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Introduction v

Axisymmetric forced-convection laminar boundary layers exist for
both external flows (over a swimming body) and internal flows (pipe
flow), and are important for various engineering applications. Ex-
tensive studies have been conducted also due to their fundamental
importance in laminar flow theory [1]; in particular, heating seems
to be an effective way to stabilize the water boundary layer and to
delay the growth of Tollmien-Schlichting instability waves [2].

The effects of buoyancy-induced secondary flow, which destroys
the axisymmetry of the laminar boundary layer over an axisymmetric
body (or in a circular pipe), has rarely been studied due to the complex
three-dimensional flow. Some perturbation solutions have been ob-
tained for both external flow (longitudinal cylinders or cones) [3, 4]
and internal flow (pipe flow) [1]. Although the perturbation solutions
are valid only in a narrow region close to the leading edge of an axi-
symmetric body (or the entrance of a pipe), the results indicate that
the classical heat-transfer correlation and the flow velocity distri-
butions, which do not consider the asymmetric secondary-flow effect,
can be in error.

The buoyancy effect on the development of the boundary layer
predicted by the perturbation method is always symmetric or an-
tisymmetric with respect to ¢ = 90° [5]. This kind of simple three-
dimensional flow exists only in the narrow region close to the leading

Contributed by the Applied Mechanics Division for publication in the
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forces. The numerical results clearly describe the boundary-layer development along
heated cones of different cone angles as well as the heat transfer rate. Boundary-layer sta-
bility is briefly discussed in terms of the boundary-layer shape factor.

edge of an axisymmetric body (or the entrance of pipe). A solution
valid downstream of this region, where the secondary flow cannot be
treated as a higher-order effect, is needed for practical applica-
tions.

A recent finite-difference solution of cylinder flow reveals that the
three-dimensional boundary layer develops downstream in a way
quite different than predicted by the perturbation solution. In this
paper the three-dimensional boundary layer along a cone, whose
surface is heated under the condition of constant wall heat flux, is
considered. A perturbation analysis is performed to determine the
relevant coordinate scales as well as the magnitude of the velocity
scales. A finite-difference method is then used to solve the three-
dimensional boundary-layer flow. The physical model considered is
a semi-infinite cone which is aligned with its axis parallel to a uniform
free stream and normal to the direction of gravity. This closely models
the front part of an axisymmetric body with a sharp nose tip (see Fig.
1). The free stream is assumed to have a velocity u« and temperature
Tw. Since the change in the fluid density is usually small compared
with the fluid density, the Boussinesq approximation is adopted to
simplify the analysis.

The perturbation solution indicates that the buoyancy-effect am-
plifies downstream for cones whose half angle, «, is less than 70°; for
the cone whose angle is larger than 70°, the buoyancy effect on the
development of the axial velocity decreases downstream. This suggests
that the perturbation solution is valid uniformly for the flow over
cones of a > 70°. In this paper, we concentrate on the boundary-layer
flow which experiences an increasing bouyancy effect downstream.
Two cone angles, & = 10° and 30°, are selected to demonstrate the
difference of the flow development due to the interaction of the axial
pressure gradient and the buoyancy forces.

The numerical results show that the perturbation solution is valid
only when ¥ < 0.1 1/e2/3-5n for a cone angle is smaller than 70°, The

' SEPTEMBER 1980, VOL. 47 / 467
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Boundary Layer
Streamline

Fig. 1

Physical model and coordinates

physical meanings of [, ¢, and n are explained in equations (2) and (3).
The development of the boundary layer is influenced by two com-
ponents of the buoyancy force. One is parallel to the cone surface along
the axial direction. This force acts as a favorable body force along the
upper half of the cone and as an unfavorable body force along the
lower part. Since its magnitude is proportional to sin « it is important
for the flow past a cone of moderate cone angle, say @ = 30°. The other
component of the buoyancy force is perpendicular to the free stream.
This force drives the secondary flow and is important for small-angle
cone flow, say o = 10°. Due to the competition of these two compo-
nents of the buoyancy force, the boundary-layer development along

a heated cone is quite different for cones of different angles. Moreover,

the heat transfer characteristics of the three-dimensional boundary
layer differ considerably from those of a two-dimensional forced-
convection boundary layer.

Analysis

The flow past a heated cone can be described by the Boussinesq
approximation of the Navier-Stokes equations. In the coordinates
shown in Fig. 1, the governing equations are as follows:

LD, o,
ox Ay ¢
_m bu vomw D% . —1dP
o —— ——gina = ——
ox ay Fop F Po OX
o]
—(gBAT) cos ¢ sin o + - {_ l——)l
oy OoX
16 192
[ . :l_”)-} (1)
b¢ FTogp T OX
_oU bv vbu
o=
oz oy Foo
+(usina+wcosa)ﬁ_;1__b_l_f
T T P O
10 1 0i0 P}
+(g6AT)squ+y{ _[:__(.r.'iz~:_@ +2
oy lr oy rFogl 0OX
19 10
[m (ru)_: vl (10)
r ox F o¢
ow ol oW T2 1P
L_t—li—)+w—L_U+2—w—-U—cosq5——-——(gﬂAT)coschosa
ox Ay To¢p r P OY
o 1ot o o ow . O
:[——:[—E——‘(‘r_y‘)]+—:[7(—b_v——?)} (1d)
Flog T |09 oy x| \ox 9y
_dT _oT wvoT 22T 2T 162 .
U—+0_—+-—=k ot o+ (le)
OF dy T og ox2  oy? r26¢

Inviscid flow past a heated cone behaves identically to that past an
unheated cone since no heat is transferred outside the thermal
boundary layer. The fluid temperature outside the thermal boundary

468 / VOL. 47, SEPTEMBER 1980

is uniform and equals the free-stream temperature. The flow is axi-
symmetric with respect to the cone axis, see Fig. 1. The solution of the
inviscid flow (see [6]) along the cone surface, which is required to
evaluate the pressure gradient of the boundary-layer equations, is

2

where u . is the undisturbed free-stream velocity; and n, (the value
of which can be found from [6]) is related to the cone angle.

Upstream Solution. Equations (1) are simplified for the
boundary layer by introducing the following dimensionless vari-
ables:

U=UwX"?

y1=JF(Re/3/l,

r =7/l =x;sin @ + y;/Rel’2cos & (coordinates)

X1 =f/l,

Uy = 0/te, U1=0/le,! (velocities
w1 = w{Rel?)/u.

0, = k(Re2)/lq,)(T ~ Tw) (temperature)
Re = (ul)/v (Reynolds No.)
Gr = (Bgl* qu)/(kv?) (Grashof No.)
P1 =Pp/p=us? (pressure)
Pr = v/ (Prandtl No.)

k =k/pocp; (thermal diffusivity)
" ¢ = (Gr/Reb? (3)

The wall heat flux, q,,, is assumed constant in this work. { is taken to
be the distance from the cone apex to the location where the inviscid
velocity along the cone surface reaches u.. The normal coordinate,
y, is scaled to reflect that the thickness of the boundary layer is pro-
portional to 1/Rel’2,

In terms of the dimensionless variables defined in equatlons 3),
equations (1) become

12 Fe] 1 9
LoGaw) ow, 1 201, (4a)
x31 Ox1 oy1 xi1sina 0¢
ouy ouq v dur vi?
ur—tw Tk e
ox1 Oy xi18inw 0¢ %1
oP 02
~ 2 i cos dsina+—0  (4b)
ox1 by12
u1%+ bvl v.l %_I_ulvl
ox1 byl x1sin o 0¢ X1
-1 P
= ——+6015md)+——— (4c)
x1sin @ d¢ Ay
oP
= = 0(1/Re”2) " (4d)
oy1 :
" of o8 20, 1 0% o
u o gy T 071 (46)
ax1 dy1 xisina a¢ Proy;?

after neglecting smaller-order terms.

Equation (4d) states that the variation of the pressure across the
thin boundary layer is a higher-order effect. Therefore, the pressure
gradients in equations (4b) and (4¢) can be evaluated from equation
(2). They are

AP
—_—= _nx12n—1

ox 1

€ represents the ratio of the buoyancy force to the viscous force
inside the boundary layer. Its value depends on the fluid properties,
the flow speed, and the heat transfer rate; it is usually quite small for
the practical problems in which we are interested. In this paper, we
will restrict attention to the case where ¢ is small. From equations (4b)
and (4¢), one can conclude that the buoyancy, the driving force to
cause the asymmetric flow, can be treated as a perturbation quantity
if € is small. The advantage of this is quite obvious. The zeroth-order

P, )
¢

and
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solution of equations (4), without considering the buoyancy effect,
is simply the axisymmetric cone flow for forced convection; and a
similarity solution exists for such a flow. Since the perturbation
equations of higher orders are linear, their solutions should be ex-
pressible in terms of a similarity variable. This is true for the problem
studied here.

The velocities and temperature can be expressed in terms of the
stream functions and the temperature functions as

ui=x" [fo/ + ex[3—5n)/2} cT)s ¢ Fy+.. } (6a)
sin &
v1 = ex [B—32 P ging + ... 6b)
2 1-n n+3
= [(n“l)/2] L
w x
1 \/;+31A [(2 nfo 5 fo)
(-5my2) )L ) cos §
+ex1‘ 1]F1 +(2n—3)F1—F2) " +... (GC)
sin o
b= 4/ 2 la=nl [50 T Te Rk ] (6d)
n+3 sin a

where the functions fo, Fq, F, 50, and G depend on 7 only; and 5 =
y1 V] + 3)/2] x1°~1 is the similarity variable. The ordinary dif-
ferential equations which govern the functions fo, F1, F5, 50, and G
can be obtained by substituting equations (5) and (6) into equations
(4), and then separating the terms of equal order in e. They are

fo” +fofo” + [2n/(n+3)] (1 - fe>) = 0 (7a)
Bo” + Pr{fofy + [(n — 1)/(n + 3)] fo' O] = 0, (76)
and .
4~ 2n) - 6—4n
F///+ F//__ IFI_I_ //F
1”7 +foFy *“n+3f01 n+3fo 1
+
+fo" Fa= =4/~ : S aro (80)
6—4n n+3-
Fo” + fo Fy” —  Fy = o, 8b
2” + fo Fa 13 fo' Fy 5 0o (8b)
6n —4 1= -
1Pr G” + fo G’ + ———f¢/ G = —— Fy' iy
) n+3
—(3=2n) F16y — Fs0y (8c)
The associated boundary conditions are
Fo(0) = fo/'(0) = F1(0) = F1/(0) = F3(0) = F2'(0) = 0
(no-slip condition); (%)
8y’ 0) =—-1, G(0)=0 (constant wall heat flux); (9b)
fo' (@) =1, Fy (o) =Fy (2) =8p(<) = G(=) =0
(match with the inviscid solution). (9¢)

The term fo in equation (7a) simply describes the flow past an un-
heated cone, as given by Mangler. g in equation (7b), is the forced-
convection temperature distribution with the constant wall heat flux
condition. Fy- from equation (8a) represents the change of the axial
boundary layer due to the buoyancy force as well as to the secondary
flow, F'3 from equation (8b). G, from equation {8¢), represents the
temperature redistribution due to the free convection. The values of
the functions fo, F'1, F2,0p, and G can be obtained in a straightforward
manner by numerically integrating equations (7) and (8) with the
boundary conditions given by equations (9). However, equations (6)
" reveal that the perturbation solution is valid only when ex[(8—57)/2]
< 1. In other words, the originally small asymmetric flow grows
downstream and cannot be treated as a perturbed quantity when x4
> l2/6n=3)] with n < 0.6. The restriction of n < 0.6 corresponds to
cones whose half angle is approximately smaller than 70°. For n > 0.6
(cone whose half angle is larger than 70°) the flow far away from the
apex will eventually approach the axisymmetric flow since the in-
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fluence of the buoyancy force is overwhelmed by the favorable pres-
sure gradient along the cone surface.

In this paper, we consider only small-angle cones, i.e., n < 0.6. Here,
the buoyancy force becomes one of the dominant forces when x is not
small. Also, the perturbation solution (6) can be applied only in the
region close to the cone apex. In the following, we will construct a
solution which is not only valid for small ¥ (approximately 0(!)) but
which can also be applied farther downstream. Therefore, we do not
present the upstream solutions (6) in this paper.

Downstream Solutions. The downstream dimensionless vari-
ables can readily be found from equations (6). They are

b y(Re)l/2

2= e’ Y2 Jdn-Die—sm] ° (coordinates); (10a)
= u . 1]
= U l(-2m)/(3—5n)]’ v2 = U €l(=2n)/(3-5n))’
7(Re)1/2 N
we = D/ (velocities); (108)
Py = S — ( ); 10
2= PR G5’ pressure),; (10¢)
k(Re)1/2 :
02 ®e) (T —T.); (temperature)  (10d)

" Iqw ¢l D/G=5m]

From now on, all the variables are defined in the downstream coor-
dinates.

In terms of the dimensionless variables in equations (10), equations
(1), after neglecting the smaller-order terms, become

10 I} 1 o
1 olequp) Qw1 vz (11a)
X9 OxXg dye Xxosina d¢
bug oug Ug bu2 1)22
ug — T Wy — T
dxo dys xgosina d¢p X2
22
= nxe27~1 — @, cos ¢ sin a + Juz (11d)
oy2?
2 o Fe! UsD . %
Uy =22 wz_”_z _”_2___& 222 g sing + 2 (11c)
oxg dys xisina Q¢ 9 dy2?
o b o8, 1 0%,
u2—2+w2—2+ y_2 2227 (11d)
Axo Oyz x2sina 3¢ Proys?

The only difference between equations (4) and (11) is that the
buoyancy forces in equations (11) are 0(1). This indicates that the
buoyancy forces are as important as the other forces; and the inter-
action of the axial boundary layer flow and the secondary flow be-
comes a dominant effect.

The upstream solutions (6) can be rewritten in the downstream
coordinates. They are

ug = xn [fo’ + gl S50y ] (124)
sin o
ve=xl@-32A Forsing +... (12b)
1—-n n+3
= xltn=1)721 ( ' — ) 4 x,G-6n)/2]
we " [ nfo 5 fo 2
1-n cos ¢
Xi——qFy/+ 2n—3)F,—Fop—+...| (12¢)
2 “§sin o
2 — cos fl .
0y = x[A-m/2 |§y = xl@-60)/2 G ——— 4 | (12d)
n+3 sin a
where
n+3 n+3
11=y2\/ 2 Xg "=y1\/ 2 x" 1 (12¢)

Comiparison of equations (4) and (11) shows that the solution of
equations (4) is included in the solution of equations (11). Equations
(12) provide another check to insure that the solution of equations
(11) is uniformly valid from the cone apex to the downstream region
as long as the transverse curvature can be neglected.
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Numerical Computation
Equations (11) represent a three-dimensional boundary layer in-
fluenced by buoyancy forces. The sixth term of equation (11b) is the
component of the buoyancy force which is parallel to the cone surface.
This force behaves as a favorable body force along the upper half of
the cone, and as an unfavorable body force along the lower half of the
cone. It can stabilize the flow along the upper half of the cone and
destabilize the flow along the lower half. The magnitude of this force
_is proportional to sin . For a small-angle cone, its effect is weak;
however, for a large-angle cone, it has a significant effect on the de-
velopment of the boundary layer, and can trigger boundary-layer
separation at a sufficient distance downstream from the cone apex.
Another component of the buoyancy force, the fifth term of equa-
tion (11¢), is along the circumferential direction and is the driving
force for secondary flows. This force seems to have a stronger influence
on the development of the boundary layer for cones of small-angle.
An analytical solution of equations (11) is unlikely to be found; and
a finite-difference method is used here. Parabolic coordinates are
probably most convenient for solving equations (11) numerically (see
Smith and Clutter, [7] Dwyer, [8]). Also, from equations (12), one can
see the xs-dependence of the boundary-layer development. Another
transformation will be introduced in order to reduce the variation of
the boundary-layer growth downstream and to reduce the possibility
of numerical instability caused by the fast developing boundary
layer. '
The velocities are transformed as follows:

ug = x9 "ug
Uvg = x99
w3 = +/[(n + 3)/2] xol(=n)2 1o

Then, equations (11) in the parabolic coordinates (xg, 7, ¢) become

(13)

ou -1 dug Oow 1 v s
B2t (L4 n)ug + = g2 g 22y —— B g (144)
dxg 2 on on  sina 0¢
a —_
X9 Lt3ﬂ + (nu32 - U32) + (I,U3 + L 17U3)
ax2
% Us % =pn — x21 2n
on  sina ¢
. + 302 ‘
X 0 cos ¢ sin o + n 43 (14b)
2 o |
ov -1
x2u3—3 + (1 4+ n)usvsz + (w3 + z nug)
ox2
Pe} Pe} + 302
><—v—§+i—£)§—x21 ~2n § gin ¢ + L2228 (14c)
o1 sina d¢ on?
17} -1 of vg o 1 n+30%
xzua—+(w3+n—nu3) 22272 (4d)
dxs on sinadp Pr 2 on?

Boundary Conditions. The local boundary conditions that are
required to solve equations (14) are

Atn =0, ug =v3=ws (no-slip condition); (15a)
of
b_ = —1 (constant wall heat ﬂux) (15b)
E L
Asgn—> =, ug—1, vandf—0
(matching with the free stream) (15¢)
Along the symmetry line, ¢ = 0°, the conditions are
dug [
pg=0, “2="2o (16)
¢ ¢ bd)

Values of the dependent variables are required along ¢ = 0° to start
the numerical computation at each xg-station. The equations that
govern the flow along the symmetry line can be obtained by taking
the limit of equations (14) according to equation (16); this gives
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»Equations (16) hold at ¢ = 0, and can be solved with the conditions

given by equations (15) first at any particular xo-station. Then this
solution can be used as the initial condition to start the computation
of equations (14) in the azimuthal direction.

