 

for arbitrary proper orthogonal Q(t), Q(t), where (3)2,3 have been used. 
Recalling (6)3 and (7)i we choose Q(t) = RP

T and Q(t) = Rp T R e
r in 

(11) so that 

i/' = i/'i(Rp7'MeRp>Mp, K) (12) 

and we note the presence of Rp in the arguments of (12). We have 
shown that a necessary condition for the satisfaction of invariance 
requirements is that fa in (10)i depend on Fe, Fp, K only through the 
arguments appearing in (12). It is readily seen, with the help of (9), 
that taking 1̂ 1 in the form (12) is also sufficient for the satisfaction 
of invariance requirements. Observing the relations Rp^MeRp = 
(Rp TCe Rp)1/2 and Mp = Cp

 1/2, we can express \j/ as a properly invariant 
function of Rp

 TCe Rp, Cp, K. This was the form used in Section 4 of [4]. 
Considering now the function fa in (10)2, it can be shown by a similar 
argument that a necessary and sufficient condition for the satisfaction 
of invariance requirements is that fa can depend on F, Fp, K only in 
the forms 

<p = fa(U, Mp, K) = fa(C, Cp, K) = faE, Ep, K), (13) 

the last of which is that employed in [1,2,4,9]. Indeed, in view of (8), 
the reduced forms (12) and (13) are equivalent. 

We now return to Mandel's development [5] and introduce the 
notations Fp, Rp, Mp for the values of Fp< Rp, Mp associated with his 
"isoclinic" stress-free configuration k, as well as ft = FPSFP

 T/ det Fp. 
A typical result in Mandel's development is an equation of the 
forni13 

</>(x) = 0 (14) 

for a yield surface in stress space. Applying the invariance require­
ments (3) and assuming 4> to be invariant, we obtain 

13 The notation 0 in (14) corresponds to / in (8.4) of [5] and we have sup­
pressed Mandel's variables T, otj since they do not affect the present discussion. 
It is important to note that we would still employ the full invariance require­
ments (3) even if these variables were included. Our Fp, Rp, Mp, S correspond, 
respectively, to P, 6, L, 7r0 of [5] and the work-hardening parameter K is not ex­
plicitly exhibited in (14). 
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4>{fr) = U*+) = 0(a(i)FpsiyrQ7V det FP) (15) 

for arbitrary proper orthogonal Q(t). With the help of (15), the polar 
decomposition Fp = Rp Mp, the fact that Mp = Mp by virtue of re­
quirement (b) and choosing Q(t) = RP

T, (14) reduces to 

0(MpSMp/detMp) = O. (16) 

Thus tj> can depend on the argument -rr only through S and Mp. Clearly, 
the left-hand side of (16) can be written as a different function $(S, 
Ep). Hence, apart from the work-hardening parameter K not included 
in (14), the form (16) of the yield surface is equivalent to (5) which is 
that used by Green and Naghdi [1, 2]. Parallel arguments apply to 
other relevant equations in [5] and it should now be clear that the 
criticism of [1,4] by Mandel and others who have adopted his scheme 
is unjustified. 

It should be emphasized that in deducing (12), (13), and (16) no 
assumptions were made concerning material symmetry and conse­
quently these equations are valid for a material which is anisotropic 
in its reference configuration. Some authors, for example Mandel [5], 
regard equations such as (5) and (13) to be valid only for special ma­
terials which are "isotropic in the intermediate configuration." 
However, we have just seen that the invariance requirements (3) imply 
that constitutive equations such as (10)2 always satisfy an equation 
oftheform(13). 

Finally a comment must be made about a paper by Silhavy [10]. In 
the context of a functional-type theory, he has attempted to prove that 
the appropriate transformation law for Fp is Fp —• Fp (or p —• p in the 
notation of [10]), i.e., Q(£) = I in (3). However, his main proposition 
(Proposition 4 in [10]) states that a certain set "Pqf(wo, N) is equal to 
a set Pf(wQ, N). As Silhavy himself points out, there may be more than 
one element in the set Pqf(ir0, N). Therefore, it cannot be deduced 
from Silhavy's Proposition 4 that Fp —«• Fp under superposed rigid 
body motions.14 
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Large Amplitude Vibration of 
Skew Orthotropic Plates 

M. Sathyamoorthy1 

Introduction 
Large amplitude flexural vibrations of plates of various geometries 

have been reported by several investigators [1]. The studies carried 
out so far, in many cases, do not incorporate the effects of transverse 
shear and rotatory inertia in the analysis. Although several theories 
[1] have been proposed to account for these effects, numerical appli­
cations are not available. Wu and Vinson [2] have studied the effects 
of transverse shear deformation and rotatory inertia on the large 
amplitude vibration of rectangular orthotropic plates based on as­
sumed expressions for transverse displacement w as well as the slope 
functions a and /3. Furthermore, the formulation is based on the 
Berger approximation. Recently, the author [3] has studied the 
nonlinear vibration behavior of isotropic skew plates with the aid of 
a system of two equations in terms of the stress function, F, and the 
lateral displacement, w. The approach presented in reference [3] 
eliminates a and /3 from the governing equations. Therefore, it is not 
necessary to assume functional forms for these slopes in the solution. 
It has been shown in reference [4] that a system of governing equations 
whose solutions do not require the assumptions of a and /? gives better 
numerical results. 

In this Note, the nonlinear governing equations applicable for the 
large amplitude flexural vibrations of moderately thick orthotropic 
skew plates are given in terms of F and w following the procedure in 
[3]. These equations are then solved using the Galerkin method on 
the basis of an assumed lateral mode. The assumed mode shape is 
restricted to one term in order to keep the algebraic and numerical 
work involved within reasonable limits. Numerical results indicate 
that the transverse shear and rotatory inertia effects are important 
for moderately thick orthotropic skew plates. 

Analysis 
The governing dynamic equations for an orthotropic skew plate in 

oblique coordinate system (see Fig. 1 in [3]) which account for 
transverse shear deformation and rotatory inertia can be derived 
following the procedure in reference [3]. The final form of these 
equations in terms of the stress function F and transverse displace­
ment w are 

F,xxxx + k\F,yyyy + k^F\xxyy + k%F,xxxy + kiF,xyyy 

= CE„(w,xy2 - W,xxW,yy) (1) 

N(h) + R(w) = 0 (2) 

where 

ki = C4[ti2(m2 + ti2) + k \ k2=6S2 + m2C2, ks = -4S 

ki =-2S(2S2 + m2C2), b2 = EnIEb 9 2 = "Si. P2 = G^v'/Ei 

m2=(k2-q4-2p2q2)/p2, ti = S/C, S = sin 0, C = cos 8 

I-i=I+ 2D17w,xy -Digw,yy -Dww,xx = Cphw,tt. (3) 

In equations (3), E^,Ev,v^,ii^,G(v,G(Z,G^z are the elastic orthotropic 
constants of the material of the plate, x and y are the oblique coor­
dinates, £,») are the rectangular Cartesian coordinates, and 8 is the 
skew angle. The differential operators N and R in equation (2), and 
the quantity / in equations (3) are the same as those in [3]. The various 
coefficients which are required to fully define N and R are given in 
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4>{fr) = U*+) = 0(a(i)FpsiyrQ7V det FP) (15) 

for arbitrary proper orthogonal Q(t). With the help of (15), the polar 
decomposition Fp = Rp Mp, the fact that Mp = Mp by virtue of re­
quirement (b) and choosing Q(t) = RP

T, (14) reduces to 
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Thus tj> can depend on the argument -rr only through S and Mp. Clearly, 
the left-hand side of (16) can be written as a different function $(S, 
Ep). Hence, apart from the work-hardening parameter K not included 
in (14), the form (16) of the yield surface is equivalent to (5) which is 
that used by Green and Naghdi [1, 2]. Parallel arguments apply to 
other relevant equations in [5] and it should now be clear that the 
criticism of [1,4] by Mandel and others who have adopted his scheme 
is unjustified. 

It should be emphasized that in deducing (12), (13), and (16) no 
assumptions were made concerning material symmetry and conse­
quently these equations are valid for a material which is anisotropic 
in its reference configuration. Some authors, for example Mandel [5], 
regard equations such as (5) and (13) to be valid only for special ma­
terials which are "isotropic in the intermediate configuration." 
However, we have just seen that the invariance requirements (3) imply 
that constitutive equations such as (10)2 always satisfy an equation 
oftheform(13). 

Finally a comment must be made about a paper by Silhavy [10]. In 
the context of a functional-type theory, he has attempted to prove that 
the appropriate transformation law for Fp is Fp —• Fp (or p —• p in the 
notation of [10]), i.e., Q(£) = I in (3). However, his main proposition 
(Proposition 4 in [10]) states that a certain set "Pqf(wo, N) is equal to 
a set Pf(wQ, N). As Silhavy himself points out, there may be more than 
one element in the set Pqf(ir0, N). Therefore, it cannot be deduced 
from Silhavy's Proposition 4 that Fp —«• Fp under superposed rigid 
body motions.14 
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Introduction 
Large amplitude flexural vibrations of plates of various geometries 

have been reported by several investigators [1]. The studies carried 
out so far, in many cases, do not incorporate the effects of transverse 
shear and rotatory inertia in the analysis. Although several theories 
[1] have been proposed to account for these effects, numerical appli­
cations are not available. Wu and Vinson [2] have studied the effects 
of transverse shear deformation and rotatory inertia on the large 
amplitude vibration of rectangular orthotropic plates based on as­
sumed expressions for transverse displacement w as well as the slope 
functions a and /3. Furthermore, the formulation is based on the 
Berger approximation. Recently, the author [3] has studied the 
nonlinear vibration behavior of isotropic skew plates with the aid of 
a system of two equations in terms of the stress function, F, and the 
lateral displacement, w. The approach presented in reference [3] 
eliminates a and /3 from the governing equations. Therefore, it is not 
necessary to assume functional forms for these slopes in the solution. 
It has been shown in reference [4] that a system of governing equations 
whose solutions do not require the assumptions of a and /? gives better 
numerical results. 

In this Note, the nonlinear governing equations applicable for the 
large amplitude flexural vibrations of moderately thick orthotropic 
skew plates are given in terms of F and w following the procedure in 
[3]. These equations are then solved using the Galerkin method on 
the basis of an assumed lateral mode. The assumed mode shape is 
restricted to one term in order to keep the algebraic and numerical 
work involved within reasonable limits. Numerical results indicate 
that the transverse shear and rotatory inertia effects are important 
for moderately thick orthotropic skew plates. 

Analysis 
The governing dynamic equations for an orthotropic skew plate in 

oblique coordinate system (see Fig. 1 in [3]) which account for 
transverse shear deformation and rotatory inertia can be derived 
following the procedure in reference [3]. The final form of these 
equations in terms of the stress function F and transverse displace­
ment w are 

F,xxxx + k\F,yyyy + k^F\xxyy + k%F,xxxy + kiF,xyyy 

= CE„(w,xy2 - W,xxW,yy) (1) 

N(h) + R(w) = 0 (2) 

where 

ki = C4[ti2(m2 + ti2) + k \ k2=6S2 + m2C2, ks = -4S 

ki =-2S(2S2 + m2C2), b2 = EnIEb 9 2 = "Si. P2 = G^v'/Ei 

m2=(k2-q4-2p2q2)/p2, ti = S/C, S = sin 0, C = cos 8 

I-i=I+ 2D17w,xy -Digw,yy -Dww,xx = Cphw,tt. (3) 

In equations (3), E^,Ev,v^,ii^,G(v,G(Z,G^z are the elastic orthotropic 
constants of the material of the plate, x and y are the oblique coor­
dinates, £,») are the rectangular Cartesian coordinates, and 8 is the 
skew angle. The differential operators N and R in equation (2), and 
the quantity / in equations (3) are the same as those in [3]. The various 
coefficients which are required to fully define N and R are given in 
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T a b l e 1 V a l u e s of ( T / T0) 104 for a r e c t a n g u l a r p la te T a b l e 2 V a l u e s of ( T / T 0 ) 104 for a 15° s k e w p la te 
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* = transverse shear and rotatory inertia effects excluded 
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6 = orthotropic 

Appendix of reference [3]. However, the coefficients a;y, E\ — E$ are 
to be changed as given later to take into account the orthotropy of the 
plate material. 

a n = Ej/C3 , a22 = C\E2 + E ^ + 2ti\E3 + 2G{ ,) | 

a 4 4 = ( G f , + E1t1
2)/C 

ass = Gi2/C, a66 = CGVZ + ShG(z, a12 = (E3 + Erftf/C 

au = -Etfi/C2, a24 = ~h(2Gin + Extx
2 + E3), 

am = -tiGiz (4) 

where 

£ i = Ej/v', E2 = E„h', E3 = EiVriilv' = EnvHlv', 

v'=\- vinvni 

when the normal stress oz is assumed to be zero [3]. 
Equations (1) and (2) represent a system of two equations governing 

the large amplitude flexural vibrations of orthotropic skew plates. The 
effects of transverse shear deformation and rotatory inertia are in­
cluded in these equations. By taking k\ — tn and ay suitably, as in­
dicated in Appendix of [3], these two equations can be readily reduced 
to the corresponding equations applicable for isotropic skew plates 
[3]. Equations ( l )and (2) are nonlinear and coupled and hence exact 
solutions to these are very difficult to obtain. 

E x a m p l e 
Approximate solutions are given here for the large amplitude free 

flexural vibrations of an orthotropic skew plate of dimensions 2a and 
26. A single-mode expression for w is chosen to satisfy the boundary 
conditions along the clamped edges as well as the appropriate geo­
metrical requirements [3] as 

w = n 1 + cos 
4 I 

— 1 + cos — ail bj (5) 

Substituting equation (5) in equation (1) and assuming that the edges 
of the plate are movable [3], a solution for F is determined. The ex­
pression for F as well as the coefficient a\ — aw in F are the same as 
in [3] except that in this case the quantity E in the coefficient d is to 
be replaced by E„. The expression for F thus obtained and the lateral 
displacement u> in equation (5) are now substituted in equation (2) 
and is satisfied approximately by integrating the error function over 
the area of the plate. This procedure leads to a time-differential 
equation in F as follows: 

6i 
d«f 

+ 6. 
rf4/i 

'dr* 
+ b; 

d2f2 
+ b4f+bBfa = 0 (6) 

where the nondimensional time T = tq1/2, q = E^Kpa 2), 

&i = C4, b2 = c3, ba = c% 64 = ci, 65 = c5, 

be = c8/(24c3), 67 = c6/(3c2) 

fi = b2(f+b<ifa), /2 = M / + 6 7 / 3 ) (7) 

The coefficients c\ — cs in equation (7) are defined in the Appendix 
of reference [3]. 