The upstream conditions, equations (12), can be applied at a small
x2 (say, xo < 0.1) as the initial conditions of equations (14). But since
the upstream solutions, equations (12), are included in the down-
stream solutxon of equatlons (14), it is more convenient to start
computation at the cone apex (x3 — 0). The Velocn;y profﬂes and the
temperature distribution at x2 — 0 can be obtained by solving the
limiting forms of equation (14) as x2 — 0. They are
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The value of vz which satisfies equations (15) and (18¢) is zero. This
indicates that the flow at the cone apex is axisymmetric. In fact, the
solution of equations (18) is simply a forced-convection cone flow with
the uniform wall heat flux which is represented by the functions of
fo and @ in equations (12). In other words, fo describes the boundary
layer along an unheated cone. Equations (14), (16), and (17) are
discretized by the following difference approximation. First-order
derivatives in the x2 and ¢-directions are approximated by forward
differences; and in the y-direction both first and second-order de-
rivatives are replaced by central differences. The scheme is fully im-
plicit; and Picard iteration is used to solve the resulting nonlinear
algebraic equations.

The numerical experiments show that the convergence to two to
three significant digits can be achieved by taking An = 0.05, A¢ =
/186, and Axs = 0.1, for 292 0.2. However, near the cone apex, a finer
x9-grid is required. For x5 < 0.2, Axa = 0.005 is used; for x5 = 0.2, Axy
is gradually increased to 0.1. The details of the numerical technique
can be found in Yao, et al. (8).

Results and Discussion

Buoyancy forces influence boundary-layer development along a
heated cone, and this influence is cumulative. Near the cone apex
there is little effect on the boundary layer due to buoyancy; and the
flow is nearly axisymmetric. But further downstream buoyancy effects
begin to accumulate, and the flow becomes asymmetric.

The upstream solution, equations (6), indicates that asymmetry
of the axial velocity develops downstream proportional to x4(3-57)/2,
and the-secondary velocity increases as x5!3/2(1—n) This shows that
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Fig. 2 Axial velocity, uz at x = 1.0, Pr =1

the buoyancy effect on the axial velocity increases downstream when
n is smaller than 0.6.

A comparison of the first two terms of equation (6a) shows that the
initial small buoyancy forces become a dominant effect at x ~ I/
el2/3=5n)] when n < 0.6. This suggests that the upstream solution is
only valid for small x5 when n < 0.6.

The buoyancy forces affect the boundary-layer development in two
ways. First is the effect of the component of the buoyancy force par-
allel to the cone surface. This force directly affects the development
of the axial boundary layer and seems important for a large-angle cone
since its magnitude depends on sin «. @ = 30° is selected to demon-
strate its effect. -

The component of the buoyancy force normal to the free stream
drives the secondary boundary-layer flow. The axial boundary layer
develops asymmetrically to accommodate the development of the
secondary boundary layer, i.e., in order to satisfy mass conservation.
This effect seems important for a small-angle cone. = 10° is chosen
to illuminate the details of this case.

The axial velocity profile at x3 = 0 for & = 10° is plotted in Fig. 2.
Since the flow is buoyancy free at the cone apex, the axial velocity is
axisymmetric. Downstream from the cone apex, e.g., x2 = 1 (see Fig.
2), the asymmetry of the axial velocity has developed. The data show
that for Pr = 1, the downstream velocity profile becomes fuller around
most of the cone, except in a small region close to the top, where the
profile actually is less full. This results from the secondary flow
sucking the fluid, and driving it circumferentially toward the top. The
boundary layer is thinned on the bottom of the cone (¢ = 0°); and this
causes a fuller axial velocity profile. The fluid is then accumulated
on the top of the cone, causing thickening of the boundary layer, and
a less full axial velocity profile. The flow development for Pr = 10 is
‘similar to that for Pr = 1, but smaller in magnitude for any prescribed
x-distance. Therefore, the results of Pr = 10 are now shown in Fig.
2.

The displacement thickness for a three-dimensional boundary layer
is not easy to be defined. For a cone flow, the maximum azimuthal
velocity is about 20 percent of the maximumn axial velocity. The dis-
placement thickness, 61, is approximately evaluated by ignoring the

azimuthal velocity and is estimated as
81 =1 X en—1/2-bn  Rg=05 X x,l-n/2 X §, (19a)

where

by = fo " (L= Us) dy (19b)
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Fig. 3 Displacement thickness

The values of 0; are given in Fig. 3 for Pr = 1, and 10. For an unheated
cone flow, 61 is constant and its value depends on the cone angle. For
the flow past a heated cone, d; varies along the cone surface due to the
contribution of the buoyancy forces. The variation of §; provides an
information of the thickness distribution of the three-dimensional

" boundary layer. Fig. 3 clearly indicates that the boundary layer is

thickened on the top of the cone and thinned over the remainder of
the cone surface. For Pr = 10, the houndary layer develops at a slower
rate that for Pr = 1. The influence of the buoyancy forces still exists,
but it takes a greater distance to reveal itself. The surprising result
for Pr = 1 is that the boundary layer reaches it thickest point at x =
1.18; then its thickness starts to decrease downstream. This may be
due to the thinning of the boundary layer over the rest of the cone,
which pulls the boundary layer on the top of the cone thin as the fluid
flows further downstream. Also, this may be partially due to the fa-
vorable axial pressure gradient. No flow separation is found for o =
10°, The computation is stopped at x2 = 2 which is too short a distance
to observe a similar development for Pr = 10.

For a large-angle cone, say a = 30°, the boundary layer develops
in a quite different way. The axial velocity profiles, shown in Fig. 2,
become fuller around most of the cone than at the x5 = 0, except along
the bottom of the cone, where they are less full. This indicates that
the component of the axial buoyancy force parallel to the cone surface,

/ functions as a favorable body force along the upper half of the cone
and as an unfavorable body force along the lower part of the cone. For
a large-angle cone, the buoyancy force along the axial direction has
a stronger-influence on the development of the axial boundary layer
than does the the developing secondary boundary-layer flow.
Therefore, the axial velocities develop in an opposite way for a
large-angle cone from that for a small-angle cone. As would be ex-
pected, the displacement thickness of the boundary-layer for « = 30°
also develops in a way opposite that for & = 10°. The boundary layer
.is thinned along the upper surface of the cone and is thickened along
the lower surface of the cone.

The numerical scheme fails to converge at x2 = 1.67 on the bottom
of the cone (¢ = 0°). The reason for this failure is not known with
certainty, but may simply indicate that there is no solution (or pos-
sibly many solutions) to the governing equations from this point on.
Five iterations, or fewer are required at most stations in order to ob-
tain a converged solution; however, at xg = 1.67 and ¢ = 0°, conver-
gence is not achieved, even for 50 iterations. Although the uncon-
verged results behave smoothly and seem to indicate a reverse flow,
we do not believe they represent the physical solution. Since the

" boundary layer does grow thick along ¢ = 0° when the buoyancy force
acts unfavorably on the boundary layer, the failure of the numerical
solution may indicate flow separation. But it is well known that the
boundary-layer equations cannot describe separated flow; hence, the
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numerical results become meaningless at the point of separation, and
beyond.

. Equation (12b) shows that the circumferential velocity varies with

"sin ¢. v equals zero at ¢ = 0°, reaches its maximum value at ¢ = 90°,
and then decreases to zero at ¢ = 180°. In the region close to the cone
apex, v is symmetric with respect to ¢ = 90°. Further downstream,
the maximum vs does not occur at ¢ = 90°. This explains why the
boundary layer is thinned over most of the cone surface. Typical v
profiles are given in Fig. 4. The magnitude of v3 is larger for a large-

angle cone than for a small-angle cone. Also, its magnitude varies

inversely with the Prandtl number. For Pr = 10, the difference in v
between the ¢ = 10° and 30° cases is too small to be shown on the scale
of Fig. 4. :

The axial shear stress, 75, normalized by its value at x2 = 0, is given
in Fig. 5 for Pr = 1. The distribution of the shear stress for Pr = 10 is
similar to that for Pr = 1, but smaller in magnitude as would be ex-
pected from the earlier discussion. Therefore, it is not shown in Fig.
5.

For a = 10°, the axial shear stress increases along the bottom of the
cone and decreases along the top of the cone. According to the up-
stream solution (6), the variation of 7., along the ¢-direction is pro-
portional to cos ¢, and is antisymmetric with respect to ¢ = 90°. Nu-
merical results indicate that the antisymmetry of 7., with respect to
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Fig. 6(a) Shear stress ratio at x, = 1; (b) shear stress ratio at x; = 2

¢ = 90° holds only for small xs. Instead, the value of 7.y along ¢ = 0°
becomes larger than that along ¢ = 90° at x3 = 0.52. A careful com-
parison of 7., along ¢ = 0°, 90°, and 180° indicates that the an-
tisymmetry of 7., with respect to ¢ = 90° starts to deviate fairly close
to the cone apex. This implies that the upstream solution can, at most,
be applied for x <0.1.

The axial shear stress along o = 180° drops for x < 1.18 and then
starts to increase at a fast rate. This is due to the thinning boundary
layer downstream of 2 = 1.18.

The behavior of the axial shear stress for & = 30° is much simpler -
than that for « = 10°. The shear stress increases downstream along
¢ = 180° due to the favorable buoyancy force. The upstream solution
predicts that 7., along ¢ = 90° is not affected by the buoyancy force.
The numerical solution, however, shows its value increases slightly
downstream. 7., decreases drastically downstream along ¢ = 0° due
to the unfavorable buoyancy force; its value reaches zero at x = 1.67.
This suggests that the local boundary layer may separate from the wall
at this point, as conjectured in the foregoing.

The circumferential variation of 7, is shown in Fig. 6 for xo = 1 and
2. For a = 30°, the minimum 7,, always occurs along the bottom of
the cone. Its value monotonically increases and reaches its maximum
at the top of the cone. For & = 10°, the maximum 7,, does not nec-
essarily occur at a fixed ¢. For Pr = 1, at x5 = 1, the maximum 7, is
at ¢ ~ 100°; at x5 = 2, the maximum 7, occurs at ¢ = 180°. Evidently,
the changing patterns of the axial shear stress distribution are due
to the competition of the requirement of mass conservation due to the
developing secondary boundary layer, the axial component of the
buoyancy force, and the axial pressure gradient.

If the flow does separate along the bottom of the cone with o = 30°
and Pr = 1, the shear stress shown at x2 = 2 in Fig. 6 may be used to
determine the size of the separated flow region. However, the sepa-
ration of the boundary layer hinted at by the numerical results reveals
need for further study.

Typical temperature distributions at xg = 1 for cone angles o = 10°
and 30° are shown in Fig. 7. For o = 10°, the hottest point occurs along
the cone top; the coldest point is along the cone bottom. For o = 30°,
the temperature distribution is the other way around. The circum-
ferential changes in temperature at x3 = 1 for Pr = 1 are too small to
be shown on the scale of Fig. 7. But an asymmetric temperature dis-
tribution does develop downstream, and can be clearly shown as in
Fig. 8. It is interesting to note that the degree of asymmetry of the wall
temperature for o = 30° is smaller than that of @ = 10°. Another in-
teresting result is that the temperature along the bottom of the 30°
cone develops smoothly. No drastic rising of the temperature at x»
= 1.67 which one may expect because of the flow separation. We do
not know how to explain this phenomenon; however, we guess that
a circulating flow may be developed in the neighborhood of x2 = 1.67
due to the three-dimensional flow separation. The circulating flow
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acts as a good agency to transfer heat between the cone surface and
the free stream. It should be noted that the solution broke down at
xg = 1.67.

The circumferential variation of the wall temperature is given in
Fig. 9 for xa = 1 and x5 = 2, respectively. For @ = 10°, the temperature
is fairly constant for.¢ < 90°, but monotonically increases over the
upper surface of the cone. The circumferential temperature variation
for = 30° is relatively small compared with that for o = 10°. At x5
=2 for Pr =1 and a = 30°, the wall temperature does show a rising
tendency around from ¢ = 40° to ¢ = 0°. Since the numerical solution
is not valid between ¢ = 0° and 40°, no definite conclusion can be
made at the present time.

The axial velocity profile is substantially distorted by free con-
vection, and, as a result, the huoyancy forces will have a strong effect
on the boundary-layer stability. The detail structure of the bound-

~ary-layer transition is beyond the scope of this paper; instead, the
'shape factor, H, the ratio of the displacement thickness to the mo-
mentum thickness, is plotted in Figs. 10 and 11 to show the relative
importance of the buoyancy forces on the boundary-layer transi-
tion. '
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The momentum thickness is approximately estimated as

82 = | X en—1/3=8n % Re=05 X xol~n/2 X §,, (20a)

where

b= { " Us(1~ Us) ey (200)

The axial variation of H is given in Fig. 10. For « = 10° and Pr =
1, H decreases along the bottom of the cone and then gradually in-
creases. At xo = 0.9, the value of H becomes larger than its value at
x2 = 0. In other words, the buoyancy forces stabilize the boundary
layer along the bottom of the cone up to x2 = 0.9. Downstream from
x2 = 0.9, the buoyancy forces destabilize the boundary layer. Along
the top of the cone, the layer is less stable up to x2 ~ 0.67, then the
buoyancy forces stabilize the boundary layer further downstream.
Along ¢ = 90°, the buoyancy forces always stabilize the boundary
layer. For Pr = 10, the variations of H are smaller to those of Pr =1
for x2 < 0.4; therefore, they are not shown in Fig. 10.

For o = 30°, the buoyancy forces always stabilize the boundary
layer along the top of the cone and destabilize it along the bottom. The
value of H is monotonically decreasing from the bottom of the cone
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to the top. For o = 10°, the minimum H does not always occur at ei-
ther the top or the bottom of the cone. For Pr = 1, the most stable flow
is at ¢ = 130°; for Pr = 10, the minimum H occurs about ¢ = 90°.

We can conclude from Fig. 11 that a flow transition study without
considering buoyancy effects can be.quite misleading. Further, the
circumferential variation of H depends on the cone angle as well as
the heating rate. This creates further doubts about the reliability of
predictions of flow transition on a heated axisymmetric body based
on two-dimensional flow geometry.
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The Null Dynamical Effect, and
Some Frequency Spectra, of
Resonant Inertial Pressure

Waves in a Rapidly Rotating,
Right Circular, Sectored Cylinder

A

It is shown that inertial waves in the form of standing asymmetrical pressure waves can
exist in an incompressible liquid in a rotating sectored cylinder in a rigid body (e.g., a top
or a missile) executing a small amplitude gyroscopic motion about its center of mass.
Some of the frequency spectra of these waves are presented along with the result that sec-
toring the cylinder into any number of equal sectors results in eliminating the destabiliz-
ing effect of these waves (i.e., the amplitude growth of the motion of the rigid container)
when there is a “Stewartson’ resonance between the frequency of one of the inertial
modes and the frequency of the nutational component of the motion of the container. Ex-
perimental results are in reasonable agreement with the theory.

1 Introduction

There are a number of excellent analyses of the problem of fluid
motion in a closed, rapidly rotating container undergoing a forced
motion (see Greenspan [1] and his very extensive bibliography). In
most of these, however, the problem considered is: Given the forced
motion of the container, find the motion of the fluid. The extension
of these problems wherein one, having found the motion of the fluid,
then attempts to determine the effect of that motion on the motion
of the container, does not seem to have such an extensive bibliography.
In fact, when the problem is further specialized to that of determining
the response of the container to the resonant inertial oscillations
(Greenspan [1], Kelvin [2], and Bjerkness [3]) generated in the fluid
by the container motion, this author is aware only of the work by
Greenhill [4], Hough [5], and Stewartson [6]. Each of the latter con-
siders the oscillating fluid dynamic torque exerted on a rapidly
spinning, gyrating container, the motion of which induced the oscii-
lations of the contained incompressive fluid. They show that, if the
frequency of the inertial oscillations is equal, or nearly so, to the fre-
quency of the nutational component of the gyroscopic motion of the
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container, the amplitude of motion of the container may grow. None
of the authors attempts a physical explanation of this particular
amplitude growth phenomenon; it is now, however, reasonably clear
that it is due to the fact that an inertial oscillation in the container
cavity can have associated with it an asymmetrical pressure distri-
bution. When a state of resonance exists between the frequency of the
nutational component of the gyroscopic motion of the container and
the frequency of the inertial oscillation, the asymmetrical pressure
distribution in the liquid has wavelike properties and moves around
inside the container cavity, “keeping step” with the appropriate phase
of the nutational motion of the container. This effectively enables any
destabilizing effect of this pressure distribution to persist, thereby
effecting an amplitude growth of the motion of the container. Fig. 1
is an attempt to illustrate this for standing inertial pressure waves in
a gyrating cylindrical container. This figures shows several instan-
taneous angular positions of a top or missile spinning with angular |
speed €1 and performing the first half of a (greatly exaggerated in
amplitude) purely nutational motion (the processional component
of the motion is assumed to be zero since we are ignoring the effect
of external torques) with frequency /8 about its center of mass.
Shown is the liquid filled cylinder (inside the top or missile) in which
the pressure distribution, at the walls of the cylinder, is taken to be
A cos 0 cos (92¢/8) sin {(2] + 1)wz/2¢} + pQ2a2/2, and is sketched in
with arrows at the top and bottom planes of the cylinder. An arrow
falling outside the cylinder represents a pressure in excess of pQ22a2/2,
and vice versa. We have assumed that the frequency of the relevant
inertial mode is also /8, and that the time interval between successive
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Fig. 1. Inertial pressure wave distribution (at the top and bottom of the vertical
wall) for a liquid filled cylinder executing a coning motion about its center of
mass

angular positions of the container is the period of the angular speed
Q. Observe that the pressure distribution at the top of the cylinder
is equal and opposite to that at the bottom, and that the observed
tendency of the resultant “couple” to overturn the cylinder persists
throughout the nutation cycle (except when the pressure becomes
merely pQ2a?/2, where the tips of the arrows fall on the circle) only
because of resonance, i.e., the assumed equality of the frequency of
the inertial mode and the nutational frequency of the container. It
is the persistence, throughout most of the nutation cycle, of this
overturning effect that physically explains the destabilizing effect of
the resonant inertial oscillations.