* = transverse shear and rotatory inertia effects excluded 
" = isotropic 
6 = orthotropic 

T a b l e 3 V a l u e s of ( T / T0) 104 for a 30 ° s k e w p la te 

\ — 
\2a 

wQ/h\ 

0 

0.5 

1.0 

1.5 

1/10 

10188° 
140136 

10028 
13943 
9659 
13764 
9122 
13495 

r = 0.5 
1/20 

10042 
11070 
9910 
11032 
9575 
10972 
9089 
10868 

* 

10000 
10000 
9885 
9988 
9561 
9950 
9084 
9889 

1/10 

10313 
14246 
10141 
14123 
9735 
13872 
9127 
13477 

r=1.0 
1/20 

10069 
11149 
9913 
11094 
9558 
10986 
9000 
10825 

* 

10000 
10000 
9870 
9978 
9509 
9911 
8983 
9803 

* = transverse shear and rotatory inertia effects excluded 
" = isotropic 
6 = orthotropic 

Equation (6) is the modal equation applicable for the large ampli­
tude-free, flexural vibration of a clamped orthotropic skew plate with 
movable edges. Solutions to this nonlinear equation have been ob­
tained using the numerical Runge-Kutta method. The ratio of the 
nonlinear period of vibration T, including the effects of the transverse 
shear deformation and rotatory inertia, to the corresponding linear 
period To of a classical plate, not including these effects, has been 
computed for different nondimensional amplitudes (wo/h), plate 
aspect ratios (r), skew angles (6), and thickness-to-length ratios (h/2a) 
of isotropic and orthotropic plates. For the sake of easy comparison 
results where these effects are not considered are also presented. 
These are shown in Tables 1,2, and 3. The material constants of the 
orthotropic plate are taken to be k2 = 0.057, q2 = 0.256, G^/E^ = 
GfJE( = 0.02, GVz/E( = 0.011 as in reference [2], In the case of iso- ' 
tropic plates k2 = 1, g 2 = 0.3, and G/E = 0.385. 

C o n c l u s i o n s 
The effects of transverse shear deformation and rotatory inertia 

on the large amplitude vibration of rectangular and skew plates are 
shown by an increase in the period ratio although the increase is less 
at moderately large amplitudes. The relationship between the period 
and amplitude in all the cases investigated here is seen to exhibit the 
hardening type of nonlinearity, i.e., period decreases with increasing 
amplitude. The effect of the particular type of orthotropy that is 
considered here is to produce a significant increase in the nonlinear 
period, the increase being more at high aspect ratios. It can be ob­
served that orthotropic plates, whether rectangular or skew, are more 
sensitive to the influences of transverse shear deformation and rota­
tory inertia than isotropic plates. Also, the influences of these effects 
on the nonlinear dynamic behavior of orthotropic skew plates is seen 
to increase with the skew angle. The transverse shear and rotatory 
inertia effects play a very important role particularly for moderately 
thick orthotropic plates whereas for all practical purposes these effects 
have no influence on thin plates with thickness-to-length ratio less 
than 0.025. 
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or \pj° as well as \[/ is required to satisfy the homogeneous outer 
boundary condition 

P = l, 

ij* = \pj° = 4/ = 0, at 9 = 0, (4) 

These functions are now derived. 

Solution of Poisson's Equation in 
a Semicircular Region With a 
Hole1 

A. K. Naghdi 

I n t r o d u c t i o n 
Solutions of Poisson's and Laplace's equations in a multiply con­

nected circular region have been derived by a few authors in recent 
years. Among these authors are Redberger and Charles [1], Snyder 
and Goldstein [2], Gaydon and Nuttall [3], El-Saden [4], Rowley and 
Payne [5], and Ling [6] who investigated the problems of fully de­
veloped laminar flow, two-dimensional heat conduction and torsion 
of prismatic bars. However, the solutions of the aforementioned 
equations have not been completely investigated for the case of a 
semicircular region with a circular cutout. In this investigation, first, 
a closed-form solution for the Green's function satisfying a homoge­
neous outer boundary condition is derived. Next, this function is 
utilized to generate certain eigenfunctions of Laplace's equation. 
Finally, these eigenfunctions are combined with an appropriate 
closed-form particular integral of the governing equation to form the 
desired solution. Numerical results for the cases of two-dimensional 
heat conduction and viscous fluid flow are presented. 

A n a l y s i s 
Consider a semicircular region containing a circular cutout as shown 

in Fig. 1. Choose a set of dimensionless polar coordinates p = r/R, 8 
with the origin at point 0, and let <j> be the angle measured from a ra­
dial line at the center of the circular hole. The solution of Poisson's 
equation 

d2^ l d f 1 d2i//__ 

dp2 p dp p2 dd2 

in which s = constant, satisfying the conditions 

i/' = 0 on the outer boundary 

tp = h{(j>) on the inner boundary 

is sought in the following form: 

f = i + Aojo* + Arfi* + ...+ A$j* + ... 

+ B4xa + B2\ls2° + . .+Bjfj° + . 

(1) 

(2) 

(3) 

in which ^ is a particular solution of the governing equation, \pj,* \pj° 
are certain eigenfunctions of Laplace's equation and Aj, Bj are certain 
unknown constants to be determined. Each individual function \[/j* 
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D e r i v a t i o n of \j/j * a n d ipj ° 
In order to derive these eigenfunctions, the following technique is 

followed. First, the solution of Poisson's equation 

V2 $* = £ s„* 5 (p - p0) sin nO, (5) 

in which sn* are constants and & is the unit impulse function, is sought 
in the form 

$"* = T, /n(p).sinn0. 
n = l 

The substitution of relation (6) into equation (5) gives 

(6) 

d2/n (P) , 1 djn (p) » 2 

- + : -fn(p)=sn* o(p- po). (7) dp 2 p dp 

The complementary solution fnc of the differential equation (7) is 
obtained in the usual way, and its particular integral fnp is found with 
the known method of variation of parameters [7]. In the derivation 
of fnp it is considered that the function must be continuous at p = po. 
Thus, employing the condition /„ (p) = 0 at p = 1, the following results 
are obtained: 

n=i 2re 
i* = Z T ~ Pon + 1 (pn - p " n > sin nd 

r = E ^ M p o n + 1 - p < T 
n=i 2re 

x) p" sin n8 

for p > po, 

P <Po 
(8) 

The Green's function is now obtained from (8) by substituting the 
appropriate Fourier coefficients for a concentrated source in place 
of s„*. The final results are as follows: 

\ 
cos n (do + 6) 

, 2P 
V TTR2 

°° On 
Z — (pn-pn) 

„=i n 

— cos n (do — 6) 

tc* = 
_2_P_ 

Trfl2 

a, pn 

E — (PO" -
„=i n 

cos n (Bo — 8) 

Po") 

H 

= '/'I (p> 6, po, do) for p > po, 

cos re (#o + 8) 

i/'n (p, 8, po, 60) for p < po, 

} O) 

in which P is the magnitude of the concentrated source. Note that in 
relations (9) 

i/ii (p. 8, po, Bo) = IAI (Po, B, p, 80). 

It has been shown previously [8-10] that series similar to those 
involved in (9) have closed-form sums: 

E — cos na = .Fi(£, a), 
„=i re 

, u * 1 , cosh £ — 1 , , ,, „ 
Fi(£, p) = - I n — r v ^ In U - e«) £ > 0, 2 cosh £ — cos a 

Y, — sin na = -F2<£, a) , 
n=i re 

iJ,2(£. ct) = 1- arctan 

(1 + cosh £) tan — 
2 

sinh £ 

F2(£, a) = - F2[£, (2 7T - «)] £ > 0, 2TT > a > IT. t 

(10) 
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or \pj° as well as \[/ is required to satisfy the homogeneous outer 
boundary condition 

P = l, 

ij* = \pj° = 4/ = 0, at 9 = 0, (4) 

These functions are now derived. 

Solution of Poisson's Equation in 
a Semicircular Region With a 
Hole1 

A. K. Naghdi 

I n t r o d u c t i o n 
Solutions of Poisson's and Laplace's equations in a multiply con­

nected circular region have been derived by a few authors in recent 
years. Among these authors are Redberger and Charles [1], Snyder 
and Goldstein [2], Gaydon and Nuttall [3], El-Saden [4], Rowley and 
Payne [5], and Ling [6] who investigated the problems of fully de­
veloped laminar flow, two-dimensional heat conduction and torsion 
of prismatic bars. However, the solutions of the aforementioned 
equations have not been completely investigated for the case of a 
semicircular region with a circular cutout. In this investigation, first, 
a closed-form solution for the Green's function satisfying a homoge­
neous outer boundary condition is derived. Next, this function is 
utilized to generate certain eigenfunctions of Laplace's equation. 
Finally, these eigenfunctions are combined with an appropriate 
closed-form particular integral of the governing equation to form the 
desired solution. Numerical results for the cases of two-dimensional 
heat conduction and viscous fluid flow are presented. 

A n a l y s i s 
Consider a semicircular region containing a circular cutout as shown 

in Fig. 1. Choose a set of dimensionless polar coordinates p = r/R, 8 
with the origin at point 0, and let <j> be the angle measured from a ra­
dial line at the center of the circular hole. The solution of Poisson's 
equation 

d2^ l d f 1 d2i//__ 

dp2 p dp p2 dd2 

in which s = constant, satisfying the conditions 

i/' = 0 on the outer boundary 

tp = h{(j>) on the inner boundary 

is sought in the following form: 

f = i + Aojo* + Arfi* + ...+ A$j* + ... 

+ B4xa + B2\ls2° + . .+Bjfj° + . 

(1) 

(2) 

(3) 

in which ^ is a particular solution of the governing equation, \pj,* \pj° 
are certain eigenfunctions of Laplace's equation and Aj, Bj are certain 
unknown constants to be determined. Each individual function \[/j* 
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D e r i v a t i o n of \j/j * a n d ipj ° 
In order to derive these eigenfunctions, the following technique is 

followed. First, the solution of Poisson's equation 

V2 $* = £ s„* 5 (p - p0) sin nO, (5) 

in which sn* are constants and & is the unit impulse function, is sought 
in the form 

$"* = T, /n(p).sinn0. 
n = l 

The substitution of relation (6) into equation (5) gives 

(6) 

d2/n (P) , 1 djn (p) » 2 

- + : -fn(p)=sn* o(p- po). (7) dp 2 p dp 

The complementary solution fnc of the differential equation (7) is 
obtained in the usual way, and its particular integral fnp is found with 
the known method of variation of parameters [7]. In the derivation 
of fnp it is considered that the function must be continuous at p = po. 
Thus, employing the condition /„ (p) = 0 at p = 1, the following results 
are obtained: 

n=i 2re 
i* = Z T ~ Pon + 1 (pn - p " n > sin nd 

r = E ^ M p o n + 1 - p < T 
n=i 2re 

x) p" sin n8 

for p > po, 

P <Po 
(8) 

The Green's function is now obtained from (8) by substituting the 
appropriate Fourier coefficients for a concentrated source in place 
of s„*. The final results are as follows: 
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cos n (do + 6) 

, 2P 
V TTR2 
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Z — (pn-pn) 
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E — (PO" -
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cos n (Bo — 8) 
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= '/'I (p> 6, po, do) for p > po, 

cos re (#o + 8) 

i/'n (p, 8, po, 60) for p < po, 

} O) 

in which P is the magnitude of the concentrated source. Note that in 
relations (9) 

i/ii (p. 8, po, Bo) = IAI (Po, B, p, 80). 

It has been shown previously [8-10] that series similar to those 
involved in (9) have closed-form sums: 

E — cos na = .Fi(£, a), 
„=i re 

, u * 1 , cosh £ — 1 , , ,, „ 
Fi(£, p) = - I n — r v ^ In U - e«) £ > 0, 2 cosh £ — cos a 

Y, — sin na = -F2<£, a) , 
n=i re 

iJ,2(£. ct) = 1- arctan 

(1 + cosh £) tan — 
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sinh £ 

F2(£, a) = - F2[£, (2 7T - «)] £ > 0, 2TT > a > IT. t 
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BRIEF NOTES 

Inner Circular Boundary 

Fig. 1 Semicircular region with a circular cutout. 

Since p0 < 1 it is evident that ' l l andi/'n can be written in closed forms. 
For example one writes 

^i (p, 8, Po, 0o) = F i ( - l n p po, «i) - Fi(-ln pp0, a2) 

- F j - l n — , a i | + Fi( 
\ P 

ct\ • > + t a2 = V0 - I 

- I n — ,ai . 
P / 

for p > p0. (11) 

Excluding the point of application of the concentrated source, it is 
not too difficult to show that the Green's function \j/c is harmonic in 
both regions p > po and p < po and that is possesses continuous de­
rivatives of any order as p approaches po. 

Consider now a small circular path with radius e at the center of the 
circular inner boundary (see Fig. 1). Multiplying \pc* by cos j <j>o, 
sin ;' 0o and integrating_the results on this path, the linearly inde­
pendent eigenfunctions \pj* and \pj° are derived in the form of inte­
grals 

— /»2ir _ 
tj- I fa* 0>> 8, Po, do) cos jfoedfo, 

• ? ; ° = f "fa*(p, 8, p0, 0u)sin;>o«Z0o. (12) 
»/o 

Determination of $ 
The right-hand side of equation (1) is expanded in Fourier series, 

and the ordinary technique of solving partial differential equations 
is applied to yield the following solution: 

£ 4 P " - a 

+ n= 1,3,6 ir(2 + n)(2 - n)n 

+ 4p2 t 1 
n=i,3,5 ir(2 + n)(2 - n)n 

(13) 

which satisfies a homogeneous outer boundary condition. Employing 
partial fraction technique, and utilizing relations (10), the first series 
in the right-hand side of (13) is written in closed form. The second 
series is also summed with a similar technique, however for the sake 
of brevity the intermediate steps are avoided. The final result is 

£ = - -
4s 1 F2 ( -In p, 0) [p sin ( 4 " ' • ' 8p2 

+ F2 (-In p, 0) cos 2 0 - Fi(-ln p, 0) sin 20] 

p2 

- — [-p sin 8 + F2(-ln p, 0) cos 2d 

+ i?i (-In p, 0) sin 26] + s — ( 1 - c o s 20) p < l . 
4 

(14) 

Applications in Steady-State Two-Dimensional Heat 
Conduction and Laminar Fluid Flow 

For the case of two-dimensional steady-state heat conduction in 

Table 1 The values of the nondimensional temperature 
T versus p and 6 for the case in which T = 0, T = 1, re­
spectively, on the outer and inner boundaries, and for « 0 
= a0/R = 0.3,0 = TT/2, andp = 0.1 

N = 320/TT" 

8 in rad 

4 
8 
12 
14 
16 

p = 0.2 

0.206763 
0.446777 
0.754586 
0.918345 
0.999999 

p = 0.4 

0.183056 
0.405957 
0.717176 
0.900144 
0.999996 

p = 0.6 

0.111839 
.0.237204 
0.369337 
0.418825 
0.437899 

P = 0.8 . 

0.049988 
0.103775 
0.155086 
0.172355 
0.178692 

Table 2 The values of the nondimensional velocity W 
for various p and 0 for the case of « 0 = &o/R = 0.5, d = 1 
rad, andp = 0.15 

-_R2dp/dz 
MWo 

• = -48 .742452 

N = 320/TT 

0 in rad p = 0.2 = 0.4 = 0.6 = 0.8 

1 
7 
13 
19 
25 

0.134031 
0.583469 
0.830446 
1.087369 
0.975399 

0.250670 
0.161994 
0.091766 
1.270978 
1.498714 

0.403591 
0.314148 
0.119459 
1.000000 
1.478780 

0.432428 
0.469944 
0.132802 
0.465454 
0.933460 

an infinitely long semicircular cylinder with a circular cylindrical 
cavity and without a heat source the particular solution \p is set equal 
to zero. It is assumed that the nondimensional temperature T is zero 
on the outer boundary and has a constant value of 1 on the inner 
boundary. Since the homogeneous outer boundary condition is au­
tomatically satisfied by the eigenfunctions \pj * and \pj °, it remains only 
,to satisfy the inner boundary condition. To achieve this goal, 2i + 2 
terms in series (3) are selected and the condition T= 1 at m > 2i + 
2 points of the inner boundary is satisfied. This procedure gives a set 
of m by 2i + 2 linear algebraic equations, which are normalized and 
solved approximately by the method of least square error [11]. The 
dimensionless temperature distribution for a symmetrical configu­
ration is presented in Table 1. For the case of fully developed laminar 
viscous flow in a semicircular channel with a circular cylindrical inner 
core the particular solution $< is not zero as (l/p,)(dp/dz) = const ^ 
0. Here dp/dz is the rate of change of pressure along the length of the 
channel, and /x is the absolute viscosity. The axial velocity in this case 
is zero at both inner and outer boundaries. The procedure of numerical 
solution is identical to that of the case of heat conduction. Denoting 
by Wo the axial velocity at p = 0.6 and 0 = 197r/32 the values of di­
mensionless velocity W = W W o for a nonsymmetrical configuration 
are given in Table 2. 