One method of correcting or preventing this amplitude growth (or
dynamic instability) depicted in Fig. 1 would seem to be to effect a
decoupling or a detuning of the oscillations of the liquid and its con-
tainer. The obvious way to do this would be to alter the frequency of
the resonant inertial mode of the spinning liquid. If the amount of the
liquid and the cavity size are fixed, an internal alteration of the cavity
geometry would seem to be an effective way to alter any of the inertial
mode frequencies. One such alteration would be the compartmenta-
tion of the cavity by radial barriers, separated by an angle § and ex-
tending the length of the cavity, resulting in a cylindrical cavity having
a cut pie shaped end view cross section (Fig. 2). Scott [7] showed that
time-dependent, asymmetrical pressure waves like those in Fig. 1 can
exist in such a configuration. In addition to markedly expanding the
table in [7], here it is shown that the dynamical effect of these waves
on the motion of the container is markedly different from the situation
for the cavity with no barriers, i.e., the Stewartson problem.

2  Analysis

The Fluid Dynamical Equations and the Boundary Conditions.
The intent of the analysis is to make a comparison with the results
of the problem studied by Stewartson [6]. Hence, we follow, somewhat
closely, his analysis. So, assume that the container of Fig. 2, and the
XYZ-axes shown there, are initially rotating uniformly about the
Z -axis with angular speed (2. Let the liquid in the container have the
same angular velocity. Then, the absolute velocity of the liquid at

* some point R is ’

v=0XR 4 (1)
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Now, imagine the container is perturbed so that it has angular velocity
components wx, wy, and 0 about the X YZ-axes. Then, that point in
the liquid formerly having the absolute velocity {1) now has the ab-
solute velocity —

u=qt+tv=q+QXR (2)

where q, the fluid velocity perturbation generated by the angular
velocity perturbation (wx, wy, 0), is the velocity with respect to the
rotating X YZ-axes. We have, then, for the Euler equation in the ro-
tating XYZ frame:

{

(/1) g+ R XR) + QX (g+ 2 XR)
+q-Vig+ QXR)=-VP (3)

If'we take ag constant and use the fact that V(2 X R) = @ X gand
Q X (2 X R) = —VQ%?%/2, where r is the cylindrical radial coordinate,
then (3) can be written:

0q/0t +2Q X q+q-Vg=—V(P — pQ%2/2)/p=—-Vp’ (4)

In this equation, we have neglected the gravitational body force be-
cause either the missile is assumed to be freely falling, or else, for the
top, we have assumed Q2a? > gc, where ¢ is the half height of the
cylinder. .

Consistent with our assumption that q is a perturbation, we neglect
the q-Vq term in (4), giving us a linear equation. Following Greenspan
[1], we can eliminate q from this linear equation, getting:
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02V2p’[ot? +(2Q)20%p’ /022 = 0, (5)

a “wavy’’ equation for the pressure.

To arrive at the eigenfrequencies and boundary conditions for this

equation, we let p’ = pe'™, q = Qe wx’ = wxe™, and wy’ = wyeiM.
(5) is now

Y2p + (2Q/iN)20%p/022 = 0 (6)
and (4) becomes )
N +20XQ=-Vp (7)

Equations (6) and (7) are, in our notation, Greenspan’s {1] equations
2.7.3 and 2.7.1. Solving equation (7) for Q, one gets

0 = {(2Q/iMk X Vp — Vp — (2Q/i Mk (28/i M)k
-VpY/EML + (29403 (8)

which, in our notation, is Greenspan’s 2.7.2.

The boundary conditions for (6) now follow from the fact that Q in
(8) is the velocity amplitude of the liquid with respect to the rotating
XYZ-axesof Fig. 3. Hence, if Ry is a position vector (of some point
on the boundary of the container) in the rotating X YZ-frame, the,
since (wx 1+ wyd) X Rp would then be the velocity of that point with
respect to these same axes, it follows that the inviscid boundary
condition is

Q-ri=(wxl+wa)><Rb-n 9)

n is the unit outward normal to the container surface. Hence, from (8)
and (9), the boundary conditions for equation(6) are

[op/o2],=4c = —iAr(wx sin 8 — wy cos §) (10)
[op/or + (2Q/iAr)op/d8}
o= =il + (2QNH(wy cos 0 — wx sinf)  (11)
[(2Q/iN)op/or — Op/ra@](;=0,5,2g,3ﬁ,...
= —jAz[1 + CQUiN(wx cos § + wy sin )  (12)

where (3 is the angle between successive barriers.

We can markedly simplify this set of boundary conditions by
making (11) and (12) homogeneous. Hence, let p = & + i\zr(wx sin
0 — wy cos ) — 2z2rQ(wx cos § + wy sin #). This yields, for (10)-(12),
and (6):

[0®/0z],=2c = —2iAr{wx sin § — wy cos 0)

+ 2Qr(wx cos @ + wy sinf) (13)

[o®/ar + (2Q/iAr)o®/30],—; = 0 (14)
[(2Q/iN)od/or — d0P/roblp=0,6,26,38 = O (15)
V2P + (2Q/iN)202®/02% = 0 (16)

. Equation (16) and boundary conditions (138)-(15) now appear to bg

. a rather. straightforward Sturm-Liouville-type boundary-value .

pfoblem,l amenable to the usual separation of variable process. We
now show, however, that such is not the case.

The Nonexistence of Separation of Variable Solutions of the
Governing Equations. We now demonstrate that equation (6) has
no separation of variables solutions that define an inertial wave and
which also satisfy boundary conditions (14) and (15). We show this
by setting ® = f(r)g(6)h(z). Then, from (14) we have

f'(@)g(0) ~ (2Qi/Na)f(a)g’(0) = 0 (1
hence
2(0) = Ce=ratf @)/29f(a) (18)
From (15), at § = B, we have
@2Qi/NgB)f (r) + fir)g’ (B)/r=0 (19)
Hence, using (18), we have '
f'(r) = a2 (@)f (r)/rf(a) = O (20)
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Fig. 3 The rotating coordinate system

At r = g, this yields
f'la) = a(N2Q)%f (a)f(a)/af(a) = O

Hence, A = 2Q. However, Greenspan [1] shows that, for containers
of finite volume, inertial wave frequencies are upper bounded by 2€.
Hence, inertial wave solutions of the form f(r)g(6)h(z) don’t exist,
i.e., such a representation is incompatible with the foregoing boundary
conditions. The physical reason for this can be extracted from an
observation made by Taylor [8]: the structure of any wave in a rotating
fluid is a function of whether the wave is prograde“or retrograde
(Coriolis coupling of the radial and circumferential particle velocity
components effects this circumstance). Hence, this different structure
(of a prograde and a retrograde wave) precludes their addition in an
attempt to get zero circumferential particle velocity all along a radial
barrier, as boundary condition (15) stipulates; but this is exactly what
one does in attempting to satisfy this boundary condition. Proudman
[9] very painfully discovered this in his long and unsuccessful effort
to solve the similar boundary-value problem of determining the tidal
wave frequencies in a rotating, semicircular sea. It is interesting to
note Proudman’s observation that for a nonrotating sea, the problem
is almost trivial.

“Attempts to obviate the aforementioned mathematical difficulty

(21)

“associated with the physical processes at the radial barriers in this

three-dimensional problem via the use of integral transform tech-
niques (Laplace, Hankel, Fourier, and Mellin), conformal mapping,
stream function expansion techniques, Greens functions, similarity
solutions, Galerkin methods, or Wiener-Hopf techniques all fail for
one or more reasons to generate functions that satisfy all of the
boundary conditions. Even the Rayleigh-Ritz technique is of no avail
for the author can’t even conjure up a function that satisfies all of the
boundary conditions, Hence, the author was forced to “rescue from
the archives” the Null function method of Goldsbrough [10]. This is
a technique Goldsbrough devised to solve a similar boundary-value
problem (with similar difficulties with the boundary conditions) for
waves in a sea (on the rotating earth) bounded by meridians of lon-
gitude and parallels of latitude. Basically, Goldsbrough’s Null function
method is somewhat akin to that of Galerkin, for it constructs a so-
lution of the governing partial differential equation. However,
Goldsbrough’s approach uses the orthogonal functions generated by
solving another problem, namely that of determining the tidal wave
frequencies in a sea on the rotating earth bounded by parallels of la-
titide only. His final solution is in terms of a “Fourier series” of these
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orthogonal functions, and the heart of the method is the procedure
for effecting the requisite form of the nonseparation of variable
Fourier representation. For all of the gory details, one can consult the
original work; briefly, however, the following is the gist of the Golds-
brough Null function technique as applied to this problem. Consider
the expression

® = J(ry/a)(A cos af + B sin af) cosh (kz/a)+/[1 — (2Q2/M)?]

" which is a solution for the Stewartson problem, and where «, v, and
k are separation constants, and where A and B are constants. We
extract from this expression cos afl and sin afl and expand them in
Fourier series in the interval 0 < § < 8. We then subtract these ex-
pressions from the functions they represent, and then multiply each
term by the appropriate expansion of unity (i.e., 1 = Z;4;J.(rvy;/a))
in a Fourier-Bessel series based on the orthogonality of the J,’s. One
then appends an appropriate expression for the z-dependence. Fi-
nally, noting the effect of each operator in equation (16) on each
function that appears in the foregoing construction (which is the Null
function since it is identically zero in 0 < § < f8), one modifies this
function so that it is no longer identically zero (and hence is no longer
the Null function) but does become the Null function when substi-
tuted into (16). Hence, this modified function is the solution, and the
process of generating it generates an infinity of constants that can be
adjusted to make this function satisfy the difficult boundary condition
(15).

This author will be the first to agree that this is a “brute force”
technique, and that there ought to be a better method of attack. The
author was unable to find one. Even the very elegant modal analysis
of Greenspan [1] becomes cumbersome when one is finally forced to
write out, explicitly, the functional form of the modes. And if these
forms are separable, one is ultimately forced to the same tedious and
involved algebra as in the Goldsbrough approach. The author presents
the Goldsbrough approach for the additional reason that it seems to
have been overlooked in the literature, and because it can effect the
solution of difficult boundary-value problems in other areas.

Before carrying out the analysis, we find it appropriate to remark
that there is some independent evidence for the validity of this
technique. For example, the problem of determining the tidal wave
frequencies of water in a rotating, square basin has boundary condi-
tion difficulties similar to this problem. Taylor [8], leaning heavily
on its two-dimensionality, solved the problem. Jeffreys [11], from his
analysis of tidal wave frequencies-in an elliptical basin, argues that
several of Taylor’s conclusions are incorrect. Goldsbrough [12], using
his Null function teéhnique, confirms Heffrey’s criticisms. Grace [13],
Corkan and Doodson {14], and Rao [15], all working with stream
function expansions, confirm Goldsbrough. One great advantage of
the Goldsbrough approach is that it is not limited to two dimensions
as is the stream function expansion approach.,

The Goldsbrough Solution and the Frequency Equation. We
follow the aforementioned recipe and begin construction of G, the
Goldsbrough Null function for the region 0 < 8 < 3, by expanding the
trigonometric functions that appear in the Stewartson problem in a
Fourier series in that interval and then subtracting the series from
the function, thus

G = cos (2mm0/B) — (/) ¥ (2k — 1) sin {(2k — 1)nb/B)/[(2k
k=1
—1)2 = (2m)?] + sin 2m=8/B) — [—(4/7)] i 2m cos {(2k
k=1
- Dwb/BY/[(2k — 1)2 — (2m)?2] + cos {(2m — V)«wh/B}
~ (4/7) T 2k sin (2k70/B)/[(2k)? — (2m — 1)?]
k=1

+ sin {(2m — 1)70/8} — [—(4/7)] i @2m —1)
E=1

X cos (2k70/B)/[(2k)? — (2m — 1)?] (22)

This expression, in which m is an integer, is identically zero in the
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interval 0 < § < 8 because the 2 terms are the Fourier expansions of
the non-Z terms in that interval. The angle between the barriers, £,
is such that n@ = 2x, where n is the number of barriers.

Following Goldsbrough, we now judiciously modify expression (22)
so that it is nonzero, involves the orthogonal Bessel functions ap-
pearing in the Stewartson solution, and is a solution of equation (186).
To effect this, it is convenient to take advantage of the fact that
boundary condition (14) is independent of whether or not there are
barriers. So, in terms of

Jo(yr/a)A cos af + B sin af] cosh (kz/a)\/[1 — (2Q/N)?],

a representative solution for the Stewartson nonbarriered cavity,
boundary condition (14) is

{d/dr)d . (yr/a)[A cos af + B sin af)
+ (2Q/iAr)d o (ry/a)[—A sin af + B cos afll,=, = 0 (14a)

Equating to zero the coefficients of cos af and sin «f, and then in-
sisting that A and B be nonzero, one gets

{ldd o (ry/a)/dr]2 — [(2Qa/rN)d o (ry/a)]|Brea = 0 (23)
where a = 2mw/f, (2m — 1)/w/f, 2kw/B, or (2k — 1)/7/B, J{yr/a)
is the first kind Bessel function of order «, and ¥ is a separation
constant. We now use the fact that the orthogonality of the Bessel
functions implied by this relationship allows one to write

1= 3 A,Ju(ry,%a) (24)
p=1
where v, is the vth zero of equation (23), and where
a a
A= j; rd o(ry,®a)dr / f rlalry,fa)dr  (25)
0

Hence, we write (22) as

G =1-cos @mmb/B) — 1 (4/x) 5 (2k — 1) sin |(2k
k=1
- 1)#0/@}/[(2}{ — 12— (2m)2] + 1 -sin Cmw0/B) — 1 - (—4/7)

- X i 2m cos {(2k — 1)70/BY/[(2k — 1)2 — (2m)?]
Pt

+1-cos{(@m — V)xb/B) ~ 1- (4/m) S 2k sin (2knb/B)/[(2k)?
) B=1

—(@m = 1) + 1-sin {(2m — Drb/B — 1- (~4/7) ¥ @m —1)
r=1

X cos (2kw0/B8)/[(2k)%2 — (2m — 1)7] (22a)

and then replace unity, i.e., 1, in this expression by the appropriate
form of equation (24). We then use the fact that

[VZ — (20/0)20%/022] cos afd 4(ry,~/a) cosh [ez/a+/{1 — (2Q/7)2]
= {e2/a? — (v,*/a)}? cos abd ,(ry,*/a)

X cosh [ez/a+/{1 — (22/N)%] (26)
where the term being operated on by {V2 — (20/)\)202/02% is, formally,
similar to a separable solution of the nonbarriered problem, but where
¢, which is not equal to v, as it is for the Stewartson problem, is an
yet undetermined separation constant for the separated ordinary
differential equations in z and r. We can thus write the following
modification of equation (22a) (which we will label ® rather than G
because it will then no longer be identically zero in 0 < # < 3, i.e., it
will no longer be the Null function):

® = {A cosh (ez/a+/) + B sinh (ez/a+/}}

X|% %

y=1m=0

{AMJM(AM cos MO + By sin M0)/(¢, v, M)

— (/1) S AN [Ap(k'w/B) sin k' ©@7)
k=1
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— Bu2m cos k'0)/(e, v, K'Y k2B/w? — 4m2)}

+ i i {A’"'Jm/ [A cos m’0 + B, sin m’8]/(¢, v, m’)

v=1m=1

— (4/1) 3> ARJg[Am 2k sin KO — B,y (m’B/7)
k=1 :

X cos K8)/(e, v, K)}4k2 — m’262/7r2)“
(27)
(Cont.)

In this equation, for the sake of brevity, we have set /[1 — (2Q/\)2]
=/, M=2mw/B, (e/a)® = (v,Ya)2= (¢, v, a), k' = (2k — VD/B,m' =
@2m - 1)7u/B, K = 2kw/B, and J o (ry,%/a) = J .

Expression (27) is a solution of equation (6); for, not only when
substituted into (6) does it yield the Null function.GG (and hence zero),
but also (@) by construction it satisfies boundary condition (14), (b)
there are sufficient constants to assure satisfaction of the other two
boundary conditions, and (¢) all of the functions, of which the A,’s
and B,’s are coefficients, are convergent throughout the sector and
are finite onr = a, 2 = 2¢, and § = 0, 8. On the other hand, as Green-
span [1] makes clear, there may be a practical problem with the ra-
pidity of convergence of the series expression for the solution owing
to the inhomogeneous boundary condition (13) and the fact that the
mere presence of the inertial waves implies discontinuities in the flow
field. We shall return to this matter in Section 3. Finally, with respect
to expression (27), note that p’, the solution of equation (5), will
consist of terms of the form h1(r)ho(B)hs(z)e™, a form indicating that
the pressure waves are stationary rather than progressive. It is ob-
vious, however, that the solution is not the simple separation of
variable form T'(£) U(r)V(8) W (z), rather it is an infinite sum of sep-
arable solutions, none of which alone satisfies the boundary condi-
tions. What we have, in essence, is a “Fourier series” of separable
solutions.

The substitution of expression (27) into boundary condition (13)
gives immediately A = 0, a result allowing one to absorb B into the
A,'s and B,'s. Then expanding the cosines and sines on the right-hand
side of equation (13) into Fourier series in the interval 0 to 8 and ex-
panding r in a Bessel function series )

(’ = ¥ Cddlryelal,
r=1 )
where

C,e= fa’2Ja(l"Yu“/a)dr/fa"Jaz(r‘yu"/a)dr
0 0

and then equating the series on both sides of the equation term by
term, one can determine the A,’s and the B,’s. The denominator of
each of these constants contains the term cosh {ec/a+/[1 — 4/(\/Q)2]},
- where ¢ is'the as yet undetermined separation constant. Since these

A.’s and B,’s determine the amplitude of the pressure fluctuations,

it follows that these amplitudes become infinite when c/a+/{1 ~ 4/
N = (2] + D7wi/2,j =0,1,2,....This expression would deter-
mine the resonant frequency A in terms of the geometry of the cavity
if we knew ¢, the aforementioned separation constant. As we shall
show, however, the frequency equation we are about to derive will also
involve € and A; hence, we can use this relation to eliminate the un-
known separation constant ¢, leaving the frequency equation in terms
of A alone.