The solution obtained in this investigation are very accurate. For 
example, employing 32 equations with 24 unknowns the inner 
boundary condition is satisfied with relative error of the order 10 - 5 . 
It is interesting to note that the solution \p given by relation (3) can 
also be employed for the cases in which the inner cutout is noncir-
cular. 
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Homogenization and Smoothing: 
A Unified View of Two 
Derivations of Effective 
Property Theories and 
Extensions 

L. Fishman1 and J. J. McCoy2 

The response of a continuum characterized by two widely differing 
length scales, parameterized by the dimensionless ratio e, is con­
sidered in the context of the composite materials problem. The de­
velopment of a bulk property theory appropriate in the e—*0 limit 
is examined, both from the perspective of the deterministic ho­
mogenization literaure and the smoothing method associated with 
statistical continuum theory, and a unified framework is established. 
The extension of bulk property theories through the development 
of ordered expansions in powers of e is discussed and specifically 
related to analogous treatments in linear-gas relaxation theory. 

Introduction 
The purpose of this Note is to emphasize a structural unity of two 

procedures, one termed a smoothing and one termed an homogeni­
zation, which have received attention for deriving macroscale equa­
tions for continua that exhibit heterogeneity on a microscale. The task 
of deriving such equations can be said to comprise the composite 
materials problem. 

While intended to address the same problems, the two procedures 
have been historically associated with different modelings of the 
microscale heterogeneity and further, from a formal mathematical 
viewpoint, with different limiting processes. Smoothing [1] has been 
associated with a statistical description of the microscale variability, 
formally, in a weak fluctuation strength limit; homogenization, as 
presented in recent studies [2-7], has been associated with a periodic 
modeling, formally, in the limit of small-scale variations. Although 
the periodic modeling problems considered possess a fundamental 
underlying stochastic interpretation [8], the inherent structural unity 
encompassing both smoothing and homogenization is emphasized in 
a most transparent manner through the introduction into the mi­
croscale description in homogenization of the novel concept of a 
movable origin [5,6]. Averaging over the location of the movable origin 
can then be used to identify and to separate micro and macroresponse 
measures in homogenization, in the same manner as ensemble aver-
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• aging is used in smoothing; indeed, the averaging operation can be 
viewed in the context of an ensemble average. 

The existence of a common framework does not preclude differ­
ences in the calculational details of the two procedures, as they are 
usually presented. Further, these calculational details lead quite 
naturally to a duality in the interpretations made at the macroscale 
level, a fact which we would emphasize. 

It is to be noted that the large amount of research on these proce­
dures notwithstanding, their specific applications to physical prob­
lems are often formal. Hence, the validity of such application is often 
somewhat uncertain. Particular examples in smoothing, for instance, 
include the assumed convergence properties of the effective index 
operator and the subsequent heuristic two-scale analysis of the 
macroscale equation [9]. Likewise, homogenization in the strict con­
text of the composite materials problem, that is the direct derivation 
of macroscale response equations from the microscale equations, in­
volves a formal perturbational ansatz, termed a two-scale smoothing 
by Keller [7], which can be related to a proper two-scale asymptotic 
treatment [7,8]. Further, the replacement of a nonlocal, integral op­
erator by a infinite-order differential operator, as is implicitly ac­
complished in homogenization, is known, from experience, to be 
fraught with danger. Questions of the mathematical rigor of homog­
enization, of smoothing, and of the replacement previously mentioned 
have been raised in a rather extensive and diverse literature. A dis­
cussion of these questions within the context of the composite ma­
terials problem is available [10]. 

Derivation of Macroscale Equations 
The equations governing the state of stress in a heterogeneous 

linearly elastic solid are written 

d'T'j = fj> ( l a ) 

Tij = Cijki{x)eM, x i n D (lfc) 

o'ikmO'jlndldkemn = 0, (lc) 

along with boundary conditions, taken here to be traction conditions; 
i.e., 

njTij = U, x in oD (Id) 

The response field variables are the symmetric stress T;7, and strain, 
eij, tensors; /; is a body force term taken to vary on the macroscale; 
Cijkt-is the microscale varying elastic moduli tensor. The alternating 
tensor is denoted by 8ijk. Further, the prescribed surface normal, nt, 
and surface traction, t;, are also taken to vary on the macroscale. 
Equation (la) is a statement of momentum balance; equation (16) 
is Hooke's law; and equation (lc) is a compatibility requirement that 
the strain tensor is derivable from a displacement vector according 
to 

1 
eH = ~ {djUi + OiUj) (le) 

The microscale heterogeneity is modeled in two ways: 
1 Cijki (x) is a statistically homogeneous, random field 
2 Cijki(x) is described by a periodic function of unit period, de­

noted by Cijki (f) where f = (x - b)/e. 

In the second modeling, b locates the origin of a material property grid 
and e is a small dimensionless number that relates the length scale 
natural for describing the heterogeneity, the { scale, to that natural 
for describing the specimen geometry. This length scale ratio, ap­
pearing explicitly in the periodic modeling, is implicitly understood 
as a correlation range measure in the stochastic modeling [8]. We note 
that there is no need to explicitly introduce it in the stochastic mod­
eling at this point. 

We now introduce a projection operator, P, which effects an aver­
aging. For the stochastic modeling the average is an ensemble average, 
over an random function space; for the periodic modeling the average 
is also an ensemble average, over the continuous parameter, b, taken 
now to be a random variable that can range over the unit cell with 
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Homogenization and Smoothing: 
A Unified View of Two 
Derivations of Effective 
Property Theories and 
Extensions 

L. Fishman1 and J. J. McCoy2 

The response of a continuum characterized by two widely differing 
length scales, parameterized by the dimensionless ratio e, is con­
sidered in the context of the composite materials problem. The de­
velopment of a bulk property theory appropriate in the e—*0 limit 
is examined, both from the perspective of the deterministic ho­
mogenization literaure and the smoothing method associated with 
statistical continuum theory, and a unified framework is established. 
The extension of bulk property theories through the development 
of ordered expansions in powers of e is discussed and specifically 
related to analogous treatments in linear-gas relaxation theory. 

Introduction 
The purpose of this Note is to emphasize a structural unity of two 

procedures, one termed a smoothing and one termed an homogeni­
zation, which have received attention for deriving macroscale equa­
tions for continua that exhibit heterogeneity on a microscale. The task 
of deriving such equations can be said to comprise the composite 
materials problem. 

While intended to address the same problems, the two procedures 
have been historically associated with different modelings of the 
microscale heterogeneity and further, from a formal mathematical 
viewpoint, with different limiting processes. Smoothing [1] has been 
associated with a statistical description of the microscale variability, 
formally, in a weak fluctuation strength limit; homogenization, as 
presented in recent studies [2-7], has been associated with a periodic 
modeling, formally, in the limit of small-scale variations. Although 
the periodic modeling problems considered possess a fundamental 
underlying stochastic interpretation [8], the inherent structural unity 
encompassing both smoothing and homogenization is emphasized in 
a most transparent manner through the introduction into the mi­
croscale description in homogenization of the novel concept of a 
movable origin [5,6]. Averaging over the location of the movable origin 
can then be used to identify and to separate micro and macroresponse 
measures in homogenization, in the same manner as ensemble aver-
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• aging is used in smoothing; indeed, the averaging operation can be 
viewed in the context of an ensemble average. 

The existence of a common framework does not preclude differ­
ences in the calculational details of the two procedures, as they are 
usually presented. Further, these calculational details lead quite 
naturally to a duality in the interpretations made at the macroscale 
level, a fact which we would emphasize. 

It is to be noted that the large amount of research on these proce­
dures notwithstanding, their specific applications to physical prob­
lems are often formal. Hence, the validity of such application is often 
somewhat uncertain. Particular examples in smoothing, for instance, 
include the assumed convergence properties of the effective index 
operator and the subsequent heuristic two-scale analysis of the 
macroscale equation [9]. Likewise, homogenization in the strict con­
text of the composite materials problem, that is the direct derivation 
of macroscale response equations from the microscale equations, in­
volves a formal perturbational ansatz, termed a two-scale smoothing 
by Keller [7], which can be related to a proper two-scale asymptotic 
treatment [7,8]. Further, the replacement of a nonlocal, integral op­
erator by a infinite-order differential operator, as is implicitly ac­
complished in homogenization, is known, from experience, to be 
fraught with danger. Questions of the mathematical rigor of homog­
enization, of smoothing, and of the replacement previously mentioned 
have been raised in a rather extensive and diverse literature. A dis­
cussion of these questions within the context of the composite ma­
terials problem is available [10]. 

Derivation of Macroscale Equations 
The equations governing the state of stress in a heterogeneous 

linearly elastic solid are written 

d'T'j = fj> ( l a ) 

Tij = Cijki{x)eM, x i n D (lfc) 

o'ikmO'jlndldkemn = 0, (lc) 

along with boundary conditions, taken here to be traction conditions; 
i.e., 

njTij = U, x in oD (Id) 

The response field variables are the symmetric stress T;7, and strain, 
eij, tensors; /; is a body force term taken to vary on the macroscale; 
Cijkt-is the microscale varying elastic moduli tensor. The alternating 
tensor is denoted by 8ijk. Further, the prescribed surface normal, nt, 
and surface traction, t;, are also taken to vary on the macroscale. 
Equation (la) is a statement of momentum balance; equation (16) 
is Hooke's law; and equation (lc) is a compatibility requirement that 
the strain tensor is derivable from a displacement vector according 
to 

1 
eH = ~ {djUi + OiUj) (le) 

The microscale heterogeneity is modeled in two ways: 
1 Cijki (x) is a statistically homogeneous, random field 
2 Cijki(x) is described by a periodic function of unit period, de­

noted by Cijki (f) where f = (x - b)/e. 

In the second modeling, b locates the origin of a material property grid 
and e is a small dimensionless number that relates the length scale 
natural for describing the heterogeneity, the { scale, to that natural 
for describing the specimen geometry. This length scale ratio, ap­
pearing explicitly in the periodic modeling, is implicitly understood 
as a correlation range measure in the stochastic modeling [8]. We note 
that there is no need to explicitly introduce it in the stochastic mod­
eling at this point. 

We now introduce a projection operator, P, which effects an aver­
aging. For the stochastic modeling the average is an ensemble average, 
over an random function space; for the periodic modeling the average 
is also an ensemble average, over the continuous parameter, b, taken 
now to be a random variable that can range over the unit cell with 
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uniform distribution. Ultimately the projection operator is to be in­
terpreted for both models in terms of a spatial average taken over the 
microscale. Thus a projected quantity is to vary only on the macro-
scale. With P, all the field variables can be resolved into a projected 
component, say <C> = PC and a fluctuating component, say C = (/ 
— P)C according to the identity 

Cijki=(Cijkl) + C'm (2) 

We note that < Cijki) is a constant, in the specific application, by viture 
of the statistical homogeneity of Cijki(x). 

Coupled boundary-value problems can be written on the separate 
components of the response fields by first projecting equation (1) and 
by subsequently subtracting the projected equation from the original. 
These problems are 

i>i<Tij)=fj, (3a) 

(Tij) = (Cijkl)(ekl) + (C'ijkie'ki), x i n D (3b) 

&ikmbjlndkdl{emn) = 0, (3c) 

and 

ni(Tij) = tj, x i n d D (3d) 

together with 

ZiT'ij = 0, (4a) 

r'ij= (Cijki)e'kl+(I-P)C'ijkie'ki + C'ijki(eki), x i n f l (4b) 

&ikm?>jln<>kdie'mn = 0 , (4c) 

and 

ra,T'y = 0, x in dD (4d) 

Equations (4), which can be written as a single field equation on 
the fluctuating displacement field, u';(x); i.e., 

(Cm)djdku'i + (I - P)dj(C'ijkidku'i) = -dj(C'm(ekl)) (5) 

along with the homogeneous boundary condition, equation (4d), are 
to be solved and the result substituted into equation (3b). This 
equation then provides an effective, nonlocal, constitutive relationship 
between the projected stress tensor, <Ty), and the projected strain 
tensor, (eij). Notice that since the boundary condition, equation (4d), 
enters the problem that determines u'i, the effective constitutive 
equation is, in the strictest sense, specimen-dependent. 

Except for the insignificant difference in the interpretation to be 
given to the projection, the procedure as outlined is the same for the 
two modelings. A difference is now introduced, in the manner of ef­
fecting a solution of equation (5). The literature treating the stochastic 
modeling identifies a measure of the strength of the heterogeneity, 
|C'ij7i(|/| (Cijki) \, and constructs a perturbation series solution of 
equation (5) in powers of this strength parameter. The result is termed 
a smoothing in that the formal method is the linear counterpart of the 
Bogoliubov-Krylov-Mitropolski method of averaging for nonlinear 
differential equations [11, 12]. The literature treating the periodic 
modeling exploits the two-length scale nature of the problem and 
constructs a series solution of equation (5) in powers of €. The result 
of the second is termed an homogenization in that in the broadest 
sense homogenization derives from consideration of the question of 
replacing a heterogeneous material by an "equivalent" homogeneous 
one in the appropriate e —>- 0 limit [2]. 

Since the detailed calculations of smoothing are available [13-16] 
for both the mechanics and similar problems, they will not be repro­
duced. The effective, nonlocal, constitutive equation is written 

<Ty(x)> = C*ijki(ekiM) + S e>ij*l(x,x')<e*i(x')>dx' (6) 

where C*ijki has been chosen so as to incorporate all singular behavior 
of the two-point dyadic field, (?ijki(x, x'), which has been constructed 
such that 

J" <?;;*< (x,x')dx' = 0 (7) 

It is to be noted that the derivation provides infinite series prescrip­
tions, the terms of which are given by well-described quadratures of 
multipoint correlation functions of CijkiM. It is also to be noted that 
the validity of equation (6) is not limited by the magnitude of any 
length-scale ratio. The specimen dependence of the constitutive 
equation appears in the prescriptions for C*ijki and &ijki(x, *')• It has 
been argued [13, 14] that this dependence is limited to layers of 
boundary surfaces of a thickness that is measured on the microscale. 
Neglecting these layers, then, C*ijki is a constant that is properly 
termed an effective, elastic moduli tensor; Gijki (x, x') is a function of 
difference coordinates alone; and, the integral is a convolution. 

An iteration solution of equation (5) in terms of the length-scale 
ratio, t, assumes, a priori, existence of two separable scales related 
by the small parameter £ in a manner reflecting the detailed nature 
of the microscopic process and the appropriate limit under consid­
eration. That is, that the solution field u',(x) can be written as u',(x, 
y), where y is to be treated as an independent variable in the analysis, 
and to be equated to x/e once the analysis is complete. The intro­
duction of a single correlation range parameter in this manner, while 
appropriate for the assumed form of the periodic modeling, must be 
assumed to provide a consistent and sufficient description of the 
stochastic modeling as would be the case, for example, of the randomly 
modulated oscillator characterized by an Uhlenbeck-Ornstein process 
[1]. Explicitly introducing the two-scale concept into equation (5), 
the equation on u',-(x, y) is written, 

(Cijkl)dj^dk^u'i + (I - P)djM(C'ijkli>k^u'i) + e[2(CijM)dkM 

+ (I - P)C'ijkidkW + (/ - P)(dk^C'ijki)Wx)u'i 

+ e2[(CtJki) + d - P)C'ijkiWx)i>kMW, 

= -t(djWC'ijk,)(eh,) - t2C'ijMbjM(ehi) (8) 

where the superscripts x and y denote derivatives with respect to the 
macro and microcoordinates, respectively. We note, with reference 
to equation (8), that (Cijki) is a constant; C'ijkiM is a function of 
microcoordinates alone; and (ey(x)) is assumed to be a function of 
macrocoordinates alone. 

A solution of equation (8) is next constructed by the following an-
satz. We formally express the fluctuating displacement field as 

u'j = £ enUjM; (9) 

we substitute this in equation (8); and we equate terms in like powers 
of e. The result is a sequence of equations 

Li((y)U/(0) = o 

La<y>«,M = -(ayWC'o-wXe*,) -Mij^djMu^ 

Li,(yW2) = -C'ijkidjM(eki) 

- Mijt^dj^W^ ~ NijkiWdjMdk^W® 

Lu^Wn) = -My,<y)d;-(*>Uj(n-i> 

- NijklWdjWdkMui(n-2\ n>2 (10) 

where Lu^\ Miji^\ and Nm^ are differential operators defined 
over the microscale according to 

Lu^i = Ww) djiyWfr + (I - P)dj<y)(CijkidkM<t>i), 

Miji^jt = [2<C</w>d*M + (/ - P)C'ijk,dkW 

+ (I -P)(dk^C'im)]<t>ji, d D 

and 

Nijk,^jki = [(djki) + (I- P)C'ijki]<Pjki (12) 

Having previously argued that the averaging process in the e -» 0 
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limit represents the appropriate macroscale response function, the 
solutions of equation (10) are constructed as 

u;<°>(x,y)=0, 

UiW(x>y) = X0-*««(y)(e;*(x)>> 

Ui^ix, y) = XmW(y) djM(ekl(x)), 
(13) 

etc., with auxiliary functions pf (n)(y)i defined through the equa­
tions, 

LijWXjkiM = -(dmWC'imnp)5knSlm, 

LyWXjkbnW = - ( C ' h , + Mirp^XpJV)bkrblsbmt, , , ^ 
. . (14) 

etc., where dy is the Kronecker delta. Determination of the auxiliary 
functions |X ("'(y)| requires the specification of boundary conditions. 
The homogeneous conditions expressed by equation (4d) are not 
appropriate in this regard since they apply to a boundary surface that 
is defined on the x scale; whereas the differential operators in equation 
(14) refer to the y scale. In homogenization with a periodic microscale, 
it is usual to require that the auxiliary functions jX(n)(y)l also be pe­
riodic; for a stochastic microstructure a more appropriate choice would 
be a prescribed asymptotic behavior for |y| large [7,8]. 

Equations (9) and (13) formally provide the solution of equation 
(5); and the result is now to be substituted into equation (3b) to obtain 
the effective constitutive equation. In particular we require 

(C'ijkie'ki) = - (C'ijMdk Wu'i> + (C'ijh,dkMW,> (15) 

which upon substitution gives an infinite series in powers of e. We 
write, for the effective constitutive equation, 

(Tij) = [(djkl) + {C'ijmni>m^Xnkim)\(ekl) + eKC'ijkiXlnnW) 

+ <C'y(pd^>XpAm„(2))]dA<^<em„) + ©(«») (16) 

Discussion 
Two comments with regard to equation (16) appear to be warranted 

at this point. One is that the procedure does not provide a prescription 
for the elastic moduli parameters in terms of quadratures. That is, 
one still is required to invert equation (14) in order to determine the 
coefficients of equation (16). Of course the problem expressed by 
equation (14) is, in a sense, canonical requiring that it be solved only 
once. Then, equation (16) is defined for all problems. The second 
comment is that the derivation procedure clearly does not account 
for the enforcement of the boundry condition given by equation (4d). 
Previous boundary-effect analysis [13] indicates, however, that such 
effects should be confined to a microscale layer, thus suggesting that 
the derived constitutive relation will serve in some sense as an 
outer-layer approximation to the correct bulk behavior. 

We can compare the prescriptions for the effective constitutive 
relation as given by smoothing, equation (6), and by homogenization, 
equation (16). A formal relationship can be established by applying 
the Kramers-Moyal expansion [17,18] to equation (6), thereby for­
mally replacing the integral operator by an infinite-order partial 
differential operator parameterized in terms of the transfer moments 
of the kernel and subsequently ordering the expansion by expanding 
the transfer moments in terms of the presumably identifiable small 
parameter e. What emerges is a dual interpretation of the relationship 
between the macroscale behavior and its microscale foundations in 
terms of (1) averages over a sequence of well-defined microscale 
problems, and (2) an infinite set of correlation functions reflecting 
the statistical description of the medium. 

Finally, we can discuss the set of equations one must solve in order 
to obtain the projected response field in a particular application. 
Equations (3a), (3c), (3d), and (6) can be shown to define a well-posed 
boundary-value problem so long as the constitutive equation gives 
rise to a nonlocal strain energy measure that is positive-definite, which 
has also been demonstrated to be the case [15]. Replacing equation 
(6) with equation (16), followed by a truncation suggests a sequence 

of approximate theories, expressible by differential equations on the 
projected displacement field, («,(x)}, of increasingly higher order. 
Several comments regarding this procedure are to be made. First, the 
construction procedure of Babuska [2-4] demonstrates that the 
lowest-order approximation, a bulk property theory, does give solu­
tions with an error of 0(e). Second, retention of higher-order deriv­
atives in equation (16), in order to obtain extensions of the bulk 
property theory, introduces a need to supplement the boundary 
conditions given by equation (3d). Finally, it is known from experience 
that replacing a nonlocal integral operator by an infinite-order dif­
ferential operator to obtain a sequence of approximations commonly 
leads to unphysical results. Beran and McCoy [19] established, for 
example, that explicit expressions for the material parameters for the 
first-order correction to a bulk property theory, which can be iden­
tified with a strain gradient theory, violate the positive-definite re­
quirement for the strain-energy density of that theory. Examples of 
similar difficulties abound in the literature of mathematically similar 
problems. In particular, we cite the literature relating to linear-gas 
relaxation theories [18]. 

As noted in the Introduction, the calculations presented in this Note 
and in much of the literature treating homogenization and smoothing 
are formal. Questions remain concerning, for example, the mathe­
matical rigor of the procedures and the detailed underlying rela­
tionship between stochastic processes and their appropriate scalings 
and the assumption of a single-parameter correlation description. 

A literature does exist, however, which attempts to address these 
questions; and a discussion of some of this literature in the context 
of the composite materials problem is available [10]. 
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Steady-State Solution of 
Navier's Equation in 
Cylindrical Curvilinear 
Coordinates 

B. S. Berger1 and B. Alabi2 

Steady-state problems in plane elasticity for the half space have 
received considerable attention [1]. The radiation condition at infinity 
has been approximately satisfied by the introduction of a viscous 
boundary, a semianalytic energy transmitting boundary, [1, 3] and 
a method based on the properties of the transmission of D'Alembert 
forces, [4]. In the following the solution of Navier's equation given in 
[5] for the static and transient cases is modified for the steady-state 
case. The radiation condition at infinity is satisfied through a change 
of the dependent variable. 

A complete solution of the reduced elastodynamic equations is given 
in terms of the Lame potentials by 

V20 + ft20 + (F /d 2 ) = 0 (1) 

V2V + foV + (F/c2
2) = 0 (2) 

where^i = co/ci, /32 = co/c2, C\ = \/(\ + 2\xjp , c2 = y//i/p , U = V0 
+ V • i/s F_= VF + V • P, V • P = 0 and 4* satisfies the gauge con­
dition, V • \j/ = 0. The displacement, UQ, body force, FQ, and stress 
tensor, To, are expressed, respectively, as products of functions, U, 
F, and T, of the spatial coordinates and a> with exp (—iwt); see [6]. 
Denote the coordinates of a point in a rectangular Cartesian coordi­
nate system by Xi, i = 1,3. Define the orthogonal cylindrical curvi­
linear coordinate system x;, i = 1,3 by xi = xi(.X"i, X2), 22 = x2(Xi, 
X2) and x3 = X3. T h e n g n = gn(xi, x2), g22 = g22(xi, x2), g33 = 1 and 
gij = 0 for i 9^ j , where gij are the components of the metric tensor 
associated with the coordinate system, x,-. Assume that the scalar 0 
and the component of ^/ with respect to the x 3- axis, to, are even 
functions while 1̂ 1 and to are odd functions of X3. The axial variable, 
X3, may be suppressed in (1), (2) through separation of variables, 
differencing for bodies of finite extent in x 3 or application of the 
Fourier transform for the infinite case; see [5]. For notational economy 
0, ipv<_ to,to will subsequently denote both tensor components of (j> 
and \p as well as their Fourier transforms with respect to X3. Taking 
the Fourier transform of (1) and (2) and expanding gives 

(Wgllg22) (Wg22/gll 0,l),l + (Vgll/g22 0,2),2) 
+ (ft2 - a 2)0 + (F/d2) = 0 (3) 

B,l + iai/'3,l - (Vgll/g22 (1/Vi),2) OKl _ f 1,2) 

+ (!/#«) W-1,22 - ifoiu) + (ft2 - « 2)f 1 + (A/C22) = 0 (4) 
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B,2 + iato.2 + ( v S g i i ( l / \ / i ) , i ) (to,i _ ^1,2) 

+ U/gn) W2.11 - ^1,12) + (ft2 - o?)to + (P2U22) = 0 (5) 

- iayfg B + Vgll/g22 OK22 + id-^2,2) + (Vgll/g22),2 (^3,2 + idfa) 

+ Vg22/gll (^3,11 + ta^ l , l ) + (\/g22/gll).l (^3,1 + i a ^ l ) 

+ Vg Wfc + (Vg F3/C22) = 0 (6) 

where 

B = (1/Vgng22) ( ( v t t i W j + Wgn/g22 fa),2) ~ iato 

and ( ), i denotes the partial derivative with respect to x;. The guage 
condition becomes 

Wgii/gu to).i + WgvJgw. fa).2 ~ ia\/giig22 to = 0 (?) 

while the components of the displacement vector are given by 

«i = 0,1 + Vgn/g22 i.to.2 + into), 

"2 = 0,2 - VgHzTgu (toi + ictto). 

us = -ia<t> + (l/\/gng22) (to.i ~ to,2)-

In two dimensions, orthogonal coordinates with specific coordinate 
lines may be found through a variety of means, including numerical 
conformal mapping, see [5]. Define the X; rectangular Cartesian 
coordinates such that X3 is along the axis of a cylinder while X\ and 
X2 are in a plane perpendicular to X3. In the case of the grooved 
semi-infinite plane X\ and X3 are in the plane of the surface, X2 = 
0, X3 is parallel to the axis of the groove and X2 points into the interior 
of the half space. A conformal mapping of the grooved half plane into 
the rectangle 0 < xi < 1, — ir/2 < x2 ^ 7r/2 is given by 

Z= £ an2<
2"-3> (8) 

where Z = X\ + iX2, z = x\ exp (1x2), the boundary at infinity is 
mapped onto the line x\ = 0, — TT/2 < x2 < it 12 and the cross section 
of the groove is assumed to be symmetric with respect to the XV axis. 
Effective numerical methods for the computation of the coefficients 
an are given in [5]. Equation (8) may be used to compute the compo­
nents of the metric, gij, appearing in (3)-(7), [5]. Through conformal 
mapping or other means, [7], coordinate transformations may be 
found such that the transformed reduced equations may be solved 
over the finite rectangle, 0 < Xi < 1, — 7r/2 < x2 < 7r/2. 

To insure only outgoing waves, the difference solution for the 
semi-infinite elastic medium must satisfy the Sommerfeld radiation 
condition at infinity. [6]. Thus the radiation condition must be sat­
isfied on xi = 0 in the x\, X2 coordinates. To assure an outgoing wave 
consider the change of dependent variables 

0 = / e x p ( a t / x i ) (9) 

\pi = hi exp W x i ) (10) 

where <X\ = ioiw/ci, a2 = Jaio)/c2, /(xi, X2, a), and h;(xi, x2, a) = 0 
for Xi = 0 and ai is the coefficient of z in the first term of (8). It is seen 
that (9) and (10) approach the form required for outward going waves 
as Xi -> o. It should be noted that the change of variable, (9) and (10), 
is not necessary for finite elastic bodies. Substituting (9) into (3) 
gives 

Gl /11 + Q7f,i + Q8f+Q2 /,2 + G8 /,22 

+ (F/a2) exp (-ajxi) = 0 (11) 

where Gl = l / g „ , G8 = l/g22, Q7 = Ql - 2-G7WX!2 , Q8 = G7(2-
ai/x!3 + atVxi*) - Ql-ai/xS + /?!2 - a2, Ql = (G7-G8-g22,i - G9-
gu,i) /2, and Q2 = (G7-G8-gU|2 - G10-g22,2)/2. Substituting (10) into 
(4) gives equations, omitted for brevity, which determine hi, i = 1,3. 
Equation (11) and the equations for hi were expressed in finite-dif­
ference from and solved over a rectangle in the x\, X2 coordinates. 
Stress and displacement boundary conditions are developed in [5]. 

In order to establish the computational utility of the foregoing, 
numerical studies were made for comparison with analytic solutions. 
The values of material constants used in all calculations are as follows: 
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Steady-State Solution of 
Navier's Equation in 
Cylindrical Curvilinear 
Coordinates 

B. S. Berger1 and B. Alabi2 

Steady-state problems in plane elasticity for the half space have 
received considerable attention [1]. The radiation condition at infinity 
has been approximately satisfied by the introduction of a viscous 
boundary, a semianalytic energy transmitting boundary, [1, 3] and 
a method based on the properties of the transmission of D'Alembert 
forces, [4]. In the following the solution of Navier's equation given in 
[5] for the static and transient cases is modified for the steady-state 
case. The radiation condition at infinity is satisfied through a change 
of the dependent variable. 