We now consider boundary condition (15). The frequency equation,
which will result from this relation because it will give us finally an
equation involving only A as the unknown, can be gotten most ex-
peditiously if we use the two identities and the expansion involving
Bessel functions that follow:

(d/dr)d o (ry,~/a) = (v,*/20) [ a-1(rv,%/a) = Jar1(ry,*/a)]
(28)

Tulrys/a) = (r/20) e rry,a) + Jaoslryiofa)]  (29)

Journal of Applied Mechanics

dalry,*fa) = L 2p+ a)T(p+ @)y Fi(—p, a+ p,a+ 1,
p=0

(V99 argp (r/a)/{p!T (e + 1)}

= S Hpodurop(r/a) (30)

p=0

Equation (30) is the Neuman expansion (Erdelyi [16]) of J . (ry,*/a),
and oF1( ) is the hypergeometric function. )

Upon using (27)-(30) in equation (15), one gets n identical sets of
two equations, one for § = 3, say, and one for 8 = 25. Hence, one need
consider only any two. Following Goldsbrough, one finds that adding
and subtracting the two equations give two equations much simpler
to work with. And in our case, since the goal is the frequency equation
which will result from setting a certain determinate equal to zero, we
can omit consideration of the equation resulting from addition be-
cause the sum has as a multiplier the term

4,0 = j;a [rdo(ry,/a)dr/E = —(a/vy,%)2Jy (v,°)/E,
where
E= (" ry,%a)dr.
j; rdo?(ry,%a)dr

From boundary condition (23), the numerator of the right-hand side
of this equation is zero. Hence, adding the two equations ultimately
leads to a determinant that is identically zero and thus yields no in-
formation. So, considering only the result from subtracting the two
equations, one gets

=

y=1m

MDD {(BQ/i(fﬂ') Y AFHpp2mBuyldpip_
= =1 p=0 k=1

= Jpap R B/T)2 = 2m)2(e, 7, k') + (2Q/ia)
XAV Hpm Al mrtp_r — Imrapy ]/ (6, v, m’) + (4/7) ki A (2R
=1

— D' AyHp o [Jprtpy + Jisp_r 1/ (R + 2p) (R B/7)2
- (2m)2](f; Y k') + A, m By p,m'[Jm’+p+'
+ Jmeapr1/(m’ + 2p)e, v, m)} =0, (31)
wherenowdJ =J(r/a), p_'=2p — 1, p4'=2p + 1.

Interpreting both “sides” of equation (31) to be expansions in Bessel
functions of odd order, we can then set the two “series” equal term
by term. In other words, we successively equate to zero the coefficients
of Je—l; Je+1; JE+3y e J3e—1; J3e+1, J32+3, CIEIR) JSe-l; J5e+1; J5€+3;
. dre=1, Jet1, . - . , €tc., where e = /8. This process gives us an in-
finite set of equations involving the A,’s and the B,’s. The condition
that these constants be nonvanishing is that the determinant formed
from their coefficients must vanish. Hence

De_l"lDé_1‘2Dg_1,3De_1,4De_1,5 e e
Dev1,1Dev1,9De+1,3Dex1,4Det1,5

D3e—1,1D30-1,2D3¢~1,3D30—1,4D 3¢~ 1,5
D3e+1,1D39+1,2D3e+1,3D3e+ 1,4D39+1’5 .............

=0 (32)
Dse—1,1D50-1,2D5¢—1,3D5¢—1,4D50-1,5
Dse+1,1D5641,2D50+1,3D8e+1,405e41,5 oo vvvv'iinitn

where, for example, Do_y 1 = (2Q/i\) Z,=1A,"6Hg 1/6)/ (e, v, ©/8),
D3e—1,1 = 0, Daes1,4 = (4/m) 2,7 A36(4Q/iN)[Ho g/8l/5(e, v, 37/B),
etc. .

Equation (32) contains the unknowns € and A. However, from the
equation ec/a+/{1 — (2Q/N)% = (2j + 1)i/2, we can solve for ¢ in terms
of \. Making this substitution in (32), we have an equation involving
only the resonant frequency A. Hence, it is the frequency equation.
However, with A, the frequency, as the unknown, the equation is
formidable (the A4,%s are functions of A, for instance). Hence, we
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Table1 Dimensionless inertial wave frequenmes versus various cavity fineness ratios for several different angles-
between the barriers

AQ MQ+1 c/la(2j + D]s Casd Crs’ Conss’ Coro’ C.’ Coy’
—1.00 0.00 © 0.995 0.0420 0.0973 0.1746 0.3081 0.3621 0.3674
—0.96 0.04 1.042 0.0443 0.1020 0.1845 0.3263 0.3806 0.3890
—0.92 0.08 1.091 0.0467 0.1069 0.1948 0.3439 0.4003 0.4124
—(0.88 0.12 1.144 0.0493 0.1121 0.2058 0.3624 0.4213 0.4377
—-0.84 ~0.16 1.201 0.0522 0.1175 0.2179 0.3829 0.4439 0.46564
—0.80 0.20 1.262 0.0552 0.1231 0.2311 0.4051 0.4682 0.4958
—0.76 0.24 1.382 0:0586 0.1291 0.2453 0.4293 0.4945 0.5295
—0.72 0.28 1.399 0.0623 0.1353 0.2612 0.4559 0.5235 0.5669
—0.68 0.32 1.478 0.0663 0.1418 0.2789 0.4854 0.6551 0.6088
—0.64 0.36 1.565 0.0709 0.1485 0.2984 0.5184 0.5902 0.6561
—0.60 0.40 1.662 0.0749 0.1519 0.3095 0.5513 0.6261 0.7093

follow both Goldsbrough [10] and Stewartson [6] and we fix A at some
reasonable value and we then let the frequency equation determine
c/a(2j + 1), the cavity fineness ratio, which one can extract much more
easily. The determinant was programmed on the HP9830 dand was
solved by considering successively a 2 X 2 determinant, thena 3 X 3,
then a 4 X 4, etc., until there was no change in the fourth significant
figure. In this manner we constructed Table 1 for values of 8 = 7/4,
/3 2%/5, 7/2, w, 2. The slowness of convergence alluded to earlier
did not seem to manifest itself here, for in no case was more than a 4
X 4 determinant needed, nor more than nine (9) terms needed in any
summation. This agrees with some comments by Goldsbrough [10].
Perhaps the situation is saved by our interest being the eigenvalues
and not an actual evaluation of the velocity or the pressure. In addi-
tion, since it is nonhomogeneity in the boundary conditions that in-
duces the slowness of convergence, it is relevant to note that the
transformation that follows equation (12) made two of the boundary
conditions homogeneous, leaving the inhomogeneity in the boundary
condition that was easy to satisfy.

In Table 1, A/Q is the dimensionless frequency one would measure

in the rotating frame, and A/Q + 1 is the dimensionless frequency one
would measure in an inertial frame. [c/a (2] + 1)]s is the Stewartson
[6] fineness ratio value for a nonbarriered cavity. The negative sign
for \/Q means that one in the rotating frame is rotating faster than
the stationary wave appears to precess progradely. Finally, in Table
1, Cg =c/[a(2) + 1)]g, e.g., Copd’ = c/[a(2j + 1)] for B = w/4.

The salient feature about barriered cavities that Table 1 illustrates
is that sectoring a cylinder increases the inertial mode frequencies as
measured in an inertial frame. Relative to the experiments about to
be described, a pertinent way of stating this is that, given a cavity of
fixed radius but variable height, increasing the number of barriers
necessitates making the cavity shorter if one wishes to maintain the
same inertial mode frequency, i.e., sectoring a cylinder necessitates
making it more dumpy if one doesn’t wish to change the inertial mode
frequency.

3 The Null Dynamical Effect of the Resonant
Inertial Oscillations: Experimental Verification

The determination of the torque on the container due to the
asymmetrical pressure fluctuations associated with the inertial os-
cillations in the sectors involves products of integrals over r, , and
2. The 0 integral has the form

27 /B np
ST g0,
n=1 (n=-1)8

where g(f), the integrand, can be cos # cos (2mw8/8), or cos 6 sin
(2mm8/0), or sin 8 cos [(2m — 1)w6/0], etc. Recalling the restriction
that 27/ must be an integer, one can show easily that these integrals
sum to zero! This means, of course, that there is no net torque on the
cavity due to the oscillations; and since this is the torque that produces
the unstable container motion when the cavity is not sectored
(Stewartson [6]), one concludes that due to this cancellation effect,
the insertion of radial barriers in a cylindrical container can ameliorate

the destabilizing effect of the inertial oscillations no matter what is .

the state of resonance. The physical reason for this is that the pressure
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- for a 100 percent liquid-filled, 90° sectored cylinder; [¢/a(2j + 1)go- =

AMPLITUUE OF 1

GYRUSCOPIC
0
1
5 10 15 20 25 30 35

GOTIGH T
TIME IN SECONDS

DEGREES |

Fig. 4 Amplitude of gyroscopic motion (in degrees) versus time (in seconds)
for a 100 percent liquid-filled, nonbarriered, resonant cavity; [¢/a(2] + 1)]s
= 1.05, { = 4000 rpm, 7o = 0.048
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Fig. 5 Amplitude of gyroscopic motion (in degrees) versus time (in seconds)
1.08,
Q = 4000 rpm, 7o = 0.40
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Fig. 6 Amplitude of gyroscopic motion (in degrees) versus time (in seconds)
for an empty cylinder, {} = 4000 rpm, nutational frequency = 0.48

distribution due to the inertial oscillations in any given sector is a
function of the geometry of that particular sector and not its angular
orientation within the cavity, i.e., in so far as the inertial oscillations
in a sector are concerned, the liquid does not know where it is. As
experimental proof of the foregoing conclusion, we show in Fig. 4 the
amplitude growth rate for a gyroscope containing a 100 percent
water-filled cylinder having a ¢/a (2] + 1) value, i.e., a fineness ratio,
of 1.05. (for details of the apparatus and the experiments, see Scott -
[17]). From Stewartson’s tables [6] we find, for that fineness ratio, a
dimensionless inertial wave frequency, 7o (Ei + A/Q), of value 0.048,
Adjusting the gyroscope to have that value for its nutational fre-
quency, we have resonance and we observe the amplitude of the
gyroscopic motion to grow as in Fig. 4. Inserting 90° barriers in the
same cavity, thereby altering the inertial wave frequency to a value
numerically far from any value iq Stewartson’s tables (and hence
removing the system from resonance) and additionally (as shown
previously) simultaneously reducing to zero the net torque due to the
inertial oscillations, we observe in Fig. 5 the amplitude of motion of
the gyroscope to decay (as it should according to the theory) with
nearly the same decay rate as when empty (Fig. 6).
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Fig. 7 Amplitude of gyroscopic motion (in degrees) versus time (in seconds)
for a 100 percent liquid-filled resonant sectored cavity, with four 90° sectors;
Q = 4000 rpm, [¢/a(2j + 1}]oge = 0.3298, 7o = 0.048
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Fig. 8 Amplitude of gyroscopic motion {in degrees) versus time (in seconds)
for a liquid-filled resonant cavity with only one 90° sector; ) = 4000 rpm,
[e/a(2j + 1)goe = 0.3298, 7o = 0.048

We next consider a resonant sectored cavity. According to Table
1, a value of ¢/a(2] + 1) of 0.3298 for a cavity with 8 = 90° gives a 7¢
value (i.e., a A/Q + 1 value) for the liquid of 0.048. As just mentioned,
adjusting the nutational motion of the gyroscope to have a nutational
frequency of that value, we have resonance. However, the zero net
torque (as the theory indicates) should result in a gyroscope damping
at nearly the same rate as in Fig. 5 (where there was no resonance).
That Fig. 7 seems experimentally to confirm this conclusion is com-
forting, even though the author is well aware that the figure may
simply mean that the resonant frequency has been miscalculated.

4 Concluding Remarks

An objection to the experimental results can be raised by pointing
out that, unlike the case for the unsectored cylinder where the reso-
nance can be inferred from the visual observations of the amplitude
growth {Scott [17]), no such observations can be made here because
of the cancelling effect of the several sectors. Ideally, then, one should
use the pressure measurement technique of Aldridge and Toomre {18]
to determine the inertial modes. However, not only did we not have
immediate access to such an apparatus, but also since the gyroscope
had been very effective even in determining the small frequency shifts
due to the effect of viscosity on the inertial modes (Karpov, [19]), we
chose to use it to consider the effect of a single sector. So, consider
again the previous case, but with a single 90° sector rather than four,
and with the remainder of the cavity being filled with lucite having
the same density as the liguid (a one centistoke viscosity silicone oil).
Again adjusting the gyroscope to have a nutation frequency of 0.048,
we have resonance. However, in the final expression for the torque
on a single sector, terms like pma®(2¢), the mass of the liquid, appear
as multiplicative factors, thereby governing the magnitude of the
torque. If this mass is too small, then even the amplification at exact
resonance may not be large enough to overcome the natural amplitude
decay rate of the gyroscope. Accordingly, it appears that the mass of
the liquid in this single sector, one fourth that of the preceding ex-
periment, was too small to effect an amplitude growth of the gyroscope
(see Fig. 8). The use of a larger cavity or a heavier liquid was then in
order. Unfortunately, we had only one gyroscope, which did not allow
the use of a larger cylinder (Scott [17]). Also, the use of mercury, which
would have been the ideal liquid to solve the small mass problem, was
disallowed by safety personnel at the Ballistic Research Laborato-
ries.

In spite of the small mass, we should, nevertheless, expect a decrease
in the natural damping rate of the gyroscope. Figs. 8 and 9 give some
evidence of this, evidence that is admittedly perhaps not very con-
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Fig. 9 Logarithm of the normalized gyroscopic amplitudes in Figs. 7 and 8
versus time in seconds

vineing because the difference in slopes in Fig. 9 is not too far removed
from noise level. We remark, however, that the reproducibility of the
experiments does tend to remove some of the inconclusiveness. In
addition, Karpov [19] showed that dissipation effects that may cloud
the issue in these experiments are almost negligible for the low vis-
cosity liquids used (water and silicone oil). Finally, in response to any
concern that imperfect density matching of the lucite and liquid might
affect the decay rate, we remark the Murphy and Nicolaides [20]
showed that such an asymmetry would change the gyroscopic motion
to a tricyclic one. We observed no evidence of such an effect in these
experiments.
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Introduction

In this paper we model the Stokes flow in a long driven sector, using
finite differences and a biorthogonal series expansion to compare the
results. The problem is chosen from a modified Couette flow including
a sector cavity [1]. Our aim is to examine closely the results of the
approximate finite difference solution and to advertise the biortho-
gonal series for solving biharmonic boundary-value problems in do-
mains where separation of variables is possible (a very common
problem in fluid mechanics and elasticity). The analytic method is
elucidated in [2, 3]. New aspects concerning the computation are
developed here.

Mathematical Formulation
The slow motion of a Newtonian liquid, neglecting gravity (Stokes
flow) for two-dimensional flow is described by

vl =0 (1)
where ¥ is the stream function and V2 is the Laplacian operator.
Using polar coordinates (r, ¢, 2),

10 o 1 02
V2= ——(r—) T
ror\ or] r?og?
and the velocity v = rot (Y¥e,). In our model there shall be viscous
nonslip at the solid walls ¢ = £ and r = rg. At the outer radius r =
ri1 = 1 we prescribe the vorticity @ = 1 — sin3 (r¢/26), where Q =

—V2¥, and no flow through the surface shall be possible (Fig. 1). For
our comparison we chose rg = 0.05 and 26 = 10°.
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Table 1 The first five eigenvalues (note that A_, = A,
where overbar denotes complex conjugate)

n
25.14114414 + 12.86408537:
62.38088865 + 17.74998684:
08.82482881 + 20.31681729;
135.06392018 + 22.080053261
171.21595479 + 23.42596613(

S Ny

31" (o)
Aahe ~ 2)

where ¢1¢ (@) = cos (A, — 2)8 cos A, — cos Anff cos (A, — 2)¢, the
An are roots of sin [26(\, — 1)] + (\,, — 1) sin 28 = 0 (see Table 1) and
Co = Do = 0. The boundary conditions at ¢ = £ are already satisfied,
so that the constants C,, and D,, will have to match the conditions at
the inner and outer radius. '

We introduce the biorthogonal sequence ), (™), where

=5 [Cortn + Dyr—tat2 ©)

¢ = ((bl("), ¢2(n)) with ¢ = ¢ (@) NN, — 2),

corresponding adjoint ¥ with

(An — 2) An
Y = T cos (A, — 2)B cos App — -
o8 Ap 8 cos (Ay — 2)¢; Yo' = ¢y ()
such that
(YTApm)Y

8
= fﬂ¢(n>TA¢<m> de=0 for (\y— 1) (\p—1)2

=F, for (\—1%=(A,—-1)?
and the biorthogonality matrix

A-(0 73

The “Fourier” coefficients C,, and D, are determined by the bior-
thogonality condition

(3)

) .
¥, +~ ¥, 1 — sin? (gﬁ)
= - ¢(n)TA

oo 0
r=ri

llb(n)TA

(4a)
and

by

Further details of the theory can be found in [2]. We solve the linear
system (4) by truncation, i.e., replace the “=” sign in (2) by a finite
number. At this point it is interesting to look at equations (4) in de-
tail,

=0.

r=ro

(4b)

(Co+Da)Fu+ 3

m=—a

2 2
Cp — —D,, (n) g, (m)
(}\m—Q . )<¢1 ¢'mh)

1 — sin2 ™

=—{ymTA (5a)

where
2 2 -
P-4 B cos? A\, _ B cos? (N, — 2)8
An M~ 2)
- ;\:—()\—i_—{) sin 28 cos A8 cos (A, — 2)8],
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Fig. 2 Sector solutions (streamlines); extrema at vortex centers, X; (a)
biorthogonal series solution; (b) approximate solution

Table 2 Coefficients in the biorthogonal series (scien-
tific notation: the second number is the power of ten)

Real Imaginary
Cy=( 0.208369 + 01, —0.219573 + 00)
Cy = (—0.266598 + 00,  0.440204 + 00)
C3 = (—0.851842 — 01,  0.559270 — 01)
Cs=(—0.332293 — 01, 0.152098 — 01)
Cs = (—0.162217 — 01, 0.596175 — 02)
Dy = (-0.201026 - 62, 0.686494 — 62)
Dy =( 0.760589 — 112, 0.229382 — 111)
Dy = ( 0.459605 — 159, 0.613469 — 159)
Dy = (—0.258214 — 206, 0.221233 — 206)
Dy = ( 0.697736 — 254, 0.252238 — 254)
and
» . n) 4,(m)
r ro*Cp (2(451(")(/)2(”‘)) PRI (¢1(”)¢2("’)))
m=—w . ro(Am — 2)

+ rO—AmD‘m(g,.OZ(¢1(n)¢2(m)) - )\10— {Pp1nlgpy(m)y

m

- roz(\lfl(m)¢1("‘)>) =0. (5b)

For the chosen 3, the real parts of the eigenvalues A, are very large
(Table 1), so that for ro = 0.05 the coefficients in (5b) suggest that the
Cy» are large compared with the D,,. Therefore (5a) or (4a) can be
solved for the C,,, neglecting the D,,, which then can be easily found
from (5b) or (4b) (or find D,, = ro~*D,,). Thus the system (4) or (5)
is split into two systems that can be solved consecutively. This reflects
the fact that the boundary condition at ro does not have any signifi-
cant influence on the flow, except very close to ro where the D,.r—n+2
term in (2) is dominating (even when the D,, are small). Note that the
D, =0forrg=0.

Result. Sufficient accuracy of the truncated series can be obtained
for five terms in the series. The coefficients C,, and D,, converge
rapidly as n increases; see Table 2. The residual error in the boundary
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Table3 Boundary values at the inr}er and outer radius; a,, by, ¢1,and d; are the indicated values at the boundary;
they are compared to: a; the prescribed vorticity at r = 1, bz = ¢z the zero stream function values and d» the zero

gradient value at r = 0.05

ds
ai as b1 bg cy cy dy ov¥/or (r =
¢ Qr=1) 1 —sin2 o7/10° W(r=1) V(r=1) ¥(r = 0.05) W(r =005 o¥/or (r = 0.05) 0.05)
0° 0.9990 1 —0.659-10~7 0 0.141.1073° 0 0.231.10-3° 0
1° 0.9056 0.9045 0.552-1077 0 —0.149.1073 0 —0.220.10-35 0
20 0.6530 0.6545 0.204.10°7 0 0.156-10™39 0 0.182.10735 0
3° 0.3481 0.3455 —0.452:10~7 0 -0.115.10~39 0 —0.103.10735 0
4° 0.0910 0.0955 0.129.1076 0 —0.337.10~40 0 —0.757.10—36 0
5°  —0.0052 0 0 0 0 0 0.407.10~46 0
4 tween V¥ and € with a fixed relaxation factor for each as described in
~5° -4 -3° _2° _9° 0° [4]. The relaxation factors were not optimized. In order to work in a

£ contours symmetric

0.96 ; .
with respect to centerline

e Biorthogonal series

“@==@=-Finite difference
1 approximation

0.92

0.88

0.84

0.80

Fig. 3 Comparisons of the velocity and vorticity in the outer region; —
biorthogonal series; - - -0- - - approximate solution

rconditions is insignificant; see Table 3. The ¥ boundary conditions
are satisfied exactly on the sidewalls, 8 = £5°. The stream function
W (Fig. 2(a)) and vorticity (Fig. 3) show details of the solution.

The Numerical Solution

Now the same problem is solved numerically using finite differ-
ences. A successive over-relaxation method is used, alternating be-

484 / VOL. 47, SEPTEMBER 1980

rectangular plane a new radial coordinate # = In r is introduced.
Compromising between the desired accuracy and the cost of the
computations, we use meshes of b, = 0.023404 and h, = 0.005454.

Result. The stream function ¥ (Fig. 2(b)) and the vorticity  are
calculated until their residual values are less than 1079 and 1078, re-
spectively. Asymptotic theory,! utilizing the first eigenvalue (after
Moffatt [5] with Burggraf correction [6]), is used to fill in the inner
part of the sector where { residuals exceed the functional values.
Results are shown in Fig. 2(b) and Fig. 8.

Comparison

The profiles of the center-line velocity are compared in Fig. 3. The
velocity at the center of the outside arc is 0.0201 for the approximate
numerical solution and 0.0196 in the analytical result.

It is obvious that the result of the biorthogonal series solution is
more accurate and because of the easy, straightforward computation
its use should be preferred for similar problems. The computation of
the numerical solution was carried out on an IBM 360/91 requiring
about 66 sec of computing time compared to only fractions of a second
for the series (on a Cyber 74). However, this test has shown that the
numerical results may be good enough for many applications (within
the two top vortices, where the liquid flows fastest, the streamline
error lies within the mesh length) and the method can be applied to
more general, nonseparable domains. The truncation error can be
reduced by a finer mesh computation.
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1 Introduction ‘

A numerical scheme based on boundary integral equations is de-
veloped to determine the flow characteristics of a homogenous in-
compressible fluid of second grade past a projection or a depression

of arbitrary shape. Restricting attention to a rectangular slot of finite+

depth, the streamlines, due to the flow of a second-grade fluid past
such a slot, are determined. While the problem of the flow a Navier-
Stokes fluid past a circular projection or depression has been obtained
by Schubert [1], the technique used depends on conformal transfor-
mations which cannot be used when arbitrary shapes are involved,
unlike the technique developed herein. It is also pointed out that the
technique could be gainfully employed in determining the “hole
pressure error” due to the flow of such a non-Newtonian fluid past
a hole of finite depth. After a few preliminary remarks regarding the
equations governing the flow of the fluid under consideration, in
Section 2, we develop the boundary integral equation corresponding
to the partial differential equations governing the motion of the fluid
in Section 3. The details of the computations in terms of certain
characteristic parameters is outlined in Section 4. The results and
certain extensions of the technique are discussed in Sections 5 and
8, respectively.

2 Preliminaries
The Cauchy stress T in a homogenous mcompressxhle fluid of sec-
ond grade! is given by

T=—p1+ uhA; + oA+ oeohy?, (1)

1 The constitutive relation (1) has been employed both in the sense of a sec-
ond-order approximation to a general simple fluid [2, 3] as well as an exact model
in its own right [4]. Suffice it is to say that our results do not depend on either
point of view, our results being applicable in either case. We refer the reader
to [4-6] for details regarding the differing points of view.
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pressions of arbitrary shape is considered. A numerical technique based on a boundary
integral equation is developed and the problem of the flow past a rectangular slot of depth
d and width W is solved.

where u is the coefficient of viscosity, ey and arg the normal stress
moduli, —p1 the constitutively indeterminate spherical stress due to
the constraint of incompressibility, and A; and A; the first two
Rivlin-Ericksen tensors defined through

A =grad v+ (grad v) 7, (2a)

and

Ag = A; + Aj{grad v) + (grad v) TA;. (2b)

In equation (2b) the dot denotes material time differentiation.

We are interested in obtaining the stream function due to the flow
of a second-grade fluid between two infinitely parallel plates D apart,
the bottom plate having either a depression or a projection of arbitrary
shape (see Fig. 1). The flow is due to both the top plate shearing with
avelocity V injhe x-coordinate direction and pressure gradients along
the x-direction.

By virtue of Tanner’s theorem [7] and the uniqueness? of plane
creeping flows of second-grade fluids, as far as the velocity field is |
concerned, it is sufficient that we obtain the solution for the velocity
corresponding to the flow of a Navier-Stokes fluid across the slot. The
balance of linear momentum in the case of a Navier-Stokes fluid in
plane motion, in a Cartesian coordinate system, reduces to

Vi =0 in 4,
where

4 4 4
A S SR 3)
ox4 ox2dy? oyt

is the usual biharmonic operator, and y is the stream function defined
through

o
+ 2

ulx, y) = o

2 The uniqueness theorem for plane creeping flows of a fluid modeled by
equation (1) has been established by Fosdick and Rajagopal [5] for the exact
model and Huilgol {8] for the model in the sense of second-order approxima-
tions. .
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Flow domain with arbitrary projection or depression

Fig. 1

o

oy ’

where u and v are the velocities in the x and y-directions, respectively.
For the problem in question, the appropriate boundary conditions
are (see Fig. 1)

vix,y)=7F

0 on o
= 4
Vi) {Constant (C) on ofy “
oy (5. y) = ‘0 on oy
on Y V on 0Qy

Yix, y) = fly) as

~ where n is the coordinate direction along the unit outward normal n
to the boundary of .
In the next section we obtain the boundary integral equation cor-
responding to the equations (3) and (4).

x —> foo,

3 The Boundary Integral Equation
Consider the problem

V% =0 in Q (6)
with the boundary conditions
Y(x, ) =f(x,y) on 0%,

and

o

i (x,¥) =g(x,y) on 0%, (6)

on
where 0{2 is the boundary of €1. The solution ¥ for the problem rep-

resented by equations (5) and (6) is uniquely determined in 2, [9], and
has the following form:

¥ =r% 40, N

where ¢ and # are harmonic functions and 72 = x2 + y2 On embedding
Q in an infinite domain, and assuming a layer of fictitious source
points on 9, the harmonic functions ¢ and # can then be expressed
as [10]

600 = [ TOGH s @), ®)
Q
and
000 = | QWG BAs(@), ©
20
where x and £ denote points in Q and 9%, respectively. G (x, £) is the
Green’s function (influence function) and 7'(€) and Q(£) are the source

points associated with ¢ and 6, respectively. Substitution of equations
(8) and (9) into equation (7) leads to
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V() = r2(x) fa TEOGCK, Has(®) + fa L QBGK, Hds®. (10)

As x approaches a point %’ belonging to the boundary, we obtain from
the boundary conditions (6) that

Fx) = r2(x') j; PRGN, Hds() + j; QG £)ds @),

(11)
and
g0 =r20) [T 2 i, Bras(h
20 any
Ara(x’) ,
+ —5;:“ j‘m TEG K, E)ds(§)
a ’
+ J Q050w pas®, 1)

where d/0n, denotes partial differentiation in the direction of the

unit outward normal at the point x’. T(£) and @(£) can now be ob-

tained from the coupled boundary integral equations (11) and (12).
For the two-dimensional problem under question

1
Gx, §) = gln rix, £). (13)

In order to solve the boundary integral equation (11) and (12), we shall
discretize the boundary into N intervals AS;(j = 1,. .. N), and assume
that the fictitious source points T'(§) and Q(£) are constant over each
of these intervals. The boundary integral equations then reduce to

) N
f(x)=’2—;j§1 T(8) f In (e, ds;

AS,

1 N .
+ —Z;jgl Q) j;Sj Inr(x, £)ds;, (14)

and
200) - rZ(;') ng () fA N a:% Inr(x, £)ds;
.\ a;:)()’z_l;,i () j; o It s, |
+i,§1 a® . a:,f Inr(x, §)ds;. (15)

When £ approaches ¥/, the integrals involving both In r(x’, £) and
(d/dn,) In r(x, £) become singular and it can be easily verified

that
—_— = 1 s
2

Inr(x, £)ds(§) = =,

(16) .

f Inr(x, £)ds(§) = AS (ln
AS

f 0
AS On

where AS is an interval containing the point x’. Thus equations (14)
and (15) reduce to

and

{1

X

).i2 f N
fi= 2— [ASi (ln —l — 1) T; + > In rijTjASj]
T =i
1 S; N
+ — [ASi (ln é'— - 1) Q:+ 2 In r,-ijASj] (18)
27 2 =L

i
and

(19)

I‘iz N 9o ]
g=—|xTi+ X —1In I‘ijTjASj
2% f;li n; l
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Fig. 2 Mesh arrangement in a rectangular slot of depth d and width W

b
o AS ( l—— —1)T +J§ll lnr,,T,AS]
+ — [WQ, + E ln rij Q5 A ] (19)
(Cont.)

where the suffixes i and j denote the value of the functions at the
points x” and £, belonging to the N discretized intervals, respectively.
Finally, equations (18) and (19) can be expressed in the form

wle olld-L) 0
27 |C D] 1] '
where
AS;
cerifn TL[ Jeformn o
J#t
AS;
=1n |—jf - 1|+ Z Inry, {22)
2 2
C=r,-27r+bL(ln| ‘ )
on
or2
; ln ri; + ‘8; In ri;| AS;, -(23)
;4
=x+ }: rUAS,, (24)
T, = f Tydsp, (25)
ASk
Q= f Qrdsk, (26)
ASy
and
gr = f grdsg. (27)
ASp

Ihe system gf equations represented by (20) can be solved for T and
) and once T and @ are determined, we can determine the stream
function Y from

r?(x) N

Y(x) = ‘271' Z (28)

1 N .
i+ — 3 Inr(x, j)Q;.
2T j=1

In the next section we shall provide an example which is of significance
in rheology.

4 Computation

We shall plot the streamlines due to the flow of a second-grade fluid
past a rectangular slot of finite width and depth as shown in Fig, 2.
We subdivide the boundary into 92 meshes (see Fig. 2) and define
nondimensional quantities
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VD
where C and V are the boundary conditions in equation (4), and d is
the depth of the slot and w the width of the slot. A computer program
has bee_r_l_ written to calculate T and § from equation (20). With the
help of T and @ so determined, the streamlines are plotted employing
equation (28).

5 Results and Discussion

First, we computed the streamlines due to the flow corresponding
toz = 0 and P = 0, which is the flow between two infinitely flat plates.
We find that our results are in very good agreement with the classical
couette flow solution. We find that depending on the nondimensional
numbers z and P there exists two distinct streamline patterns, namely,
Figs. 3 and 4. Fig. 3 corresponds to z = 1 and Rv = (.5 wherein there
are two distinct groups of eddies. In fig. 4 which corresponds to z =
1 and P = 1, we find that these distinct eddies have coalesced.

To plot the streamlines due to the flow past a projection or de-
pression of arbitrary shapes poses little problem. The same computer
program can be employed with a different set of field points to solve
the appropriate problem. '

Finally, we wish to add that the boundary integral technique has
the advantage of being accurate in addition to permitting a more ef-
ficient use of the computer in comparison to other numerical tech-
niques.

6 Determination of Pressure Error
The hole pressure error, due to the flow of a second-grade fluid past
a slot of finite depth, can be expressed in terms of the values of Yyx,
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Yy, and Yy, at the points 0 and C (see Fig. 2), where ., denotes
0%/0x2, etc. An expression for these partial derivatives can be obtained
in a manner similar to that in which equation (28) was obtained, and
hence the hole pressure error can be computed. A slight modification
of the computer program can be made to determine the variation of
the hole pressure error, with the nondimensional quantity d/w, for

a fixed D/W.
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Fluid Motion Past a Porous Circular
Cylinder With Initial Pressure
Gradient

The problem of two-dimensional flow, past a porous circular cylinder, with initial pres-
sure gradient is solved using the method of matched asymptotic expansions. It is found
that the drag force experienced by the cylinder is increased due to initial gradient al-
though it remains smaller than the drag force experienced by an identical impervious

body.

Introduction

The limits and nature of the validity of Darcy law has been a subject
of every day interest to the industry for many years. It is well known
that as the Reynolds number, characteristic of the flow through porous
media, becomes large, Darcy law loses its predictive accuracy in the
laminar regime itself [1] and ultimately becomes void. Similarly for
very slow speeds, the flow description deviates from the “Darcy flow
regime.” This clearly shows that Darcy law is valid only over a limited
range of Reynolds number.

In particular, for very slow velocities, it has been found experi-
mentally that the fluid moves more slowly than is predicted by Darcy
law. Consequently, a limiting velocity may exist under which the
Darcy law ceases to be valid. This phenomenon was first observed by
Schmidt (see [2]). Lower limit of validity of Darcy law is induced by
the increasing effects of molecular.forces. The region where the mo-
lecular forces influence the seepage is called the region of micro-
seepage. The idea of limit gradient, also called initial gradient, at
which the fluid motion occurs, was set forth empirically by Puzyr-
evskaya [3]. The existence of the pressure gradient shows that in
certain conditions, account must also be taken of the rheological as-
pect of motion [4]. In dense clays and heavy loams, in which the water
is of a molecularly bound nature, seepage starts only when the pres-
sure gradient exceeds a certain value.

The existence of initial gradient in clayey and other fine grained
soils has been attributed to the predominance of surface forces over
gravity forces existing in fine grained soil and generally these surface
forces are strong enough to counteract a certain portion of applied
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pressure gradient [5]. It is therefore natural to expect that the lower
the porosity and smaller the grain size, the higher will be the surface
forces resulting in an increase in initial pressure gradient.

Consequences of the existence of initial gradient are of potential
interest in several disciplines such as ground water movement and
drainage in clayey soils, soil water movement to plant roots, etc. In
drainage problems, nonrecognition of the role of initial gradient will
result in inefficient layout of drains [6]. Valsangkar and Subramanya
[7] and Arumagam [8] recently investigated the effect of initial gra-
dient on various physical problems of interest in the field of drainage
and irrigation. ‘

The mathematical formulation and application to some simple
problems of the phenomenon of motion with initial gradient was first
given by Gheorghitza [9] which was later generalized by himself [10]
to include the nonlinear effects caused due to microinhomogeneity
of the macroscopically homogeneous porous medium because of the
varied effects of the rheological properties of the medium. Later
Gheorghitza [11] himself solved the problem of motion of a sphere,
with initial gradient in Stokes flow.

Here, we propose to solve the two-dimensional-problem of flow past
a circular porous cylinder with initial gradient, by the method of
matched asymptotic expansions as have been done by Kaplun [12]
for an impervious cylinder and by Shi and Braden [13] for the flow
past a permeable cylinder.

Mathematical Formulation

Consider the flow of an incompressible viscous fluid past a circular
porous cylinder of radius a and permeability %’. Let the free-stream
velocity be Ui with origin of the coordinates at the center of the cyl-
inder (see Fig. 1). We assume Q' to be the filtration velocity and K*
to be the initial gradient which is the critical value of the pressure
gradient VP, P’ being the pressure in porous medium. Flow through
the porous medium starts when | VP’| exceeds K*, otherwise the po-
rous body behaves as an impervious one, and the analysis of flow past
an impervious body holds for this case [12].