A complete solution of the reduced elastodynamic equations is given 
in terms of the Lame potentials by 

V20 + ft20 + (F /d 2 ) = 0 (1) 

V2V + foV + (F/c2
2) = 0 (2) 

where^i = co/ci, /32 = co/c2, C\ = \/(\ + 2\xjp , c2 = y//i/p , U = V0 
+ V • i/s F_= VF + V • P, V • P = 0 and 4* satisfies the gauge con­
dition, V • \j/ = 0. The displacement, UQ, body force, FQ, and stress 
tensor, To, are expressed, respectively, as products of functions, U, 
F, and T, of the spatial coordinates and a> with exp (—iwt); see [6]. 
Denote the coordinates of a point in a rectangular Cartesian coordi­
nate system by Xi, i = 1,3. Define the orthogonal cylindrical curvi­
linear coordinate system x;, i = 1,3 by xi = xi(.X"i, X2), 22 = x2(Xi, 
X2) and x3 = X3. T h e n g n = gn(xi, x2), g22 = g22(xi, x2), g33 = 1 and 
gij = 0 for i 9^ j , where gij are the components of the metric tensor 
associated with the coordinate system, x,-. Assume that the scalar 0 
and the component of ^/ with respect to the x 3- axis, to, are even 
functions while 1̂ 1 and to are odd functions of X3. The axial variable, 
X3, may be suppressed in (1), (2) through separation of variables, 
differencing for bodies of finite extent in x 3 or application of the 
Fourier transform for the infinite case; see [5]. For notational economy 
0, ipv<_ to,to will subsequently denote both tensor components of (j> 
and \p as well as their Fourier transforms with respect to X3. Taking 
the Fourier transform of (1) and (2) and expanding gives 

(Wgllg22) (Wg22/gll 0,l),l + (Vgll/g22 0,2),2) 
+ (ft2 - a 2)0 + (F/d2) = 0 (3) 

B,l + iai/'3,l - (Vgll/g22 (1/Vi),2) OKl _ f 1,2) 

+ (!/#«) W-1,22 - ifoiu) + (ft2 - « 2)f 1 + (A/C22) = 0 (4) 
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B,2 + iato.2 + ( v S g i i ( l / \ / i ) , i ) (to,i _ ^1,2) 

+ U/gn) W2.11 - ^1,12) + (ft2 - o?)to + (P2U22) = 0 (5) 

- iayfg B + Vgll/g22 OK22 + id-^2,2) + (Vgll/g22),2 (^3,2 + idfa) 

+ Vg22/gll (^3,11 + ta^ l , l ) + (\/g22/gll).l (^3,1 + i a ^ l ) 

+ Vg Wfc + (Vg F3/C22) = 0 (6) 

where 

B = (1/Vgng22) ( ( v t t i W j + Wgn/g22 fa),2) ~ iato 

and ( ), i denotes the partial derivative with respect to x;. The guage 
condition becomes 

Wgii/gu to).i + WgvJgw. fa).2 ~ ia\/giig22 to = 0 (?) 

while the components of the displacement vector are given by 

«i = 0,1 + Vgn/g22 i.to.2 + into), 

"2 = 0,2 - VgHzTgu (toi + ictto). 

us = -ia<t> + (l/\/gng22) (to.i ~ to,2)-

In two dimensions, orthogonal coordinates with specific coordinate 
lines may be found through a variety of means, including numerical 
conformal mapping, see [5]. Define the X; rectangular Cartesian 
coordinates such that X3 is along the axis of a cylinder while X\ and 
X2 are in a plane perpendicular to X3. In the case of the grooved 
semi-infinite plane X\ and X3 are in the plane of the surface, X2 = 
0, X3 is parallel to the axis of the groove and X2 points into the interior 
of the half space. A conformal mapping of the grooved half plane into 
the rectangle 0 < xi < 1, — ir/2 < x2 ^ 7r/2 is given by 

Z= £ an2<
2"-3> (8) 

where Z = X\ + iX2, z = x\ exp (1x2), the boundary at infinity is 
mapped onto the line x\ = 0, — TT/2 < x2 < it 12 and the cross section 
of the groove is assumed to be symmetric with respect to the XV axis. 
Effective numerical methods for the computation of the coefficients 
an are given in [5]. Equation (8) may be used to compute the compo­
nents of the metric, gij, appearing in (3)-(7), [5]. Through conformal 
mapping or other means, [7], coordinate transformations may be 
found such that the transformed reduced equations may be solved 
over the finite rectangle, 0 < Xi < 1, — 7r/2 < x2 < 7r/2. 

To insure only outgoing waves, the difference solution for the 
semi-infinite elastic medium must satisfy the Sommerfeld radiation 
condition at infinity. [6]. Thus the radiation condition must be sat­
isfied on xi = 0 in the x\, X2 coordinates. To assure an outgoing wave 
consider the change of dependent variables 

0 = / e x p ( a t / x i ) (9) 

\pi = hi exp W x i ) (10) 

where <X\ = ioiw/ci, a2 = Jaio)/c2, /(xi, X2, a), and h;(xi, x2, a) = 0 
for Xi = 0 and ai is the coefficient of z in the first term of (8). It is seen 
that (9) and (10) approach the form required for outward going waves 
as Xi -> o. It should be noted that the change of variable, (9) and (10), 
is not necessary for finite elastic bodies. Substituting (9) into (3) 
gives 

Gl /11 + Q7f,i + Q8f+Q2 /,2 + G8 /,22 

+ (F/a2) exp (-ajxi) = 0 (11) 

where Gl = l / g „ , G8 = l/g22, Q7 = Ql - 2-G7WX!2 , Q8 = G7(2-
ai/x!3 + atVxi*) - Ql-ai/xS + /?!2 - a2, Ql = (G7-G8-g22,i - G9-
gu,i) /2, and Q2 = (G7-G8-gU|2 - G10-g22,2)/2. Substituting (10) into 
(4) gives equations, omitted for brevity, which determine hi, i = 1,3. 
Equation (11) and the equations for hi were expressed in finite-dif­
ference from and solved over a rectangle in the x\, X2 coordinates. 
Stress and displacement boundary conditions are developed in [5]. 

In order to establish the computational utility of the foregoing, 
numerical studies were made for comparison with analytic solutions. 
The values of material constants used in all calculations are as follows: 
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On the Computation of the 
Confluent Hypergeometric 
Function at Densely Spaced 
Points 

P-T. D. Spanos1 

Fig. 2 

v = 0.3, E = 207.-109, G = 79.615-109, p = 7850 for steel in mks 
units. 

Consider an ungrooved plane, X2 = 0. For this geometry the coef­
ficients in (8) are a% = 1/2, a2 = 1/2, and a„ = 0 for n > 0. 
Let 

4> = AjHod) (ftVXi2 + (X2 + a)2), 
\p = 0, F = 0, P = 0. 

Then (1) and (2) are satisfied and the displacements on the boundary, 
X2 = 0, and throughout the half space may be found from TJ = V$. 
The amplitude of the displacement and the phase angle, for the exact 
solution and the numerical approximation are shown in Figs. 1 and 
2, respectively, for x2 = ir/2. In the computation Al = 0.1, A2 = ir/10, 
a) = 500, a = 1, Ai = 1 and the boundary displacements utilized in the 
computation were found from 4> and \j/ defined previously. Numerical 
solutions for the infinite medium containing a circular hole and the 
semi-infinite plane containing a semicircular groove have been found 
to be in agreement with exact solutions. 

Conclusions 
The method given here effectively extends the coordinate trans­

formation techniques of [5] to the steady-state solution without re­
course to artifically imposed boundaries. Numerical solutions are in 
good agreement with known analytic solutions. 
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An algorithm is described for computing the values of the confluent 
hypergeometric function at several points spaced densely along an 
interval of real numbers. Numerical data obtained by using this al­
gorithm and pertaining to a commonly made approximation for the 
first-passage problem of the response amplitude of a lightly damped 
and randomly excited linear oscillator are presented. 

Introduction 
In engineering and scientific applications, it is often necessary to 

compute the values of the confluent hypergeometric function M(a, 
b, 2) [1] for given values of the independent variable z, and the pa­
rameters a and 6. The function M(a, b, z) is defined as the nontrivial 
solution of the ordinary differential equation 

d2M 
dz2 + (b- ,dM

 M 
• z) aM • 

dz 

•0 (1) 

which is finite at 2 =0. This solution can be represented by the fol­
lowing series [1, 2]: 

where 

M(a, o,z) = H 1 ...-I K 
. Bi 1! B2 2! Bn n\ 

An = a(a + 1 ) . . . (a + n - 1), Ao = 1, 
Bn = b(b + l)...(b + n- 1), B0 = 1. 

(2) 

(3) 

Equation (2) can be used, without concern about efficiency, to 
compute the value of Af (a, 6,2) at a single or a few points z. However, 
this approach may require excessive computational time if for a 
particular problem it is desired to compute the values of M(a, b, z) 
at a large number of points 2. This will be the case, for example, if it 
is required to plot the values of M(a, b, 2) versus 2, or to compute 
numerically integrals, the integrands of which involve M(a, b, z). 
Numerical computations of this nature would require the values of 
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M(a, b, z) at a set of densely spaced points. For this purpose it is logical 
to attempt to develop a numerical scheme which leads from the value 
of M(a, b, z) to the value of M(a, b,z + Az), where Az is a small in­
crement. This idea is the basis of an alternative computational algo­
rithm for M(a, b, z) presented in this Note. Numerical data obtained 
by applying this algorithm for 6 = 1 are presented. The data pertain 
to a first-passage problem formulated in connection with a Markovian 
approximation of the amplitude of the response of a lightly damped 
linear structure to a white random excitation. 

F o r m u l a t i o n 
The objective of relating the value of M(a, b, z) to M(a, b,z + Az) 

leads to a Taylor expansion of M(a, b,z + Az) in the neighborhood 
of z. The specific expansion can be expressed as 

n 1 dlM 
M(a, b,z+ Az) = M(a, b,z)+ £ r (Az)' + R, (4) 

;=i i\ dz' 

where the derivatives d 'M/dz• are evaluated at z, R is the remainder 
of the Taylor expansion, and n is an integer representing the highest 
order of the derivatives used in the expansion. The derivatives ap­
pearing in equation (4) can be expressed as 

: = — M(a + i,b + i,z), (5) 
dz' Bi 

where 

azM(a + 1, b + 1, z) = b(l - b + z)M{a, b, z) 

+ b(b - l)M(a - 1, b - 1, z) (6) 

Substituting equation (5) into equation (4) yields 

M(a,b,z + Az) =M(a,b,z) 

+ E - — M(a + i,b + i, Az)(AzY + R. (7) 

Clearly, the value of R will be negligible for Az < 1 and n = N, an 
appropriately large number. In this case, the value of M(a, b,z + Az) 
can be computed in terms of the values of M(o — 1, b — 1, z), M(a, b, 
z),..., M(a + N,b + N, z). 

M e c h a n i z a t i o n 
Assume that it is desired to compute the values of M(a, b, z) at 

equally spaced points z = 0, Az, 2Az,. . . along the real axis. For this 
purpose, first the equation 

M(a, b, 0) = 1 (8) 

is used to determine the values of M(a, b, 0) for (a, b) = {(a - 1, b -
1); (a, b);...;(a + N,b + N)\. Then, the equation 

M(a, b,z + Az) » l t i{a, b, z + Az) * M(a, b, z) 

+ Y.- — M(a + i,b + i,z)(AzY (9) 
i=ii\Bi 

is used for z = 0, and (a, b) = {(a - 1, b — 1); (a, b)} to compute the 
values of M(a — 1, b — 1, z + Az) and M(a, b,z + Az). Upon deter­
mining the values of M(a, b, Az) and M(a — 1, b — 1, Az), the values 
of M(a + 1, b + 1, Az), M(a + 2, b + 2, A z ) , . . . and M(a + N, b + N, 
Az) are computed by using equation (6) for (a, b) = {(a, b); (a + 1, b 
+ 1);.. . (a + N - 1, b + N — l)j. This numerical scheme is repeated 
to compute the value of M(a, b, 2Az) by setting z = Az into equation 
(9). Obviously, the values of M(a, b, 3Az), M{a, b, 4Az) and so forth 
can be computed by substituting corresponding values of z into 
equation (9) and repeating the same numerical scheme. 

N o t e for S p e c i a l V a l u e s of a and b 
It is noted that for 6 = —m(m = 0 , 1 , 2 , . . . , ) , the function M(a, b, 

z) is indeterminate unless a = — » ( 0 , 1 , . . . ,), where m = n, n + 1, n 
+ 2,.. .,. Seemingly this fact would imply that equation (6) for b = 
0 or b = 1 cannot be applied for all values of o. However, a careful 
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examination of equation (6) reveals that it is only necessary to assure 
that 

lim 6 M(a, b, z) = finite (10) 
6—0 

for this equation to be meaningful. Equation (10) can be readily ver­
ified by considering equation (2). It must be noted, as well, that for 
a = —n(n = 0 ,1 ) and for values of b ^ —m(m = n + 1, n + 2, 
. . . , ) the function M(a, b, z) terminates and becomes a polynomial 
of z. In this case, already existing efficient algorithms for the com­
putation of polynomials can be used for the computation of M(a, b, 
z). 

A c c u r a c y 
Clearly, the accuracy of the presented numerical scheme depends 

on the step Az and the number N of terms used in equation (9). Its 
computational advantages, in comparison with the traditional method 
which uses equation (2), are based on the fact that if equation (2) is 
truncated at n = L and equation (4) is truncated at n = N, the values 
of the remainders will be 0(zL) and 0(AzN), respectively. Therefore, 
for large values of z, for example z = lOOAz, the same accuracy for 
M(a, b, z) would be yielded by equation (2) and equation (9) for N « 
L. 

A n A p p l i c a t i o n 
Consider the equation of motion of a lightly damped linear struc­

ture excited by a broad-band process w(t) of spectral density S(w) 

x + 2fa0x + wfa = w(t); f « l . (11) 

Assume that the problem has been normalized so that the expression 
7rS(a>o)/2fa)o for the stationary variance of the response is equal to 
unity. Furthermore, consider the probability PB (T) of the response 
envelope 

a2(t) = x2(t) + xHt)/oo2
0; a(0) = A (12) 

not exceeding the barrier B > 0 during the interval (0, T]. Then, PJS(T) 
can be approximated by the expression [4, 5] 

PB(A, T) = L C^e-^oKBr M(-X i i B , 1, |A2) . (13) 

The symbol X,-,B represents the eigenvalues of a boundary-value 
problem formulated by application of the separation of variables 
technique on the backward Kolmogorov equation associated with an 
approximation of a(t) by a Markov process [3-5]. The symbol C;,s 
represents constant coefficients given by the equation 

C,-,B=jo M(-\B, \,s)e-°dsl 

J-. 1/2B2 

M 2 ( -X; B , l , s ) e - s ds . (14) 
o 

Repeated citations have been made in the literature, for example, in 
reference[4],ofthe fact thatnoconvenient tablesofMare available 
for numerical computation based on equation (13). It is noted that 
for an initially quiescent structure, A = 0, equation (13) becomes 

PB(0, T) = £ C-Be-^oAi.Br. (15) 

Thus, for a quiescent structure, it is only necessary to compute ClrB 

for the determination of PB (0, r ) . This fact has motivated the com­
putation of C{iB by applying the presented algorithm for 6 = 1. Three 
values of the barrier have been considered [B = 1, 2, 3). The corre­
sponding values of X,_S; i = 1 , . . . , 9 given in Table 1 have been taken 
from reference [4]. The computed values of C;,B are shown in Table 
2. These values have been obtained by using Az = 0.05 and N = 6 in 
the present algorithm, and they have been validated by using the 
series representation of M(a, b, z), equation (2), with n = 30. Also 
shown in Table 2 is the sum S 9 
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B R I E F N O T E S 

T a b l e 1 E i g e n v a l u e s \ j B ; i = 1, 
B = (1 ,2 ,3} 

1.0 2.0 

9; b a r r i e r 

3.0 

T a b l e 2 Coef f i c i en t s 
B = | 1 , 2 , 3 ! 

C / , B ; i = 1, . . . , 9; barr i er 

1.0 

Sum 1.18102 

2.0 

1.08564 

3.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2.418811 
14.774574 
36.984065 
69.061214 
111.007448 
162.823090 
224.508247 
296.062962 
377.487360 

0.329478 
3.465318 
9.023553 
17.044586 
27.531894 
40.486194 
55.907712 
73.796536 
94.152710 

0.040987 
1.548872 
4.030491 
7.597266 
12.258870 
18.016587 
24.870726 
32.821393 
41.868630 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.48815 
-0.85412 
0.67095 

-0.57185 
0.50706 

-0.46037 
0.42463 

-0.39613 
0.37270 

1.24559 
-0.42215 
0.32214 

-0.27241 
0.24076 

-0.21822 
0.20109 

-0.18747 
0.17631 

1.06187 
-0.10970 
0.08837 

-0.07626 
0.06800 

-0.06191 
0.05721 

-0.05349 
0.05030 

1.02439 

S9 = E CiiB. 
i = i 

Clearly, the theoretical value S„ is 

S - = Y, Ci,B • 
i = i 

lim Z CiBe-
1 = 1 
T—0 

2cooXi,BT : 

(16) 

lim PB(T) = 1. (17) 
T — 0 

Examining Table 2, it is seen that the truncation of S„ to S 9 generates 
a considerable error for PB (0, T) as T — 0. For example, for B = 1 the 
error is close to 20 percent. The value of S9 has been used in reference 
[4] to plot PB(0, T) versus r for B = (1, 2, 3j. Interestingly, the trun­
cation error neither has been reported nor has it been shown in ref­
erence [4]. 

S u m m a r y 

An algorithm has been presented for the computation of the con­
fluent hypergeometric function M(a, b, z) at a set of densely spaced 
real points. The basis of the algorithm is the Taylor representation 
at M(a, b, z + Az) in terms of M(a, b, z), and utilization of a recursive 
formula for the derivatives of the confluent hypergeometric function. 

Numerical data obtained by application of this algorithm for a special 
class of confluent hypergeometric functions are presented. The data 
pertain to the first-passage problem of a commonly used Markovian 
approximation for the amplitude of the response of a lightly damped 
linear structure to white random excitation. 
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Computation of Rigid-Body 
Rotat ion in Three-Dimensional 
Space From Body-Fixed Linear 
Accelerat ion Measurements 1 

L. E. Goodman2 and A. R. Robinson.3 The subject paper by 
Mital and King represents a valuable contribution to the practical 
problem of determining rotation histories from dynamical measure­
ments. The main algorithm, the experimental validation of the 
computation and the discussion of error minimization are all inter­
esting and useful. In describing the basis of the computation proce­
dure, however, the authors are guilty of a slight verbal infelicity that 
may mislead readers unfamiliar with the literature of the subject. The 
statements in question occur in the first paragraph of the section 
entitled "Computation of Rotation From Accelerometer Data." The 
following discussion is offered in an effort to clarify matters. 

The computational method presented in the subject paper is based 
on what the authors term the "Goodman-Robinson" theorem (au­
thors' reference [8]). The correct bibliographic reference to this the­
orem is given below [8].4 Briefly, the theorem concerns a rigid body 
constrained to turn about a fixed point, 0, which is also the origin of 
a set of body-fixed axes, x, y, z (not necessarily orthogonal). Consider 
a fixed sphere of unit radius centered on 0. As the body moves, the 
intersection with the sphere of any one of the body-fixed axes, say x, 
describes a curve on the sphere. From any starting point at t = 0 the 
body will, at time t, have reached a new position that could have been 
reached by a single rotation $ . The Goodman-Robinson theorem 
asserts that the component of $ about the x -axis, 4>x, is given by the 
expression (equation (4) in [8]): 

s: 0>x (It + Ax ± 2 TO7T 

Here cox (t) is the x -component of the angular velocity; Ax is the area 
on the unit sphere bounded by the curve traced by the intersection 
of the x -axis with the sphere plus a closure arc corresponding to the 
negative of $; and m is an integer or zero. Similar expressions hold 
for 4>y a n d 4>z- The theorem is exact. No "correction term" has been 
omitted. In fact, no additional term is possible. 

In technological applications of the Goodman-Robinson theorem 
it is often desirable to express Ax in terms of other geometric pa­
rameters that are of interest. After it is proven in [8], the theorem is 

1 By N. K. Mital and A. I. King and published in the December, 1979, issue 
of the ASME JOURNAL OP APPLIED MECHANICS, Vol. 46, No. 4, pp. 925-
930. 

2 University of Minnesota, Department of Civil and Mineral Engineering, 
Minneapolis, Minn. 55455. 

3 University of Illinois, Department of Civil Engineering, Urbana, 111. 
61801. 

4 [8] Goodman, L.E., ,and Robinson, A.R., "Effect of Finite Rotations on 
Gyroscopic Sensing Devices," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
25,1958, pp. 210-213. 

first illustrated by a simple example in which the area Ax is computed 
exactly. Then the theorem is applied to solve what Dr. Bortz in the 
authors' reference [6] terms "the famous coning problem." In this 
application the area Ax is small compared with 47r. In this circum­
stance it is permissible to replace Ax by the corresponding area on the 
tangent plane—what cartographers would call the central or gnomonic 
projection of Ax. In the technological problem to which Dr. Bortz 
applies the Goodman-Robinson theorem, on the other hand, Ax is not 
necessarily small and he, quite correctly, employs an exact expression 
for Ax. So also in the authors' paper under discussion. This expression 
for Ax entails adding a term to the area of the central projection and 
it is thte addition that the authors appear to have in mind when they 
write of a correction term. This term, however, has nothing to do with 
the theorem itself. That theorem is completely and correctly stated 
and proved in [8]. 

Authors ' Closure 

The authors appreciate the comments made by Professors Good­
man and Robinson relative to the usefulness of the method proposed 
in the paper. We agree that the Goodman-Robinson theorem does 
contain a correction term Ax and that the word "omit" in our paper 
was a poor choice. What we meant to say was that we needed an exact 
expression which was not available in reference [8]. It should be noted 
that Bortz [6] derived the expression for the orientation vector in­
dependently of the Goodman-Robinson theorem and that his ex­
pression was more suitable and accurate for the computation of 
rigid-body rotation from linear accelerometer measurements. We 
apologize for the error in reference [8] which was rectified by the 
discussants. 

Stabil i ty of a Rotor Par t ia l ly 
Filled With a Viscous 
Incompressible Fluid1 

F. G. Kollmann.2 This discusser would like to congratulate the 
authors on their very valuable contribution to this interesting field 
and also would like to draw their attention to the following: 

1 The first comprehensive analytical solution for the inviscid case 

1 By S. L. Hendricks and J. B. Morton, and published in the December, 1979, 
issue of the ASME JOURNAL OP APPLIED MECHANICS, Vol. 46, pp. 913-
918. 

2 Professor, Technische Universitat Braunschweig, Institut fur Maschine-
nelemente und Fordertechnik, Langer Kamp 19B, 3300 Braunschweig, Ger­
many. 

686 / VOL. 47, SEPTEMBER 1980 Transactions of the ASME 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



DISCUSSIONS 

was given by Kuipers [1] where he compared his theoretically pre­
dicted stability charts [2] with the discusser's experimental results 
and excellent agreement was found. 

2 The authors' remark, that the discusser attempted no analysis 
is a little bit misleading. The discusser used a lumped mass model for 
the trapped liquid and could predict the independence of the critical 
spin frequency from the mass of the contained fluid but by the dis­
cusser's model, he was not able to analyze the interaction of the mo­
tions of the rotor and the fluid waves. 

3 The discusser is interested to learn, whether the authors have 
performed experimental investigations to confirm their theoretical 
predictions. 

References 
1 Kuipers, M., "On the Stability of a Flexible Mounted Rotating Cylinder 

Partially Filled With Liquid," Applied Scientific Research, Section A, Vol. 
13,1964, pp. 121-137. 

2 Kuipers, M., "Die Instabilitat eines federnd gelagerten und teilweise mit 
Fliissigkeit gefullten umlaufenden Hohlzylinders," Forschung im Ingenieur-
Wesen, Vol. 32, No. 6,1966, pp. 194-195. 

Authors' Closure 

The author is indebted to Dr. Kollmann for bringing the two ref­
erences to his and the reader's attention. The article by Kuipers 
supports the author's assertion that both external rotor damping 
and damping due to the viscosity of the entrapped fluid must be 
considered in order to have a consistent theory. 

The author apologizes for any misconceptions that may have arisen 
concerning Dr. Kollmann's article. 

The authors have not performed any comprehensive experiments 
to date. A few unreported experiments have been conducted using 
a rotor which was clamped at one end and free at the other. The ex­
periments confirmed the dramatic rise iri'the upper stability boundary 
when rotor damping was increased (Fig. 6). Since the experimental 
rotor allowed the cup to tilt (creating gyroscopic stiffening effects in 
the rotor and exciting axial dependence in the fluid waves), a direct 
comparison with the current theory was not attempted. A more 
comprehensive theory incorporating axial dependence in the fluid 
motion has now been completed and will be reported in another paper. 
In the meantime the author would encourage Dr. Kollmann or anyone 
else to undertake a comprehensive experimental investigation. 

I Dynamic Response of a 
Cylindrical Shell in a 
Potential Fluid1 

R. L. Citerley.2 The authors have touched upon several prob­
lem areas that can be encountered in the analysis of fluid-structure 
systems. Three points in particular should be addressed. 

1 In solving a transient response problem for an incompressible 
fluid, the authors attributed the observed numerical instability to the 
addition of the fluid, arguing that the Houbolt difference operator 
is unconditionally stable. The proof of stability for this operator has 
been given only for symmetric systems [1], Using a finite-difference 

1 By G. E. Cummings, and H. Brandt, and published in the December, 1979, 
issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 772-
778. 

2 Anamet Laboratories, Inc., P.O. Box 831, San Carlos, Calif. 94070. 

formulation of the Sander's shell equations, with displacements and 
moment resultants as fundamental Variables, results in system 
equations which are nonsymmetric. Thus a formal proof of uncon­
ditional stability is lacking for the problem under consideration. The 
same basic shell equations, coupled with a compressible fluid, pro­
duced a similar instability phenomenon in a recent study [2]. The 
instability was removed by using a spatial Euler difference operator 
rather than central difference at the fluid-shell interface. It can be 
shown that the eigenvalues, y, of the system [K]\d\ = y[M]\d} will 
provide the insight with respect to numerical stability. Using an in­
compressible fluid, either the "stiffness" matrix, K, or the "mass" 
matrix, M, can be modified to account for the fluid. These matrices 
are generally full and nonsymmetric for the particular geometries 
encountered in the nuclear energy field [3]. Further, the eigenvalues 
may even be complex, but will appear as conjugate pairs. Using a di­
agonal mass matrix to represent the fluid for all harmonic responses, 
although attractive for its economy, is only correct for rigid body 
motions and must be applied only to the mass terms corresponding 
to the normal displacement. 

2 When representing a fully coupled fluid-structure system with 
an incompressible fluid, responses are instantaneously felt throughout 
the domain, and are solely determined by the accelerations of the 
wetted interface and imposed pressures. Therefore, when performing 
an eigenvalue analysis, the fundamental variables are those of the 
shell. With a compressible fluid, the pressures at points within the 
fluid must be added as fundamental variables in the vector jd|, in the 
foregoing. Again, an eigenvalue analysis can be performed, but the 
physical interpretation of results becomes a little more involved. In 
either case, for containment shells some eigenvalues will have the 
same, or nearly the same values as predicted for the empty shell, but 
the corresponding eigenvectors will be considerably different. 
Whether or not these modes should still be classified as shell modes 
is simply a matter of semantics. As the fluid height approaches the 
shell height, the magnitude of the eigenvalues associated with shell 
responses will dramatically change under the incompressible as­
sumption. Little reduction in the "shell natural frequency" is observed 
by the introduction of compressibility, but additional "acoustic 
modes" will now be present. The eigenvalues corresponding to these 
acoustic modes can greatly differ from the rigid wall modes. Of course, 

1 the acoustic modes are, by definition, affected by compressibility. For 
a narrow annular fluid configuration with a 12.91 m fluid height, 
several acoustic modes would exist within the frequency range of in­
terest (<500 Hz); whereas, for a 0.7 m fluid height, the first acoustic 
mode is at 525 Hz. 

Generally, when a fluid-structure system is excited by an imposed 
pressure or volume source within the fluid, and one is concerned with 
fluid responses (i.e., the acoustic modes), the dynamic characteristics 
of the fluid take on a greater importance than do the structure modes. 
Conversely, when the structure is excited by an externally applied 
surface or body force, and one is concerned about containment re­
sponses only, the dynamic characteristics of the structure begin to 
take precedence. If one can perform an eigenvalue analysis for a rea­
sonable frequency bandwidth, then periodic, random or transient 
analyses become straightforward tasks. Wave propagation problems 
are more readily solved by direct time integration since they are 
equivalent to a modal response involving a very large number of 
contributing modes. 

3 Experimental verification of a numerical procedure for fluid-
structure analysis is not a trivial task. As noted by the authors, specific 
boundary conditions may be difficult to achieve. Numerical proce­
dures are available for combining structural modes of a dry structure 
with either incompressible or compressible fluids [4]. In this way, 
measured data of nonideal boundary conditions of the dry structure 
can be directly coupled with a fluid. However, it has been this writer's 
experience that minute volumes of air, either entrapped in pockets 
or in the form of bubbles at the fluid-structure interface, have a far 
greater effect on acoustic modes than does structural compliance [5]. 
Only after careful treatment of the water, such as raising the fluid 
temperature to near boiling and the addition of wetting agents, can 
consistent results over a wide frequency band be obtained. Further, 

Journal of Applied Mechanics SEPTEMBER 1980, VOL. 47 / 687 
Copyright © 1980 by ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



DISCUSSIONS 

the local sonic speed or celerity of the fluid is only very weakly sen­
sitive to pressure over the range cited. 
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The Nonlinear Behavior of 
Elastic Slender Straight 
Beams Undergoing Small 
Strains and Moderate 
Rotations1 

Dewey H. Hodges.2 The subject paper deals with mathematical 
modeling of the nonlinear behavior of beams. A set of equations is 
derived and used to investigate the static behavior of a slender can­
tilever beam loaded transversely at the free end. Since the loading is 
not necessarily along the principal axes, the principal bending de­
flections and torsion are coupled elastically. In a strictly linear theory 
there would be no torsion; thus the presence of torsion is, itself, a 
manifestation of nonlinear behavior. The agreement obtained with 
experimental data achieved in the subject paper is excellent and 
confirms that one may apply the geometric nonlinear theory of elas­
ticity to beams with confidence provided an adequate degree of 
nonlinearity is retained in the mathematical model to account for large 
deflections. 

The same problem was treated by Dowell, et al., in [1]. The ana­
lytical results of [1] and those of the subject paper agree quite well as 
long as w, the bending deflection in the plane of greatest flexural 
flexibility, remains relatively small compared to the beam length. In 
fact, analytical results of [1] depart from those of the subject paper 
only when w ceases to be a small fraction of the beam length. An ex­
amination of the w equation (336) in the subject paper reveals that 
in addition to linear and second-degree terms, several terms of third 
degree in the deflections appear. These terms are retained in the au­
thors' original derivation of these equations [2] for the special case 
when I22/I33 is large compared to unity. Although not stated in the 
subject paper, these third-degree terms constitute the only difference 
between the equations of [1] and the subject paper. Thus the im­
proved agreement reported in the subject paper must be due to the 
presence of these third-degree terms and not to the reasons indicated 
in the paper. The two main reasons given for the improved agreement 
shown in the subject paper are now examined. 

The first reason is mentioned on Page 162, Column 1, where the 
authors attribute the accuracy of their results to "a more careful and 
consistent" derivation than in [1]. The original derivation of the au­
thors' equations [2] concludes with a set of nonlinear equations of 
second degree in bending and torsion deflections. These equations 
are intended for applications to rotating blades and are based on the 

1 By A. Rosen and P. Friedmann, and published in the March, 1979, issue 
of the ASME JOURNAL OP APPLIED MECHANICS, Vol. 46, pp. 161-168. 