SEPTEMBER 1980, VOL. 47 / 489
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Fig. 1 Configuration of the problem

Introducing the following dimensionless quantities

pp=pl) @, K
wU U’ a’ a?
P - P, Q’ 2K+

p=tB =P g X (1)
wU U wU

the equations governing the flow outside the cylinder take the
form

Re (g°V)q + Vp = Viq 2)
vq=10 (3)

while the flow in the porous matrix is governed by

0 for|VP| <K

Q= op )]
-k IVP—K-—] for |VP|>K
|VP|
va=0 (5)

where the Reynolds number Re = aUp/pu, p being the density and u
‘being the dynamic viscosity of the fluid.
The concerned boundary conditions are

p(1,0) = P(1,9) 6)
q-(1,0) = Q,(1,0) Q]
q4(1,0) = 0 8
q(r,8) =ilasr — o 9

where the subscripts r and 8 denote the radial and transverse com-
ponents, respectively.

Solution

It is clear from the physical aspect of the problem that the Reynolds
number Re < 1. The set of equations (2)-(5) with the conditions
(6)—(9) can be solved by introducing three simultaneous asymptotic
expansions—an interior expansion which is valid in the porous matrix,
the inner expansion which holds good near the cylinder, and an outer
expansion which describes the flow phenomenon far away from the
surface of the cylinder. We now give the construction of these ex-
pansions and the corresponding equations which hold in the respective
regions.

Inner Expansion. We take the inner expansion of the form

(10)
(11)

q=¢qot+e2q +....
p=epo+eipi+....

where € is some function of Re, the exact form of which will be de-
termined by matching.

The governing equations for the foregoing expansions are well-
known Stokes equations -

V2q,=VYp, n=0,1,2....
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(12).

Vear, =0 13)

Interior Expansion. In view of (10) and (11) and the boundary
conditions (8) and (7), the interior expansion should be of the form

Q=eQp+ e +. ...
P=€P0+€2P1+.‘..

(14)
(15)

Further the equations (4), (14), and (15) suggest the form of the
perturbation expansion of K as

K=eKo+ K1 +.... (16)

In view of the similarity of phenomena and nature of the solution
to be expected in our present problem with respect to the motion of
a permeable cylinder with zero initial gradient [13], we observe that
a linear function of x satsifies the equation for P which is obtained
from (4) and (5) as

2
vip o K _[oap _ TP VATPIY
|vP| 2|vP|?

The governing equations for the various order interior expansions
can be obtained from (4) and (14)-(16).

Outer Expansion. In the Oseen region, the inertial and visous
terms become comparable to each other, hence we introduce the outer
variables as [13]

(1mn

Z=Rex, 7=Rey (18)
and
§=q and p=—-p (19)
Re

The equations governing the flow field in the outer region are
@V)g + Vp = V% (20)
V=0 (21)

Outer expansions are of the form

G=i+eq+..... (22)
P=ep1+.... (23)

The governing equations for the outer expansions would, then be
given by

- 2\, o om-1
V2 ——§p = Vpp + 2 (8-V)8n—1
ox i=1
n=123, (24)
Vegn = 0 - (25)

It is required that the outer solution, besides satisfying the
boundary condition at infinity, matches asymptotically with the inner
solution in some overlapping domain.

Zeroth-Order Inner and Interior Solutions. In view of the
matching condition of gy with the outer limit 7, the zeroth-order inner
and interior solutions satisfying the boundary conditions are obtained
as

Po=—— (26)
r
R 2k — kK 1+ 2k — kK
qo =1 |logr +-1+———0] —EVr —————°v(3) 27
2 r r2
Py=—2 (28)
0 f 2 < K,
= [ o S (29)
k(2 - K())L for 2> K()
with
lim (—elogRe) =1

(30)
Re—0 ‘ .

The form of (30), without loss of generality, may be written as
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—celogRe=1+bie+ bae +. .. (31)

where b7 will be found later.

First-order Outer Solution. We obtain the appropriate first-
order outer solutions which match completely up to an order € with
the inner solutions as

0z
pr=-2 (32)

r
&1 = ~20e%/2Ko(F/2) + 2V[e*/2Ko(7/2) + log F) (33)

where Ko(7/2) is the modified Bessel function of the second kind and
zero order and the value of b1 in the expression (31) is obtained as

1+ 2k — Kok

P (34)

by =y —log4~
where vy is the Euler’s constant.
First-Order Inner and Interior Expansions. The first-order
inner and interior expansion which satisfy the appropriate boundary
and matching conditions up to an order €2, obtained are

p1=P1=0 (35)
and
Kk ], x
4= {l VS (36)
= lO ) for 0<K,; @n
—kKyu for 0>K;
with
K1k
(38)

b2=—2—— and b,=0 for n=3"

Now, the form of ¢ is completely known from (31), (34), and (38)
and may be written as

€= 2[1+ (1 - 2K1ke,2)1/2]~1 X ¢, (39)
where
1
€= : (40)
4u exp [(1 — Ko/2)k] 1
log +--
Ua 2

Second-Order Outer Solution. The second-order outer solution
§2 can be obtained by solving the equations

~ Pe} o~ -
(V‘Z - _b}) G = VP2 + (@1-V)as (41)-

V=0 (42)
with the boundary condition that it vanishes at infinity. Now, since,
there are no unbounded terms in the second-order inner solution to
be matched, it is required that G must be continuous at the origin.
It implies, in turn, that &z should only be the particular solution §g,
of (41) and (42).

Now, since the body, in the Oseen limit is transcendentally small,
only §2 (F — 0, 6) matters for matching purposes.

Following Kaplun [12] we have

(43)

Third-Order Inner and Interior Solutions. The third-order
inner and interior solutions which satisfy corresponding boundary
and matching conditions are obtained as

G (F—0,0) = ~0.871

Py=174%, Py=174x
r2

. 1+ 2K 1+
qo = 0.87 [i (log r+ ) o - 2k v (i)} (44)

r 2 r2

kK, .

— —2— [L - V(x/rz)] (45)
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Fig. 2 Drag coefficient C4 versus Reynolds number Re
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Drag. The drag force experienced by the cylinder, obtained by
using the momentum integral is

D; = f‘f; [—pni + T — qiq,-nj]ds 47
Coefficient of drag Cy is obtained as
Dx
Cy= "y = [e — 0.87¢2 + 0(e%)] 48)
where
e=2[1+(1-2K ke )V 1 X ¢, (49)
and
1
€ = {50)

4 Ko) 1
log — - exp |k {1 — =2 + - —
%R, e"p[ ( 2] 5 Y

We find here that similar drag formula as (48) holds in the problems
of flow past (i) an impervious cylinder, and (ii) a permeable cylinder
with zero initial pressure gradient, the difference is in the expressions |
of the perturbation parameter in the three cases. If ¢, and ¢; are the
perturbation parameters in the cases of permeable and impervious
cylinders, respectively, it may be seen that

€p < €< g (51)

The obvious implication of (51) is that the drag force is increased
due to the effect of initial gradient, although it still rethains smaller
than the drag force experienced by the identical impervious body.
This result may also be observed from the graphical representation
in Fig. 2 where variation of Cy with R, is shown. It may also be ob-
served from Fig. 2 that for the same initial pressure gradient, the rate
of increase in the drag force, due to it, increases with increasing per-
meability. The graph also shows that the increase in permeability
results in the decrease in Cq.

If the initial gradient K is taken zero in the present analysis, we
recover the results due to Shi and Braden [13]. The results due to
Kaplun [12] and Proudman and Pearson [14] for the flow past an
impervious cylinder may be obtained by taking k£ = 0 in the present
results.
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Static Equilibrium of a Fluid-
Saturated Porous Solid

The equilibrium equations for a fluid-saturated, porous elastic solid are obtained by a
variational method. The total energy of the body is assumed to be the sum of that of the
fluid and that of the solid, and the free energy of the solid is taken to be sensitive to its po-

rosity.

Introduction

We develop the equilibrium theory for a fluid-saturated porous
solid using a principle of virtual work introduced in a similar context
by Kenyon [1]. The free energy of the system is supposed to be the
sum of that of the solid and that of the fluid. Here, each of these
energies is taken to be independent of the presence of the other con-
stituent and the free energy of the solid is assumed to depend upon
the volume fraction of the solid as well as upon its deformation. In this
event the balance laws and boundary conditions are simple in form
and have easy physical interpretations. In particular, the pressure in
the pore fluid is seen to be the “external” generalized force associated
with changes in the solid volume fraction. Such a generalized force
appears in the theory for granular materials proposed by Goodman
and Cowin [2] and in a corresponding theory for porous solids put
forth by Nunziato and Cowin [3]. With this form of the free energy
it is possible to relate these balance laws to those of the appropriate
specializations of the more general and somewhat more complicated
theories of Drumheller and Bedford [4] and Nunziato and Walsh [5]
and to recover, in a somewhat different guise, several results obtained
by Biot [6] in his specialization of a more general variational principle
to fluid saturated porous solids. The common feature of all of the
theories already mentioned is that the apparent density of each
constituent may be changed in two ways: by changing its volume
fraction; or by changing its true density. In this respect these theories
differ from the perhaps more familiar mixture theories reviewed, for
example, by Bowen [7].

Equilibrium
The total density g of the fluid-saturated porous solid is the sum
of the apparent solid density p; and the apparent fluid density ps. The
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apparent density of the fluid may be expressed in terms of the solid
volume fraction v and the true density +y of the pore fluid as

pe = {1 —r)y. (1)

There is, of course, a similar decomposition for the apparent density
of the solid.

The volume density of free energy W is supposed to be given as the
sum of contributions from the solid and the fluid,

W = p1by + paiba, 2)
where, for the solid,
Y1 = iy, Fia), (3)

with Fi4 = x; 4—the deformation gradients associated with the
mapping x; = %;(X4) from a reference configuration; and, for the
fluid,

Yo = Yaly). ‘ 4)

The energies are assumed to be unchanged in rigid motions of the
material. The energy summation apparently ignores any energy of
interaction between the solid and fluid. However, for the fluid-satu-
rated porous solids, this additional energy is likely to be that associ-
ated with wetting the interior of the solid and, as Biot [6] points out,
it may be considered to be part of the energy of the solid. In mixture
theories formulated to describe molecular diffusion such a summed
energy is known to be realistic only for mixtures of perfect gases
[71.

In any event, the principle of virtual work based on this energy has
the form (1],

3fyWdV = [yvoWdV + fs(p1y10x; + papady:)dS;
= f5(Tidx; — Pniby;} dS + fv(prfibxi + pabiby;)dV, (5)

where the integrations are to be carried out over a volume V fixed in
space bounded by the surface S, and y; is the position of a fluid ele-
ment. The virtual displacements dx; and 8y; are calculated following
fixed material points of the solid and fluid, respectively. Associated
with dx; are the surface traction T; and the body force f;; corre-
sponding to dy; are the pressure P and the body force b;. The first
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equality follows from the variational form of the transport theorem

(8].
The variations of Fi4, v, and -y are taken to be those induced at a
fixed spatial point by the virtual displacements. In this case

0F;p = 0x;pFra — Fiapbxp. (6)

Fluid mass conservation requires that the virtual displacement dy;
and the variations of vy and » be related by

Sy = »)] + [y(1 = »)dyil.i = 0. (7

Solid mass conservation is satisfied by regarding p; as given in terms
of the determinant J of F;4 by

= poJ 71, (8)

whére pg is the, supposedly constant, apparent density of the solid in
its reference configuration.

Upon carrying out the variation in (5), respectlng (6) and employing
(7) to eliminate 6y in favor of 6v and 8y;, then integrating by parts,
and collecting coefficients of like terms, we obtain

AW
e F L+ i 5 i
fv[ (aFm kA),k o, ,le] %

e oW
v[(b‘:)’i =050 = oo ] y
oW
1- — sridV
h v ;q 4

ow
- fs [(aTMFkAnk + piin — T,-) 0x;

W .
- (’Y %— —padat P) nidy;| dS =0 (9)
Y

Using the assumed additivity (2) of W and introducing the defini-
tions

Y1 dys
tip = ——F s = g2 10
ik = 01 oF., k4 wEy i (10)

and

xlfl 1

u=ve+y7lr, p=(1-v)7w, g= —ney
we may write the local balance laws resulting from the variational

principle as

Link = P+ papi + p1fi = 0, (12)
ni—bi=0, (13)
and
g—-m=0, (14)
in V, and the boundary conditions as
T; = tignk, (15)
and
P=p, (16)
on S.

The familiar definitions (10) and the form of the boundary condi-
tions (15) and (16) lead to the identification of ¢;; as the apparent
stress in the solid, 7 as the pore pressure in the fluid, and p as the
apparent pore pressure. The assumed invariance of Yy in rigid motions
insures that the stress is symmetric.

The balance laws (12) and (13) are the same as those obtained by
Kenyon [1]. The balance of force for the solid (12) contains explicit
contributions arising from the pore pressure. These are written here
in terms of the apparent pore pressure p and the function u. As dis-
cussed by Biot [6] and Kenyon [1], u is analogous to the chemical
potential of a diffusing fluid in a classical mixture theory for molecular
diffusion. Note that the force balance for the pore fluid (13) requires
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that an external force compatible with equilibrium must be the gra-
dient of a potential function ¢,

bi=—¢; (17)
In this event (13) integrates to
et o =c, (18)

where ¢ is a constant. With the definition (11)4, it’s possible fo show,
as does Biot [6], that (18) is the static form of an energy integral for
inviseid compressible fluids (Lamb [9, Chapter I1}):

Sy ldmr+ ¢ =c; (19)

and this provides the more familiar identification of u as the pressure
function of classical hydrodynamies.

The final condition (14) resulting from the variation provides a
relation between the pore pressure of the fluid, the deformation of
the matrix, and the solid volume fraction. Kenyon [1] did not obtain
this balance law because he did not allow the free energy of the matrix
to depend upon its volume fraction. He did, however, later adopt a
somewhat similar relation when dealing with an incompressible ma-
trix and incompressible pore fluid [10].

Using (14) it is also possible to obtain an explicit interpretation of
a generalized force that appears in theories for porous solids {3] and
their fluid counterparts, granular materials [2]. In these theories only
the free energy of the matrix is taken into account and a balance law
for “equilibriated force” serves to determine the solid volume fraction
and contains an external generalized force. If here we had felt that it
were necessary to suppose that the free energy of the porous solid
depended upon the spatial gradients of the solid volume fraction, the
static version of the balance of equilibriated force would have been
obtained in place of (14) with the important difference that, because
the free energy of the pore fluid had been included in the variation,
the negative of the pore pressure = would stand in place of the volume
density of external generalized force. The analogous result for granular
materials is obtained from the theory for the porous solid by requiring
that the free energy depend on Fj4 only through J. The identification
of the volume density of external generalized force with the negative
of the pore pressure had been anticipated by Jenkins [11]; who,
however, did not distinguish between the pore pressure and that
fraction of it communicated to the matrix.

In order to relate the stress relations and balance laws to those in
Kenyon’s [10] theory for incompressible constituents, it is necessary
to adopt a more symmetric notation and to write the free energy of
the solid as a function of F;4 and the true solid density 1

Y1(Fia, v) (20)

= Y1(Fia, poy1 ) =¢1(Fia, v1).
The latter is the form of this free energy favored by Drumheller and
Bedford [4]. In terms of it, (10); becomes, through an apphcatlon of
the chain rule,

tip = Tip — VT 10ik, (21)
where
) , o '
TeEp1—F and = —_ 22
& plaFiA kA 1= ’)’1a " (22)
while the balance law (14), takes the form
e a %y (23)
oY1 07y
or
Ty — T2 = 0. (24)

Thus, in equilibrium, the true pore pressure of the fluid is balanced
by a true “matrix pressure” in the solid. As a consequence of (24), the
total stress may be written as

tik — DOk = Tir — Tabik. (25)

" Then, if the total surface traction T; — Pn; is supposed to be a contact
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traction 7; less the pressure 7 of that pore fluid exterior to the
solid,

T; — Pn; = 1; — wn;, (26)

it is natural to follow Kenyon [10] in supposing that the pressure in
the pore fluid is continuous over the boundary of the solid and in in-
ferring from the boundary condition on the total stress that 7, is the
apparent contact stress in the solid.

The forms of the stress relations and balance equations appropriate
to incompressible materials may be obtained from the principle of
virtual work by introducing Lagrange multipliers. For example, when
the pore fluid is incompressible, 75 is the multiplier associated with
this constraint and, as such, is determined up to a constant by (18).
Then (12) and (14) serve to determine x; and -1 (or »). When both the
pore fluid and the material of the matrix are incompressible, 7¢ and
7y are, respectively, the multipliers associated with these constraints.
In this case, g is determined as before; then 7 is fixed by (14).

The general thermodynamical theories for chemical reacting
mixtures of solids and fluids that have been proposed by Drumheller
and Bedford [4] and Nunziato and Walsh {5] can be specialized to
apply to a single fluid saturated porous solid. When this is done it is
relatively easy to recover from them the equilibrium theory previously
outlined provided that in the equilibrium specialization of these
general theories the form of the free energy given by (2)-(4) is used.
The advantage in relating the three equilibrium theories is that in
some applications it may be easier to generate a nonequilibrium
theory for the fluid saturated porous solid by adding the appropriate
inertial, thermal, and dissipative terms to the equilibrium theory
obtained here rather than simplifying either of the general theories.
This, for example, is the approach adopted by Biot [6].

Journal of Applied Mechanics
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Pipe Flow of Plastic Materials

Plastic materials behave as both solids and fluids. When forced to move in a pipe, they
flow as a solid plug with a slipping boundary. Depending on the cross-sectional shape of

the pipe, the slipping boundary may not coincide with the inner boundary of the pipe.
When such is the situation, there exist dead regions in the flow. This is undesirable when
the material is time degradable as those encountered in the food processing and chemical
industry. Two formulations of nonlinear programming problems governing the pipe flow
are presented. They correspond, respectively, to the lower bound and upper bound theo-
rems of plasticity. An efficient method is developed for the nonlinear programming prob-
lem formulated from the upper bound theorem. Application of the method to two exam-
ples are demonstrated. )

Introduction

It is a widely acceptable theory that for a class of materials, there
exist a yield function f(a) of the stress tensor. For the stress states in
the set

E ={o:f(a) <fle*)} (1

the material behaves as a solid, where o* denotes the states of all yield
stresses. Under these yield stresses which satisfy

f(o*) = constant 2)

the material flows as a fluid. This class of materials is called perfectly
plastic [1]. The yield functions are theoretically convex.