2 Research Scientist, Rotorcraft Dynamics Division, Aeromechanics Labo­
ratory, U.S. Army Research and Technology Laboratories, Ames Research 
Center, Moffett Field, Calif. 94035. 

assumption that bending and torsion rigidities are of the same order 
of magnitude. For the special case where I22II33 and EI22/GJ are large 
compared to unity, the authors endeavored to retain third-degree 
terms whenever they are multiplied by a large coefficient in the 
equations. It is not clear that appropriate measures were taken, 
however, to ensure that all third-degree terms multiplying the large 
coefficients were retained. In fact, only terms through second degree 
were retained in the bending curvature expressions, and it was never 
demonstrated that third-degree terms from these expressions would 
not appear in the final equations. Moreover, the final equations in the 
subject paper, because of the particular third-degree terms retained, 
do not have a self-adjoint structural operator. While it is acknowl­
edged that the authors deserve credit for adding appropriate 
higher-degree terms to the equations to improve the correlation with 
experimental data, this, in itself, does not necessarily imply a higher 
degree of care or consistency. 

The second reason given by the authors appears in the Concluding 
Remarks section: "The superior agreement obtained with the present 
equations is due to differences between the final equations of equi­
librium used here and those given in [3]. These differences have been 
discussed with considerable detail in [2]." (Reference numbers refer 
to those of this discussion). The first sentence, by itself, appears to 
be referring to the third-degree terms retained in equation (336) be­
cause the ratio I22/I33 is large compared to unity for the particular 
beam considered. This is not the intended meaning according to the 
second sentence, however, because differences related to these third 
degree terms are not discussed in [2]. The differences between the 
equations of [2, 3] that are discussed in [2] relate to the second-degree 
equations only and have been recently clarified in [4, 5]. The final 
second-degree nonlinear equations of [2, 3], while differing slightly 
for pretwisted beams [4], are actually equivalent for the present case 
of a nonrotating beam without pretwist [5]. Therefore, the improved 
agreement reported in the subject paper does not prove that the 
equations for rotating blade applications derived in [2] are more 
"reliable" nor that they "can be used with confidence" any more than 
those of [3]. The results simply prove that the equations of the subject 
paper are more accurate than those of [1] when applied to problems 
in which the bending deflection w may exceed a small fraction of the 
blade length and the ratio Iii/hz is large compared to unity. These 
cases are not treated in [1] in which the squares of bending slopes were 
assumed to be negligible with respect to unity and the equations were 
taken directly from [3] where 722 and ^33 were assumed to be the same 
order of magnitude [3, pp. 8, 9]. 
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the local sonic speed or celerity of the fluid is only very weakly sen­
sitive to pressure over the range cited. 
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The Nonlinear Behavior of 
Elastic Slender Straight 
Beams Undergoing Small 
Strains and Moderate 
Rotations1 

Dewey H. Hodges.2 The subject paper deals with mathematical 
modeling of the nonlinear behavior of beams. A set of equations is 
derived and used to investigate the static behavior of a slender can­
tilever beam loaded transversely at the free end. Since the loading is 
not necessarily along the principal axes, the principal bending de­
flections and torsion are coupled elastically. In a strictly linear theory 
there would be no torsion; thus the presence of torsion is, itself, a 
manifestation of nonlinear behavior. The agreement obtained with 
experimental data achieved in the subject paper is excellent and 
confirms that one may apply the geometric nonlinear theory of elas­
ticity to beams with confidence provided an adequate degree of 
nonlinearity is retained in the mathematical model to account for large 
deflections. 

The same problem was treated by Dowell, et al., in [1]. The ana­
lytical results of [1] and those of the subject paper agree quite well as 
long as w, the bending deflection in the plane of greatest flexural 
flexibility, remains relatively small compared to the beam length. In 
fact, analytical results of [1] depart from those of the subject paper 
only when w ceases to be a small fraction of the beam length. An ex­
amination of the w equation (336) in the subject paper reveals that 
in addition to linear and second-degree terms, several terms of third 
degree in the deflections appear. These terms are retained in the au­
thors' original derivation of these equations [2] for the special case 
when I22/I33 is large compared to unity. Although not stated in the 
subject paper, these third-degree terms constitute the only difference 
between the equations of [1] and the subject paper. Thus the im­
proved agreement reported in the subject paper must be due to the 
presence of these third-degree terms and not to the reasons indicated 
in the paper. The two main reasons given for the improved agreement 
shown in the subject paper are now examined. 

The first reason is mentioned on Page 162, Column 1, where the 
authors attribute the accuracy of their results to "a more careful and 
consistent" derivation than in [1]. The original derivation of the au­
thors' equations [2] concludes with a set of nonlinear equations of 
second degree in bending and torsion deflections. These equations 
are intended for applications to rotating blades and are based on the 

1 By A. Rosen and P. Friedmann, and published in the March, 1979, issue 
of the ASME JOURNAL OP APPLIED MECHANICS, Vol. 46, pp. 161-168. 

2 Research Scientist, Rotorcraft Dynamics Division, Aeromechanics Labo­
ratory, U.S. Army Research and Technology Laboratories, Ames Research 
Center, Moffett Field, Calif. 94035. 

assumption that bending and torsion rigidities are of the same order 
of magnitude. For the special case where I22II33 and EI22/GJ are large 
compared to unity, the authors endeavored to retain third-degree 
terms whenever they are multiplied by a large coefficient in the 
equations. It is not clear that appropriate measures were taken, 
however, to ensure that all third-degree terms multiplying the large 
coefficients were retained. In fact, only terms through second degree 
were retained in the bending curvature expressions, and it was never 
demonstrated that third-degree terms from these expressions would 
not appear in the final equations. Moreover, the final equations in the 
subject paper, because of the particular third-degree terms retained, 
do not have a self-adjoint structural operator. While it is acknowl­
edged that the authors deserve credit for adding appropriate 
higher-degree terms to the equations to improve the correlation with 
experimental data, this, in itself, does not necessarily imply a higher 
degree of care or consistency. 

The second reason given by the authors appears in the Concluding 
Remarks section: "The superior agreement obtained with the present 
equations is due to differences between the final equations of equi­
librium used here and those given in [3]. These differences have been 
discussed with considerable detail in [2]." (Reference numbers refer 
to those of this discussion). The first sentence, by itself, appears to 
be referring to the third-degree terms retained in equation (336) be­
cause the ratio I22/I33 is large compared to unity for the particular 
beam considered. This is not the intended meaning according to the 
second sentence, however, because differences related to these third 
degree terms are not discussed in [2]. The differences between the 
equations of [2, 3] that are discussed in [2] relate to the second-degree 
equations only and have been recently clarified in [4, 5]. The final 
second-degree nonlinear equations of [2, 3], while differing slightly 
for pretwisted beams [4], are actually equivalent for the present case 
of a nonrotating beam without pretwist [5]. Therefore, the improved 
agreement reported in the subject paper does not prove that the 
equations for rotating blade applications derived in [2] are more 
"reliable" nor that they "can be used with confidence" any more than 
those of [3]. The results simply prove that the equations of the subject 
paper are more accurate than those of [1] when applied to problems 
in which the bending deflection w may exceed a small fraction of the 
blade length and the ratio Iii/hz is large compared to unity. These 
cases are not treated in [1] in which the squares of bending slopes were 
assumed to be negligible with respect to unity and the equations were 
taken directly from [3] where 722 and ^33 were assumed to be the same 
order of magnitude [3, pp. 8, 9]. 
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under static loading. The development is set forth as a basis for de­
riving general nonlinear aeroelastic equations of motion for helicopter 
and wind-turbine rotor blades. This Discussion clarifies the recent 
background of the derivation of nonlinear equations of motion of rotor 
blades, and points out some apparent errors and inconsistencies in 
the derivations in the subject paper as well as in [1-2], where the de­
tails of the derivation are given. 

The literature already contains several treatments of nonlinear 
aeroelastic rotor equations, including development of beam equations 
as a special case. A starting point for deriving nonlinear equations has 
been the linear equations derived in [3] for a rotating twisted blade. 
Several investigators extended [3] to include the nonlinear effects of 
finite displacements (see, e.g., [4-9]). There are some controversies 
about the basic ingredients needed to derive the nonlinear equations. 
These basic ingredients are: 

1 Nonlinear expressions for the bending curvatures and twist. 
2 A nonlinear expression for the rotational transformation matrix 

between the coordinates of the deformed and undeformed blade. 
3 Nonlinear strain-displacement relations. 

In [6-9], the authors of this Discussion addressed several fundamental 
aspects of the derivation of the second-degree nonlinear aeroelastic 
equations for rotor blades in forward flight in an attempt to place the 
derivation on a firm foundation, and set forth certain principles and 
guidelines to be followed both in establishing the basic ingredients 
and in deriving the nonlinear equations. The subject paper and [1-2], 
in emphasizing the same principles and guidelines, add little to the 
contributions of [6-9]. 

With regard to the errors, the x- component of the virtual rotation 
is given as nx = 8<f> in [1-2].4 This is incorrect. The correct expression 
is 

nx = 8cf> + w,x8v,x (1) 

The expression for the variation of the twist, <5T, given in equation 
D-36c of (2) is thus also incorrect. The correct expression is 

oV = <5$,x + w,x8viX + uiXX8w,x (2) 

These errors lead to missing and erroneous terms in the final equa­
tions obtained from the principle of virtual work. 

The expressions for the virtual rotation components ny and nz and 
for the variation of the bending curvatures 8x.y and 8KZ are inconsis­
tent with the basic assumptions of small strains and "moderate" 
rotations, whereby u,x, u2,x, w2

iX, and 02 are neglected compared to 
unity. The consistent expressions for ny and nz are 

ny = — 8w,x + <t>8v,x (3) 

nz = 8v,x + <t>8w,x (4) 

Similarly, one can show that the consistent expressions for the 
variation of the bending curvatures are 

8Ky = 8viXX +</>8wiXX +wiXX8<t> (5) 

8KZ = 8w}XX - (j>8viXX - v,xx8<t> (6) 

which are not in agreement with the expressions given in [2]. These 
inconsistencies lead to inconsistent third-degree terms in the final 
equations. 

Oddly, a parallel Newtonian development in the papers yields 
identical final equations even though no error is made corresponding 
to the missing term w,x8uiX in the expression for nx. This occurred 
because the assumptions of small strains and moderate rotations were 
inconsistently applied in the development of the Newtonian equa­
tions. 

More fundamentally, the assumption of moderate rotations is an 
inappropriate foundation for a rigorous derivation of the nonlinear 

B The Nomenclature of the subject paper and [1-2] is used. 

aeroelastic equations of motion of helicopter and wind-turbine blades. 
The implications of discarding v2

>x, w
2\x, and <f>2 compared to unity 

in the rotational transformation matrix were examined in [6-8]. Two 
consequences are: 

1 If <j>2 is neglected compared to unity for a rotating blade, a 
well-known linear inertia term is lost in the torsion equation. Many 
other investigators have included this term but have introduced it 
nonrigorously as an applied load. 

2 If the terms v2, x and w2
tX are neglected compared to unity, some 

second-degree nonlinear aerodynamic terms are lost which are of the 
same order as other terms which are retained. Also, some spurious 
second-degree terms appear in the shear strains if the strains are 
obtained by using this transformation matrix (although correct shear 
strain expressions follow directly from the correct curvature expres­
sions). 

Finally, three tension-torsion coupling terms given in [3] are missing 
from the torsion equation, namely, (Tk\<l>,x),x, (Tk\Ba,x),x, and 
((EBI6GX<I>IX)IX. In [1], the authors of the subject paper took issue with 
[3], stating that these three terms were incorrect. Subsequently, they 
conceded ([2] and subject paper) that the first term does exist but 
discarded it as negligible for closed and solid cross sections. They have 
apparently held to the position that the other two terms are incorrect. 
But a wide body of literature (see, e.g., [10-13]) clearly establishes the 
validity of all three terms for small strains. 
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Authors' Closure 

Closure to the Comments of Dewey A. Hodges. The authors 
would like to thank Dr. Hodges for complimenting them on the ex­
cellent agreement between the theoretical results obtained in the 
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subject paper and the experimental results obtained in reference [1]. 
However, they would also like to identify a few inaccurate statements 
and errors which unfortunately are present in Dr. Hodges com­
ment. 

In his comment Dr. Hodges makes frequent use of concepts such 
as "linear terms," "second-order terms," and "third-order terms." 
An attempt to use such concepts in an accurate and consistent theory 
is a priori doomed to fail as it happened to Dr. Hodges when he at­
tempted to compare the results of his calculations to his own experi­
mental results [1]. The theory derived in reference [2] is based on the 
assumption of "small strains and moderate rotations." 

According to this theory both elastic strains and terms involving 
products of elastic rotations (or slopes) are negligible when compared 
to unity. At the same time these quantities are not negligible com­
pared to unity when they are multiplied by quantities much larger 
than one. The theory developed by Hodges, et al., failed to reproduce 
the test results because it violated this rule. Therefore in the con­
cluding remarks of reference [1] dealing with the discrepancies be­
tween theory and experimental results, Hodges, et al., suggest that 
these differences are ". . . consistent with the basic assumption of the 
Hodges-Dowell theory in which squares of bending slopes are ne­
glected compared to one." This remark is incorrect. The discrepancy 
between theory and experiment was due to the authors' failure to 
apply the rule governing the neglect of strains and terms involving 
products of the elastic rotations, compared to unity, in a consistent 
manner. 

Since the theory described in the paper which is the subject matter 
of this discussion also utilizes the approach whereby, "squares of 
bending slopes are neglected compared to one" and nevertheless 
achieves excellent agreement with the experimental results, it is clear 
that the superior agreement is due to the consistency of the theory. 
This statement is clarified further below. In references [1,3] the source 
of the inconsistency was due to the artificial classification of terms 
as linear terms, second-order terms, and third-order terms. Fur­
thermore, use of this classification as a basis for neglecting terms, 
instead of neglecting terms by applying the rule of "small strains and 
moderate rotations," was the source of the inaccuracies introduced 
in the theory derived in reference [3]. In reference [2] the systematic 
application of this rule was followed and various sets of equilibrium 
equations were obtained. 

As pointed out by Hodges reference [2] contains various sets of 
equilibrium equations which correspond to various stiffness ratios 
of the rod. Each of these sets of equilibrium equations is consistent 
within the framework of the assumption of "small strains and mod­
erate rotations." The experiments described in [1] which were the 
basis of the comparison between theory and experiment in the subject 
paper were performed on rods for which (EI^/GJ) and (I22/I33) were 
much larger than one. Therefore in order to compare with the ex­
perimental results the equilibrium equations corresponding to this 
situation have to be used. This situation could not be simulated by 
the equations in reference [3] because "third-order terms" were ne­
glected in violation of the "small strains and moderate rotations 
rule." 

Regarding the comment on "the nonself adjoint structural opera­
tor" it is not clear why Dr. Hodges expects to encounter such an op­
erator in such a nonlinear problem [2]. 

In his comment Hodges states that "An examination of the w 
equation (33b) in the subject paper reveals that in addition to linear 
and secondTdegree terms, several terms of third degree in deflections 
appear. . . . Although not stated in the subject paper, these third-
degree terms constitute the only difference between the equations 
of [1] and the subject paper. Thus the improved agreement reported 
in the subject paper must be due to the presence of those third degree 
terms and not to the reasons indicated in the paper." 

This statement is difficult to understand in view of the fact that 
a comparison of equations (33a-c) of the subject paper and equations 
(1) of [1], which takes only a few minutes, clearly shows additional 
differences for the equation for v and <t>- As a matter of fact Hodges 
makes a serious oversight by attributing the good agreement between 

theory and test to these terms in equations (33b). Even if these terms 
are neglected the agreement between theory and experiment would 
still be very good. As a matter of fact the terms which have escaped 
Hodges attention and which appear in equation (33c) for <j>, such as 
the term containing <j)U>^xx are the important reason for obtaining good 
agreement between theory and test. 