This simple switching type of nonlinear behavior has made the
mathematical formulations for such problems difficult to solve. Only
limited number of problems with relatively simple domains are solved

often by a special technique to each of the problems. Two general

theorems [2] are available to bound the exact solutions. A lower bound
solution which satisfies the equilibrium equation and stress boundary
conditions

V-c=binDandn-o=tondbP 3)
where b and t are known vectors and the yield criterion
f(0) < constant (4)

bounds the exact solution from below. An upper bound solution which
assumes a physically reasonable kinematics of flow and satisfies in-
tegral equilibrium bounds the exact solution from above.

It is conceivable that the exact solution can be approached by a
minimization procedure applied to all possible upper bound solutions
or a maximization to lower bound solutions. These ideas lead to for-
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mulations of mathematical programming problems. Although some
problems of this type are solvable in principle, the large size of the
finite dimensional space of numerical approximation and computa-
tional inefficiency have kept most solutions from easy reach.

Both maximization and minimization formulations on the pipe flow
problems are presented. A possible method for the lower bound for-
mulation and its computational inefficiency are discussed. The upper
bound formulation leads to minimization of a nonlinear functional
with simple bounds on the variables as constraints. An efficient
method for this formulation which applies to general pipe cross sec-
tions is developed and applied to two examples.

The Problem

Pipe flows of highly viscous materials like cream and grease and

- granular materials like sand and coal powder behave similarly that

they flow under a critical pressure gradient below which static equi-
librium is maintained without flow of material. The perfect plastic
model [1] can best approximate this behavior. In this section, two
formulations for such flow problems are presented.

By a semi-inverse assumption similar to the Saint-Venant’s on the
torsion problem [3], we assume the nontrivial stress components in
a steady-state pipe flow in z-direction to be

Oxx = Oyy = 02z = —Cz

Ozx = sz(x; y): Ozy = a'zy(x; y) (5)

where C is a positive constant having the meaning of hydrostatic

pressure differential per unit pipe length. The nontrivial equilibrium
equation is ’

Q02

ox oy

The yield criterion (von Mises or Tresca) reduces to

o0,
0%y . ®)

2
o+ 0%y < af M

where oy is the yield stress in shear.

Any solution that satisfies (6) and (7) is a lower bound solution. The
maximization of lower bound solutions leads to the following non-
linear programming problem:
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Maximize C

00z 00,y

Subject to =C (9)

ox oy

2 2 p)
ozt 03, = 05

Since the constraint set is convex, the problem has a unique solution.
Presence of quadratic constraints in (9) makes the problem difficult
to solve. An attempt [4] is made to linearize the quadratic constraints
by a set of piecewise linear inequalities and using the finite elements
to discretize the differential equation in (9). The resulting linear
programming problem can be solved but rather inefficiently.

Two dual formulations [4, 5] can be solved more efficiently but the
mathematical language used in [4, 5] may not be understood by en-
gineers who actually need to solve these problems with complex do-
mains. )

An intuitive approach is adopted for the presentation of the upper
bound formulation which is the dual of (9). Let the cross-section of
the pipe interior be the domain Q bounded by a closed curve T'. If the
plug flow involves material contained in a subdomain @’ ¢ Q where
(V' is bounded by IV with outward normal n, the stress acting on the
lateral plug surface is ¢, = go. The z equilibrium on the plug of unit

length is
f oods = ﬂ CdA
™ Q

_ where C is the same as that in (9). For any reasonably assumed IV, C
computed from (10) is an upper bound to the exact value which is the
solution to the nonlinear programming problem

Minimize p= ¢ ds / f f dA
§ .

Subjectto Q' € Q

where p = C/oo. This is the inverse of the standard isoperimetric

problem [6, 7].
. d
Maximize j]: A/ﬁ/ ds

Subjectto Q' c @

for which exact solutions exist for a few simple domains.
An efficient numerical method for the solutions of problem (11)
with a general domain is given in the next section.

(10)

(11)

(12)

The Method

For a general cross section €2, we assume there exist an origin O €
2 such that the polar description R = R(f) of T' is a single-valued
function. Let the slip domain @’ be bounded by r = r(f) then

r(8) < R(f) (13)
The nonlinear programming problem (11) takes the form
Minimize p= $/r'2+r2db/f Yor?dt (14)
Subjectto r <R

which is a one-dimensional problem for optimal function r(8).

A finite-element scheme may be used to discretize the integrals in
(14). We prefer the more familiar Simpson’s rule [8] with the 2 angle
measure devided into 2N equal intervals. The finite dimensional space
approximation of (14) has the form

Minimize p = f(r)

) 15
Subjectto 0<r; <R, s

i=12,...,2N

where r and R are vector representations of r(f) and R(9).
Let g; = of/0r; and set

i=1,2,.,1,2.,2N
(16)

gi=0 if of/or;i<0 and r;=R;

The gradient vector so constructed is a projected gradient along active
constraint boundaries. )
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DEAD REGIONS ar) | G Teyncr
0.0 1,000 1,090
4,5 1.003 1.003
9.0 1,012 1.012
13.5 1.028 1.023
13.0 1,051 1,051
22.5 1.082 1,082
27.0 1121 1,121
31.5 1,156 1,153
- = 36,0 1.182 1,176
P comp, = 1.881 505 1,197 1.190
Peyacr = 1886 45,0 1.203 1197
Fig. 1 Comparison of computer and exact solutions
351
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P
2.5
2.0 1
0 0.2 0.4 0.6 0.8 1

b/a

Fig. 2 Pressure per length required for plastic flow

We may start from an initial solution say r{®) = R and improve the
solution by the updating

rktD = ) — og®) R =0,1,2,... 17

where « is the descent parameter obtained by a linear search [9].
Quadratic minimization is used along the direction of —g in the ex-
ample problems to determine « at each step.

The updated r must satisfy 0 < r < R. This projected gradient al-
gorithm converges rather rapidly as demonstrated in the following
examples. The efficiency of the algorithm may be improved further,
but it is adequate for all practical purposes.

The method should apply to a wide variety of pipe cross sections
of practical interest. It tolerates certain nonconvex domains provided
the condition of single-valued R(0) is satisfied.

Examples

Applications of the method to a family of rectangular and a family
of elliptic pipes are presented here with the square and circular ones
as special cases. }

1 Rectangular Pipes. Consider first the flow in a 2 X 2 square
pipe for which the exact solution, pmin = 1 + /7/2, is known [5]. By
symmetry, only one-eighth of the domain (0 < 6 < #/4) needs be
considered for the computer solution. For N = 20, (A8 = 7/160), the
computed and the exact solutions are presented in Fig. 1 both nu-
merically and graphically. The graphic display cannot show the error
of reomp In the 4th digit. Such accuracy is achieved with 74 iterations
at a mere 2.03 sec CPU time.

A family of rectangular domains (2a X 2b) with the same area as
that of 2 X 2 square is considered. We have therefore the relation ab
= 1. For various b/a ratios, the required pressure per unit length is
shown in Fig. 2. For b/a < 0.530159 four dead regions merge into
two.
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2 Elliptic Pipes. In this family, a special case is the circular
domain of radius 1. There is no dead region and p = 2 is the minimum
solution to (14).

The family of ellipses with major and minor semiaxes a and b (ab
= 1) has the same area. For b/a Z 0.733576, there is no dead region
in the flow. The dead regions for other elliptic domains are shown in
Fig. 2 along the pressure curve.

The extensive parametric computations in the examples has set
back a mere 10 dollars from an estimated computing budget of 150
dollars.

Final Remarks

An intuitive approach often produces excellent mathematical
formulation to a physical problem. The method presented is simple
and efficient for the plastic flow in pipes of an arbitrary cross sec-
tion.

If the problem of the square pipe is solved by an incremental elas-
toplastic computer code, four plastic zones will first be developed at
the midpoints of the edges. The zones will then spread and have finite
area. They will finally join together and reduce to a closed curve with
zero area. Complicated local loading and unloading must be examined
at each increment during computation. Approaching the flow solution,
the matrix equation involved in the incremental method becomes
increasingly ill-conditioned [10] and therefore more difficult to solve.
The mathematical programming approach avoids these difficulties
and directly seeks the flow solution. It is more suitable for this
problem.

498 / VOL. 47, SEPTEMBER 1980

The field of plasticity éxperiences slow development especially in
the solution methods area. The type of nonlinearities in plasticity lend
the problems to numerical approaches. The incremental method has
produced a large number of solutions. The mathematical pro-
gramming approach deserves more attention and study.
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Response of a Rigid

Sphere Embedded in a Viscoelastic
Medium and Related Problems

Random and harmonic responses are considered for a rigid movable sphere embedded in
a viscoelastic medium. The solution takes into account the filtering effect of the viscoelas-
tic medium on the traveling random waves. The sphere can be also randomly located with
respect to a plane at which the spectral density of incident stochastic waves is prescribed.
For a Maxwellian medium with small losses the exact stationary response is derived. The
results regarding the nonstationary response of the sphere embedded in a Kelvin- Voight
medium are obtained numerically. It is shown that the results obtained are applicable
to the prediction of mechanical properties of composite materials, as well as to those of
buried structures, when these objects are excited by incompletely known or random dis-

turbances.

1 Introduction

Scattering of waves by an obstacle embedded in an infinite de-
formable solid has been intensively studied for the past 20-odd years
following the work by Ying and Truell [1]. The continuing interest
is due to the importance of this phenomenon to the mechanics of
materials and structures and to seismic engineering. An extensive
bibliography on this subject is given by Scott [2]. Accordingly, we do
not provide here a complete list of references. The monograph by Pao
and Mow [3] and the review papers by Achenbach [4] and Datta [5]
cover the majority of the existing results. Recent works by Pao [6],
Waterman [7], Lewis, Kraft, and Hom [8], Gaunaurd and Uberall [9],
and Mei [10] provide an extension of the basic approaches and tech-
niques.

All these works deal with deterministic incident waves which are

supposed to be fully and exactly known. In distinction to such a for- -

mulation the information available on natural or artificially created
disturbances usually involves uncertainty to a greater or lesser degree.
Moreover, in some problems the disturbance acting upon the obstacle
is essentially random. Appropriate examples may be found in the
works of Beran [11], Lin [12], Bolotin [13], and Newmark and
Rosenblueth [14].

It is obvious that to be more practical the analysis of scattering
phenomena should be combined with an account of random factors
inherent in actual physical situations and, in particular, with an ac-
count of the random nature of the propagated disturbances. Beltzer

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until December 1, 1980. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division, July,
1979; final revision, January, 1980.

Journal of Applied Mechanics

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subjectctco)%érl\l/%nitcg

{15] has considered the random response of a rigid sphere embedded
in a purely elastic medium.! This study has been primarily devoted
*to a mathematical treatment of the problem.

It should be noted that a rigid insert in a deformable solid is an
interesting example of a coupled system and, in addition to its engi-
neering applications, is important from a theoretical viewpoint. In-
deed, it is a generalization of the well-known simple models which
consist of masses, springs, and dashpots. One of the important dif-
ferences is the presence of radiation damping in the general case
considered here.

The present paper uses essentially results given by Pac and Mow
[16] and by Mow [17] on rigid inclusion motion in a perfectly elastic
medium excited by a harmonic wave. The work deals with the fol-
lowing as yet untreated problems:

1 The harmonic response of a rigid sphere embedded in a visco-
elastic and, hence, sound absorbing medium.

2 A description of the propagation process of random viscoelastic
waves and the prediction of their action on a randomly located
spherical insert, including the transient and steady cases.

3 Some applications of the results to the mechanics of composite
materials and to the protection of buried structures when these objects
are excited by incompletely known or random disturbances.

2 Harmonic Response of a Rigid Sphere Embedded in
a Viscoelastic Medium
We deal with an infinite isotropic viscoelastic medium with mass

1 See also, a recent paper by A. Beltzer, B. Robinson, and N. Rudy “The Effect
of Random Compressional Waves on a Rigid Sphere Embedded in an Elastic
Medium,” Journal of Sound and Vibration Vol. 66, No. 4, 1979, pp. 513~
519,
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density p and with complex dilatational and shear compliances D«
and S+, respectively. The medium contains a rigid movable sphere
of density po and radius a. The sphere is located at the origin of the
coordinate system and is excited by plane harmonic P-waves traveling
in the positive z-direction.

Since the boundary conditions at the sphere surface, which match

" the displacements of the medium with those of an insertion do not

depend explicitly on time, the response of the sphere can be obtained
directly from the solution for an elastic medium by means of the
well-known correspondence principle [18]. The same conclusion can
also be reached by reproducing the derivation presented by Pao and
Mow [16] and by Mow [17] for the perfectly elastic case, making one
change only: the two real wave numbers should be replaced by their
complex generalizations.

Making the indicated changes the displacement W of the sphere
is found to be

W= ¢0ikDH(w)e—i“’t (1)

where ¢oikp is the amplitude of the incident wave, Wy;), and H(w),
the admittance function is as follows:

H(w) = 3me~in(—x2n2 — 3ixn + 3)/ix2n* + i[x2(2+ m)
+ x(1+2m)[nsd ~ [x32 + m) + Imx
+2m + 1]n2 —9(x + Dmn + 9m} (2)

with X = ks/kp’ n = akp and m = p/po.
The complex wave numbers kp and ks appearing in (2) are ex-
pressed in terms of the compliances D+ and S+ by

hp = @(pID) 260 ks = w(p|S-DPeies (3)
where
Dx=D;—iDy = |D+|ei¥D; Si=8; —iSy=|S«|e~i*s (4)

Substitution of the expressions (3) into equation (2) makes it pos-
sible to determine H{w) and hence |H(w)|? which governs the
steady-state response. This function is plotted in Fig. 1 according to
equations (2) and (3) and the appropriate equations of Maxwell and
Kelvin-Voight models [18]. Thus the energy losses which take place
in the surrounding medium lead to a decrease in the resonance am-
plitude in comparison with the perfectly elastic medium. However
the details of the response depend upon the viscoelastic model.

3 The Effect of Random Viscoelastic Waves on
Spherical Discontinuity

We proceed now to the analysis of the response to a disturbance
which is taken to be a superposition of traveling P-waves with random
amplitudes and phases. In distinction to purely elastic waves, where
the stochastic process describing such a disturbance is easily con-
structed [15], the case of viscoelastic random waves involves some
peculiarities due to their dispersion and attenuation.

The approach similar to that of control theory [19] can be adopted
to describe the interaction between random disturbances and a dis-
continuity located in a viscoelastic medium. We shall suppose without
loss of generality that the disturbance has zero mean.

To make clearer the physical situation, it can be assumed that the
viscoelastic waves emanate from the plane z = —z4(z¢ = 0) which vi-
brates with random complex amplitudes B(w) (Fig. 2). This leads to
the description of the incident waves, Wy;), in the form of the two
stochastic integrals

W ltz) = f 7 e-ivtgikDWEGR (w) = f

T emiotdA(w,z)  (5)

where Z = 2 + 29, kp(w) = kp%w) + tkp'(w) is the complex dilata-
tional wave number and B(w) and A(w, z) are complex random pro-
cesses with uncorrelated increments. This expression shows that B(w)
and A(w, z) and the associated spectral densities Sp(w) and Sy (w, 2)
are related by )

Alw, z) = j:w etkD(ZdB(e) (—o <w < ®) (6)
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plane random viscoelastic waves
with a known spectral density S

Fig. 2 Geometry of problem

and
Salw, 2)/Sp(w) = |eikpwZ|2 = g—2kpHw)z V)]

The relationships (6) and (7) reflect the filtering behavior of the
viscoelastic medium. As is seen from (7) only the imaginary part of
the wave number affects the spectral density of a process when the
stationary process is considered. -

Let us now suppose that the discontinuity occurs at z = 0 with ad-
mittance function H{(w). Taking into account the time-invariance of
the system it can be found that the response W of the discontinuity
and its nth derivative W) have the following variance functions
when zg is held. constant:

Var [W®)] = f 7 02| H(w)|284(w, 0)dw

= fm w?| H(w)|%e =20 w20 (8)
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(8)
(Cont.)

X Splw)dw(n=0,1,2,...)

When the distance zo of a plane with a known spectral density
Sg(w) is also a randoi variable, the additional averaging must be done
by means of a probability function for z¢. This yields

(Var [W]),, = f_ " w2 H(w)|2(e~20'@20), Sp(w)dw  (9)

where (), designates the averaging with respect to zo.

By adopting the theory of nonstationary stochastic process we now
extend the results expressed by equations (7) and (9) to the transient
case. It can be assumed for this purpose that the nonstationary ran-
dom vibrations with a known spectral density Sg(w;, ws) take place
at z = —z¢. Then the spectral density at the plane z is

Sa(wi, wy, 2) = elkplrfze—ikp* (@228 (w1, w,) (10)

Here the asterisk designates the complex conjugate.
The nonstationary variance for the displacement of the insert is

Var Weao =, f- f (T@0)eol T (@)

X Sp(w1, we) exp [~it(w; — we) — lews]dwy, dwy  (11)

where

(T(w)) 2o = Hlcw) (eik0@z0), (12)

Thus, if Sg(w) and the probability function for zg are known, the
problem is one of evaluating the integrals (9) or (11). Straightforward
application of the residue method in its routine form to evaluate these
integrals leads to computations which are tedious at best. Moreover,
depending upon the types of roots the result is expressed by different
analytical formulas. Therefore, in general, a numerical approach is
preferable. However, it is clear that the derivation of an analytical
solution is very desirable from a variety of viewpoints. In the following
section, we deal with this problem.

4 Stationary Response of a Sphere to Narrow-Band
Random Process ’

Let us consider a rigid sphere with a center at z = 0, which is excited
by random P-waves of a displacement traveling in a Maxwellian
medium (Fig. 2). We assume that ¢p and ¢, in equations (3) and (4)
are small, which is a usual restriction in the dynamics of viscoelastic
composites [20]. The stochastic generalization of an harmonic wave
is a so-called narrow-band process [13]. We suppose that such a pro-
cess takes place at 2 = —zg. This means that

Splw) = bKo[(w-2+ b2)~1 + (w42 + b2 1) /27
and

Salw, 2) = e~ kD28 (w) (13)

where Ky is the variance of the process, ws = wF0, f is the predomi-
nant frequency and b describes the “sharpness” of the peak at w =
6. It should be noted that the relationship 8 > u/ns p must be valid
to insure that ¢p and ¢g are small.