Hodges comment, in his last paragraph is even more difficult to 
comprehend. If according to his statement the theory which he has 
derived is applicable to cases where "722 and 733 are assumed to be of 
the same order of magnitude" why-did he perform the experiments 
on beams where these conditions were violated, i.e., 722/733 = 16? Is 
it reasonable to compare experimental results with a theory a priori 
known to be in violation of the conditions of the experiment, and 
what could be the potential value of such a comparison? 

Finally, it should be noted, that the versions of the equations of 
equilibrium derived in both references [2, 3] which have been used 
in rotodynamics applications, are very similar, and therefore they have 
produced almost identical results. 
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Closure to the Discussion by Kaza and Kvaternik. The dis­
cussion by Drs. Kaza and Kvaternik is quite strange mainly because, 
as will be shown below, it really has very little to do with the subject 
paper itself. Each of their comments are rebutted below. 

1 In equations (l)-(6) of their comment, Kaza and Kvaternik, 
present what they believe to be the "correct" expressions which in 
their view replace the "incorrect" expressions in reference [1]. First 
of all it should be noted that the subject paper, which is based on 
reference [1] does not use at all the chapter dealing with, derivation 
of the equations of equilibrium by the use of the principle of virtual 
work, which is the chapter of reference [1] in which Kaza and Kva­
ternik have identified what they believe to be "errors." Therefore, in 
essence it is completely immaterial whether that particular chapter 
of reference [1] is correct or not because the subject paper does not 
utilize it. However as far as Kaza and Kvaternik's comment goes, it 
should be pointed out that the derivations presented in reference [1], 
were carried out in detail using vector algebra. Therefore one would 
expect the incorrect expressions and the errors to be identified in a 
specific manner instead of presenting six equations which are true, 
simply because they say so! Similar arguments were employed in the 
middle ages to prove that the earth is flat. 

2 Since Kaza and Kvaternik have decided that derivation of the 
equations based on the principle of virtual work is incorrect they 
encounter a severe problem in attempting to explain how reference 
[1] shows complete agreement between the equations of equilibrium 
obtained by using the principle of virtual work and those obtained 
by using the Newtonian approach which was presented in the subject 
paper. So they state "The assumptions of small strains and moderate 
rotations were inconsistently applied in the development of the 
Newtonian equations," again this statement is made without any 
proof or explanation, and rests on the same nonexistent logical 
foundation as their previous statement. 

3 Kaza and Kvaternik continue their discussion by stating "More 
fundamentally, the assumption of moderate rotations is an inappro­
priate foundation for a rigorous derivation of the nonlinear aeroelastic 
equations of motion of helicopter and wind turbine blades," they base 
this opinion on the need to retain some inertia terms together with 
some second-order aerodynamic terms. Again consistent with their 
somewhat confused state of mind these terms are never explicitely 
identified. At this point the authors would like to note that the subject 
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paper deals exclusively with the structural aspects of a beam 
undergoing moderate deflections, and therefore their comments have 
no relevance to the subject under discussion, since aerodynamic and 
inertia terms are not involved in the derivation of a structural 
theory. 

4 Next Kaza and Kvaternik make a number of comments per­
taining to pretwist. First, it should be emphasized that the subject 
paper deals with a beam which had no pretwist, therefore again their 
discussion is somewhat irrelevant. However, we would like to refer 
them to a number of recent studies [2-4] and hope that these refer­
ences will clarify this item. 

Within the framework of their discussion Kaza and Kvaternik state, 
"The subject paper and [1], in emphasizing the same principles and 
guidelines, adds little to the contributions present in the reports and 
papers by Kaza and Kvaternik." While Kaza and Kvaternik are en­
titled to this, somewhat modest opinion, the consistency of their 
derivation are contested in reference [5]. Unfortunately, Kaza and 
Kvaternik have never used their equations to solve a structural 
problem for which experimental results are available. In view of the 

excellent agreement between theory and experiment exhibited in 
the subject paper, which is never mentioned by Kaza and Kvaternik 
in their discussion, it appears that they prefer to make unfounded 
claims, instead of applying the scientific method to a typical test 
case. 
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Nonlinear Oscillations. By Ali Hasan Nayfeh and Dean T. Mook. 
Wiley-Interscience. 1979. Pages 704. Price $35. 

REVIEWED BY P. HOLMES1 

I shall survey the contents of this book before making some general 
comments. I close with a few specific comments on the organization, 
clarity, and viewpoint of the book, and on some of the topics 
omitted. 

Chapter 1 constitutes an extended abstract of the entire work. The 
next four chapters cover conservative, nonconservative, externally, 
and parametrically excited single-degree-of-freedom oscillators. The 
authors then go on to treat re-degree-of-freedom systems, continuous 
systems, and traveling waves. Each chapter ends with a set of exer­
cises, many of which represent nontrivial pieces of research, and the 
70-page bibliography contains over 1500 references. The book 
therefore provides a comprehensive sampler of the nonlinear vibration 
problems which occur in engineering. 

This text lies firmly within the classical engineering tradition of 
nonlinear oscillations; the first half of the book is essentially a new 
version of such texts as those by Minorsky, Hayashi, or Stoker. 
However, this serves as an introduction to the authors' main aim of 
covering recent work on multidegree of freedom and continuous 
systems, which they do in Chapters 5-8. Topics such as the forced 
oscillations of rc-degree-of-freedom systems with quadratic and cubic 
nonlinearities and of finite strings, beams, and plates are covered, as 
well as longitudinal and transverse traveling waves in bars. In con­
nection with traveling waves, a nice presentation of the method of 
characteristics is given and shock fitting is discussed. The authors' 
recent work on modal saturation in coupled quadratic systems is also 
covered. 

The analytical methods described include phase plane analysis, and 
the Poincare-Lindstedt and multiple time-scale perturbation meth­
ods. The averaging technique is mentioned several times but dis­
missed somewhat cursorily. In the section on parametric oscillations, 
Hill's infinite determinant and the method of strained parameters 
are discussed. Numerical integration is not covered, but is appealed 
too frequently for comparison and "checking" perturbation solu­
tions; 

It is perhaps easiest to characterize the book by noting that the 
topics omitted include bifurcation theory and all the recent (past 
1960) developments in the qualitative theory of many dimensional 
dynamical systems due to Arnold, Moser, Smale, et al. In fact early 
developments in the theory of two-dimensional (free oscillator) sys­
tems were already well covered in the "Theory of Oscillators" by 
Andronov, Vitt, and Khaiken (1966) (now unfortunately out of print) 
and in the two books by Andronov, Leontovich, Gordon and Maier 
(1971,1973). These omissions are therefore not to be criticized, but 
do serve neatly to delineate the authors' viewpoint (although refer­
ences to Arnold's and Moser's work on Hamiltonian systems are in­
cluded and even recent work on inverse scattering and exact solutions 

1 Department of Theoretical and Applied Mechanics, Cornell University, Ithaca* 
N.Y. 14853. 

of integrable infinite dimensional systems, such as the Korteweg-
deVries equation, is mentioned). 

Each chapter begins with a brief literature survey and the text 
contains many physical examples; these and the frequent references 
to the figures enhance its clarity. The introductory chapter, since it 
abstracts from later material, is occasionally confusing and the figures 
are not always fully explained, but this is a small price to pay for an 
extended guide to the whole book. I have a few other minor com­
plaints: The passing reference to catastrophe theory (pp. 170-171) 
is merely confusing, since it does not even supply a useful reference 
to the application to Duffing's equation. The list of references, which 
pretends to completeness, is patchy—for instance much of the sig­
nificant recent work on galloping oscillations is omitted. But in spite 
of these and other minor carps, the book is generally very good and 
can be recommended to all engineers and applied mathematicians 
wishing for a comprehensive treatment of nonlinear vibrations from 
the viewpoint of perturbation theory. 

I wish to close with some more general comments on nonlinear os­
cillations, and in particular to point out some important features of 
nonlinear oscillations which are not amenable to straightforward 
analysis by perturbation methods. Following the work of Poincare 
and Birkhoff, neither of whom are referenced in this book, Smale 
showed in the early 60's that the two-dimensional (Poincare) map 
associated with a forced oscillator might be expected to contain infi­
nite sets of recurrent periodic and nonperiodic motions. Cartwright, 
Littlewood, and Levinson [1] had already found such motions in the 
forced van der Pol equation, but Smale provided the first coherent 
geometrical description [2]. Recently Levi [3] has extended this in 
detailed studies of forced van der Pol type relaxation oscillations, and 
the forced Duffing equation: 

x — x + x3 = t(f cos wt — <5x), e « 1, 

has also been studied [4]. In both cases, and in the weakly nonlinear 
Duffing equation: 

x + coo2* = ((—ax3 + 7 cos Qt), Q » con,e « 1, 

it can be shown that infinitely many bounded nonperiodic orbits and 
periodic orbits of arbitrarily high period exist. These orbits are densely 
intertwined in such a way that the system can exhibit extremely 
sensitive dependence on initial conditions and can also exhibit sus­
tained, nonperiodic or chaotic oscillations. Ueda and Hayashi had 
produced dramatic analog computer maps of such motions as early 
as 1973 [5]. 

These chaotic motions are unobtainable directly by perturbation 
or averaging analyses, although their presence can be inferred by 
careful use of those techniques. Any future text on nonlinear oscil­
lations which hopes to provide a comprehensive coverage should not 
ignore such deterministic chaos. 
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Vibrations of Elastic Structural Members. By Edward B. Magrab. 
Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands. 
1979. Pages 400. Price $60. 

REVIEWED BY A. LEISSA2 

The book is of broader scope than the title implies, for considerable 
attention is also devoted to general, dynamic response, as well as vi­
bratory response, and to wave propagation. The work is divided into 
chapters as follows: 

I Some Mathematical Preliminaries; 45 pages. 
II Vibrations of Strings; 27 pages. 
III Vibration of Membranes; 20 pages. 
IV Flexural Vibrations of Beams—Part I: Bernoulli-

Euler Theory; 78 pages. 
V Flexural Vibrations of Beams—Part II: Timoshenko 

Theory; 44 pages. 
VI Vibrations of Plates—Part I: Thin Plate Theory; 58 

pages. 
VII Vibrations of Plates—Part II. Mindlin—Timoshenko 

Theory; 36 pages. 
VIII Vibrations of Shells: General Theory for Shells of 

Revolution; 17 pages. 
IX Vibrations of Cylindrical Shells; 29 pages. 
X Vibrations of Spherical Shells; 19 pages. 

The first chapter presents an excellent discussion of orthogonal 
functions, a summary of their orthogonality properties and how they 
may be determined and utilized, as well as other mathematical topics 
frequently referred to later in the book. Subsequent chapters are 
typically each further divided into sections dealing with (and in this 
order): derivation of the governing differential equation and boundary 
conditions (from Hamilton's principle); interpretation of the 
boundary conditions; boundary conditions and generation of normal 
modes; wave propagation and dispersion; free vibrations for certain 
classical problems; and forced and aperiodic motion. 

Although no homework problems are given, the reviewer would 
definitely recommend the book for a first, graduate level course in 
dynamics of continuous, elastic systems, as well as to the reader der 
siring otherwise to broaden the scope of his/her understanding of the 
subject. The work is carefully done, and adequate reference to the 
voluminous literature of the field is given. 

Numerical Methods in Fluid Dynamics. Edited by H. J. Wirz and 
J. J. Smolderen. McGraw-Hill Book Co., Hightstown, N. J. 1979. 
Pages xiii-399. Price $35. 

REVIEWED BY E. M. MURMAN3 

This book is a publication of six lectures presented at the von 
Karman Institute. Each lecture was given by a noted authority in the 
field and represents an up-to-date description of the topic. The editing 
and printing of the book is of high quality. 

2 Professor of Engineering Mechanics, Ohio State University, Columbus, Ohio 
43210. 

3 Vice President, General Manager, Flow Research Company, 21414 68th 
Avenue South, Kent, Wash. 98031. 

Three of the chapters are on various aspects of transonic flow 
computations. A chapter by Jameson presents an excellent article on 
the computation of steady transonic flow problems. Starting from the 
small disturbance equation, the numerical methods are developed 
for the exact potential equation. Results for two and three-dimen­
sional flows are presented. The chapter by Ballhaus summarizes re­
cent progress in the computation of transonic flow for three-dimen­
sional shapes using the small disturbance theory and for unsteady 
transonic flow. Several design applications using numerical optimi­
zation are also presented. The chapter by Schmidt focuses on various 
approaches for computing wing body problems of interest to the 
aerodynamic designer. 

A chapter by Kraus discusses panel methods and illustrates the 
degree of complexity in the geometrical problems which can now be 
computed. A section is included on nonlinear vortex wake 
methods. 

Two chapters deal with computing viscous flows. At one end of the 
spectrum, incompressible laminar flows occurring in physiological 
problems are discussed by Mueller. The complicated geometries which 
must be treated are of primary concern in this work. Mueller notes 
that for this speed regime, numerical computations are perhaps easier 
than experiments. The other chapter by Belotserkovskii summarizes 
several areas of high speed viscous flow. 

In summary the book appears to be a valuable addition to the ar­
chival literature in this area. 

High Velocity Deformation of Solids. Edited by K. Kawata and 
J. Shioiri. Springer-Verlag, Berlin, Heidelberg, New York. 1978. 
Pages xviii-452. Price $42.90. 

REVIEWED BY T. NICHOLAS4 

The high velocity deformation of solids has been the subject of 
periodic national and international conferences and symposia over 
the past several decades. The most recent symposium in this spe­
cialized technical area was held in Tokyo, Japan, in Aug. 1977. The 
papers presented at this IUTAM sponsored symposium are presented 
in a single volume and cover the subjects of theory and experiment, 
micro, and macromechanisms, and applications to a variety of ma­
terials. The emphasis, throughout, is on material behavior rather than 
on structural response. Works from a number of different countries 
are represented and provide a global view of the state-of-the-art in 
this subject area. As such, the subject book is one of the premiere 
references in the field of impact mechanics. For the U.S.A. audience, 
it is one of the rare opportunities to learn of the extent and nature of 
work being carried out in the host country, Japan, as well as Great 
Britain, France, USSR, Poland, and other countries. These works are 
normally not readily available to the English speaking audience. 

The book consists of 39 papers ranging in size from 4 one page 
summaries to a comprehensive treatment of ricochet of spherical 
ended projectiles by Johnson and Daneshi. Drucker presents a clever 
approximate solution to spall and cratering problems that are oth­
erwise mathematically intractable. There is a detailed study of friction 
and inertia in the Hopkinson bar by Klepaczko and Malinowski. 
Hayashi and Tanimoto present some interesting dynamic biaxial data 
on aluminum. And Lindholm discusses deformation maps at high 
dislocation velocity. In total, 24 of the papers represent invited pre­
sentations by experts from around the world. Space limitations pre­
clude extensive detail in most papers and necessitate very small fig­
ures in some instances. However, this collection of papers is extremely 
comprehensive in scope and represents the works of the top people 
both here and abroad as a scan of the table of contents will quickly 
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order): derivation of the governing differential equation and boundary 
conditions (from Hamilton's principle); interpretation of the 
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ERRATU 
Erratum on "Amplitude-Frequency Characteristics of Large- 

Amplitude Vibrations of Sandwich Plates," B. M. Karmakar, puh- 
lished in the March, 1979, issue of the ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 46, pp. 230-231. 

The first line in the Introduction of the foregoing Note should 
read: 

Yu [I] has treated nonlinear vibrations of sandwich plates and the 
equations derived by him include the transverse shear effect. 

The next to the last line in the sect.ion, "Results and Discussion," 
should read: 

The present study shows that Berger's approximate method can 
be applied to dynamic cases of sandwich plates. 
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