Under this assumption, an exact and relatively compact solution
can be obtained. It can be shown from (2}, (9) and (13) that the fol-
lowing representation is true: '

|H(w, 20)|2Sa(w, 2)
= e~ 2k a+209m 2b K o72g6(no)/he(no)he(—no)w  (14)

where

no = Re (akp); T = a/c; c?

5
= (A + 2u)/p; gelno) = kZ drno'® % he(ng)
: =0

6
= crno®* kpl = 0.5 [(A + 2u)p]Y2/np.
h=0
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Fig. 3 Influence of viscosity on variance of inclusion displacement; Im (akp)

=5.10"%Im (akg) = 7.107% v = 0.3; b4y = 1074

The coefficients dj, and ¢, and other required relationships are
given in the Appendix, It can also be shown that all the roots of hg(r0)
are located in the upper half plane which makes it possible to use the
integral formula due to Phillips [21]. This formula is also given in [22
N. 3.112, p. 218].

By means of this formula the variances of the insert displacement,
the velocity and acceleration are found (using equation (9)) to be

{(Var [W])., = VMeo/(aple); (Var [WD]),,

= VMe1/(aoAe7?) (15)
(Var [W®]),o = VMega/(aoheT?) (16)
where
= —9m2Kobrd; 6= (e~2kpllatzaly
The Ag and Mg; are the determinants of the 6 X 6 matrixs
010305000 d0d1d2d3d4d5
Ag = ; Mgy =
¥ A % A (17)
M, = d1dsdsdsdsdo M= dadzdadsdod,y
A A
where A is 5 X 6 matrix
(4] C2 [ [ 0 0
0 .1 c3 Cs 0 0
A = 0 (o)) Co C4q Cg 0
0 0 c1 c3 Cs 0
0 0 co co c4 Cg,

The results obtained make it possible to estimate the influence of
anyone of the parameters of the system on the variance of the inclu-
sion displacement, velocity, and acceleration.,

Fig. 3, computed from equation (15} exhibits the dependence of Var
[W] upon the predominant dimensionless frequency 8; = 87 for some
values of the density ratio, m. It follows from the comparison between
Figs. 3 and 1 that Var [W] is increased when 8; approaches the natural
dimensionless frequency. Fig. 3 also shows the influence of energy
losses which take place in the surrounding medium.

Fig. 4 shows the dependence of Var [F| upon /; where F'is the force
acting on the inclusion. It is computed by means of the equation Var
[F] = (4ma®po/3)2 X Var [W®)] and equation (16). As the figure and
equation (16) show, the force is very sensitive to changes in at least
the following parameters: half-transit time 7, dénsity ratio m, radius
a, and frequency ;. ’

It should be noted that as has been shown by Moon and Mow [23],
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and by Beltzer [24], the dynamic properties of a composite material
containing dispersed rigid spheres can be predicted on the basis of
the dynamics of a single particle if the mixture is dilute. Therefore,
the high sensitivity of the force to deviations of the parameters takes
place also for this case. This explains the significant dispersion of
mechanical properties observed for composite materials.

Compact closed solution, such as the in the foregoing, can only
rarely be found for problems of this type. In the general case a nu-
merical approach is required.

5 Nonstationary Response and Some Applications of -
the Theory

The application of the results obtained to the analysis of the me-
chanical properties of the composite material was briefly noted in
Section 4. We shall deal here, in greater detail, with applications to
the protection of buried structures subject to incompletely known or
random excitation.

Usually, the effect of a random ground shock on a structure is an-
alyzed by means of a discrete model and the spatial shape and, hence,
the scattering phenomena are not taken into account [25, 26]. The
approach presented in Section 3 makes it possible to account for the
propagation process of random viscoelastic waves from a randomly
located source and the subsequent response of the structure including
the transient and steady cases. '

Let us consider the rigid sphere containing light equipment whose
influence on the sphiere motion can be neglected. The last restriction
is usual for the practice of the analysis of ground shock action. It is
important to predict the sphere acceleration since this function is the
forcing term in the governing equations for the light equipment [25,
26].

The disturbance appearing during an earthquake can be described
as a random wave of acceleration. As was shown by Mow [17], if the
excitation is a wave of acceleration, and the acceleration of the sphere
is considered as the response, then the same equation (2) yields the
admittance function. Therefore, this time equation (11) yields the
transient variance of the sphere acceleration and equation (9) governs
the steady case.

One of the models of the ground shock disturbances is a shot noise,
F(t)

N(&)
F(t) = 3 Ypo( — tx) (18)
K=1
where Y} are identically distributed independent random variables
and ¢, are random times that obey the Poisson distribution with an
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Fig. 6 Number of level crossings versus parameter N for various f4; m =
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expected nonstationary arrival rate A(¢) |12, 26]. If this process takes
place at z = —zg then

Splwi, wg) = (2m)~1 Var [Y]A(w; — wg) (19)

where A(w) is the Fourier transform of A(¢t). .

For this case equation (11) yields the transient variance of the
sphere acceleration if Sg(w;, wsg) is given by equation (19) and
H{(w)—Dby equation (2).

The results obtained by means of the numerical integration are
given in Fig. 5 for the case \M(t/7) = Nie~N2t*/"*(N;, Ny — constants).
It was assumed that the surrounding medium behaves as the model
of Kelvin-Voight [18]. It should be noted that the motion of the insert
begins at t/7 = —1 when the wave has arrived at the incident side of
the inclusion.

In the case of a stationary excitation the suitable functional for
estimating the reliability of protection is the number of crossings of
the critical level 8 per unit time of the function W), The expectation
of this value, y5[W®)], is determined by the Rice formula [27]. In the
particular case considered in Section 4, and under the condition that
the process is Gaussian, this formula yields

YalWP]7 = (Me1/Me)V/2 exp (—N/2I)/w (20)

where

N = 82/Var [Wi3)] @1
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I= 9m2bTM6/(aer) (22)

Thus the influence of the various parameters on the number of level
crossings can be determined. Fig. 6, computed from (20), shows the
influence of the parameter N, defined by (21), on the dependence
YW = f(0y).

The results obtained here also provide the estimation of the force
on a sphere and therefore they are applicable to the dynamics of
composite materials. In view of a single-valued dependence between
the inclusion motion and the stresses at r = a [3, 28] the functionals
(8), (11), and (20) can be used to predict the fatique strength [12, 13]
of the composite material.

6 Conclusion

Harmonic and random responses of a rigid movable sphere em-
bedded in a viscoelastic medium have been studied theoretically. It
was shown that the presence of energy losses in the surrounding me-
dium affect the inclusion motion. This influence depends upon the
viscoelastic model.

Expressions (7), (9), and (11) show that the interaction between
viscoelastic waves and the discontinuity is different from that of
random purely elastic waves, considered in {15]. It is of interest that
only the imaginary part of the wave number affects the propagation
of a stationary random disturbance. Since the viscoelastic waves are
filtered during their propagation, the distance between an insert and
a plane, at which the excitation had a prescribed spectral density,
plays an essential role.

It can be concluded that the analysis of the scattering of random
viscoelastic waves by an obstacle makes it possible to account more
fully for actual physical situations and to extend the range of appli-
cations of the theory.
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APPENDIX

1 |H(w)|2 = 9m2e~2m8(ng) /hy(no)ha(—no)
where
3 4
ga(no) = 37 bpno® 2% hylno) = 3 arnot™ bo=0
k=0 k=0
b1 = xo% bg= )(02(252 — 6y +3);
by =84 —6v62 + 1562 — 18y + 9;
a0 = Xo% a1 =i(p1+ 4nipo); a2 = p2+ 3piny
a3z = i(ps + 2n1py);
a4 =pg—nips
with
no = Re (n) = Re (akp); n; =Im (n); < =Im (aks);
g=Im(x)w; xo=Re(x); 0=x06 e=gqr;

P1= X032+ m — 2¢) + xo(l + 2m);
P2=X02(—=2~m — €2+ 4¢ + 2me);
P3 = x02— 2e2 — me? + de + 2me) + Oxo(— m + me) —
Pe= Xo2e2(2 + m) — x9me + 9m;
2 - |H(w)|2-Sa(w) = e~2k0*a+209m 2K o712 ~2Migg(no) /mhe
«(no)he(— no) where

5 8
ge(no) = kZ dpnol® 2% he(ng) = 3 ewne® % do=d; =0
=0 B=0
de=bj; .dz=by+bip; dy=Dbz+ bop; ds=bsp; co=ao
¢1 = i(—a; — 2by1a0);

co =y~ aop — 2bniay; ¢z =i(—az+aip — 2bn1a9);

ca= a4~ pas— 2buay s =i{asp — 2bp1as); ce= — aup
where
p= 02+ b2 0, = fr; b1 =br.
The compliances (equation (4)) are:
=(A+2u)"Y; Dp=(pw)}
S1=p7Y Sp=(ysw)!
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Elastostatic problem of a half space with a layer of possibly distinct mechanical proper-
ties under arbitrary normal tractions on the surface is reconsidered to establish far-field
asymptotic expansions of- the displacements. This work was motivated by application of
such far field solutions to problems of the layered half space by Global-Local Finite-Ele-
ment Method (GLFEM). When the traction is a unit concentrated force, the asymptotic
expansion is found to coincide, up to the second term of its inverse power series expansion
with respect to the distance from the point at interface below the point of load applica-
tion, with that of the classical Boussinesq solution with a suitably chosen coordinate sys-
tem. This agreement between the two solutions is also observed for normal tractions on
) a bounded surface region. Comparative numerical results are given to demonstrate the
modeling capabilities of the far-field asymptatic expansions in a GLFEM example. It’s
effectiveness is shown in terms of greater accuracy and computational efficiency over the

conventional finite-element method.

1 Introduction
This paper is concerned with far-field asymptotic expansions of

displacements in an elastic half space with an elastic layer of possibly -

distinct mechanical properties. The analysis presupposes perfect bond
between the semi-infinite medium and the layer, while the loading
is confined to normal tractions applied to a bounded portion of an
otherwise free surface of the layer. The terms in the ensuing asymp-
totic series are ordered accordingto R~ (n = 1,2,...), where R is the
distance from the point at interface below the centroid of load region,
and explicitly relate the far-field behavior to the load distribution,
the mechanical properties of both media, and the thickness of the
layer. These asymptotic expansions illustrate Saint-Venant’s principle
by providing quantitative measures of decay in this particular in-
stance.? The results are used in an application of the Global-Local
Finite-Element Method (GLFEM) to elastostatic problems involving
a layered, elastic half space.

Because of their relevance to pavement design,® geotechnical en-

1 This research was supported by Electric Power Research Institute, Palo
Alto, Calif.

2 See Gurtin {1] for a review of the Saint-Venant principle for homogeneous

isotropic elastic bodies.

3 See Yang [2]. )
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gineering, as well as many other applications, layered half-space
problems have received repeated attention. Bufler’s paper [3] contains
a comprehensive review of elastostatic analyses of multilayered media.
We shall rely on Bufler’s summary of the literature and cite here only
specific papers that bear directly on our present objectives. Of par-
ticular importance is Burmister’s [4] exact solution to the problem
of a layer perfectly bonded to a half space and subjected to a particular
axisymmetric surface-pressure distribution. With the aid of this
fundamental result, solutions corresponding to other normal loadings
may be obtained by means of the Hankel transform. Reference should
also be made to [5], where far-field asymptotic expansions of the
displacements in a homogeneous, isotropic half space were system-
atically cataloged and their use in connection with GLFEM was ex-
amined. The present paper is thus an extension of [5].

GLFEM refers to a numerical analysis technique which employs
both contemporary finite element and classical Rayleigh-Ritz dis-
placement approximations [6-8]. This method enjoys the advantage
of more accurate modeling with substantially fewer degrees of freedom
as compared to the conventional finite-element method (FEM). For
brevity, we will refer to the Rayleigh-Ritz displacement approxima-
tions as global functions. The primary role of global functions is to
capture the behavior in the regions where conventional finite-element
modeling becomes kinematically inadequate or computationally
cumbersome. Finite-element modeling limitations arise in a host of
problems involving local singularities or unbounded regions. Known
analytical results containing the essence of the relevant local or far-
field behavior can be incorporated into a finite-element analysis as
global functions. It is evidently desirable to have such results available

_in as simple a mathematical form as possible. For this reason, as-

ymptotic expansions, in which the leading terms portray the dominant
behavior, are particularly appealing. Our recent experience with
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GLFEM analysis of half-space problems [5] demonstrated a marked
improvement in computational efficiency for achieving a desired
accuracy over conventional finite-element methods.

Our first task here is to deduce a solution for a unit concentrated
normal force on the surface of a layered half space from Burmister’s
solution by means of the Hankel transform. We will refer to this so-
Iution as the generalized Boussinesq solution. Asymptotic expansions

* of the displacements are then extracted from this integral represen-

tation using the method described in {9]. These details are covered

in Section 2. It will become apparent that the first two terms in the
expansions are quire simple in form and readily admit useful physical
interpretation. Higher-order terms are obtainable, but only with the

-expense of increasingly elaborate algebra and without a commensurate
gain in significance and usefulness. In Section 3, we focus on the as-
ymptotic behavior of the layered half space under arbitrary normal
surface tractions confined to a bounded region. For this case, the as-
ymptotic expansions are constructed by superposition of the as-
ymptotic results associated with the generalized Boussinesq solution.
Again, the first two terms are quite simple and permit a convenient
physical interpretation. Section 4 is devoted to a GLFEM numerical
example in which the previously established far-field asymptotic
behavior is utilized. From this, one can draw some interesting con-
clusions which provide guidance in the GLFEM modeling of soil-
structure interaction.

2 The Generalized Boussinesq Problem

Consider a layer of thickness h perfectly bonded to a semi-infinite
medium. Let ¢/, »" and u, v denote the shear modulus and Poisson’s
ratio of the layer and the half space, respectively.* Establish a rec-
tangular Cartesian coordinate system (x1, xg, x3) with its origin at the
interface of the two media. Let A’ and A denote the domains occupied

by the layer® (—e < x, < ®, —h < x3 <0) and the half space (—~ <

%o < ®,0<x3< ). Lety; and oy; represent the Cartesian compo-
nents of displacement and stress. We will have occasion to use circular
cylindrical coordinates (r, 8, z) having the same origin and the z-axis
coincident with the x3-axis. The cylindrical components of dis-
placement and stress are identified by subscripts (r, 0, 2).

The problem for the layered half space subjected to an arbitrary
axisymmetric surface pressure, p(r), can be stated as follows. The
fundamental equations within the classical theory of elasticity for both
the layer and the half space are to be accompanied by the boundary
conditions

_|-p 0<r<a)
0z2(r, —h) = t 0 (a <r < =), 0
or2(r, —=h) =0 0=r<w=),

the interface conditions
uy(r, 0+) = ur(r, 0-),
o-zz(r; 0+) = o'zz(r; O—);

u,(r, 04—) =u,(r, 0-),
0ar(r, 0+) = 0z (r, 0-) 2)

(0 £r< o),

and the regularity requirement that all displacements and stresses
vanish as R — « where

R = (xx;)V/2 (3)

Integral representations for the displacements due to p(r) can be
constructed by using the Hankel transform® and recognizing that
Burmister’s exact solution [4] in the kernal in that formula:

4 Throughout this paper, quantities associated with the layer are distin-
guished by a prime from those pertaining to the half space.
. 5 Greek and Roman subscripts have ranges (1, 2) and (1, 2, 3), respectively.
The usual summation and differentiation conventions for indicial notation are
employed. d;; denotes the Kronecker delta.

6 See, for instance, Sneddon [10, p. 52].
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For the case of a unit concentrated compressive force applied at
r = 0 on the surface, its pressure distribution is given by
o(r) ‘
plr)=—m, = (9)
27r
where 6(r) is the Dirac delta function. The Hankel transform of p(r)
is

b =1 (10)

As noted earlier, we refer to the displacements (4) and (5) with p =
1 and the associated stresses as the generalized Boussinesq solution.
We shall identify the components of this solution by means of a su-
perscript “o”.

For the particular case in which the elastic properties of the layer
and the half space are the same, the generalized Boussinesq solution
reduces to Boussinesq’s solution. This reduction, however, leads to
an elastostatic field that differs from its classical representation by
a translation in x 3 direction because of the adopted coordinated sys-
tem. Thus, for 4 = w’ and v = ¥/,

i (x1, %o, ¥g) = Ui(x, x5, x3+h) in A and A/, (11)
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* N . . . .
where u; are displacements of the classical Boussinesq solution:

* 1 [xxg %;(1 — 6;3)
(s, 02, ) = —— [ (1 = ) T
u;{x1, X9, £3) [R3 ( V)R(R T o)
2(1 = v) .
+(—R——"—)5i3] (o <xa<®, 0<xz<w). (12)7

For future reference we record here the inverse power series of the
displaced Boussinesq solution with respect to the distance from the
origin:

\
Ui (%1, £, %3 + h) = li(x1, 2, 0)
n—l
+ Z f;(")(xl,xz, xs) in A’
* *
u;(x1, X, x3 + h) = u; (x4, x9, x3) f
n—l
+ Z F(”)(xl,xz,xg) in A,) (13)
n=2

where, for every fixed n,

Fi™(xy, 29, x9) = O(1) as 1>,
*
FiM{xq, 29, 23) = 0(1) as R —w, (14)
In particular, we have .
;u(m = (1 +%) F*‘a(z)(xl, %, 0), ;3(2) =
=0, f@=—L- (1 + 3‘—3)2, (15)
47 h f
* 1 x,
Fa(z)———-[ (1-»)— 2] )
By e L Tafy, 35 )
4T R R?
e 3 xux3 5x3
F®=— 22—y — 2| % 16
87y R? [ (2-v) R22] (16)
3 15 x 5%
Fs® =—-——’u—-—(3+2u)x—3+—x—3-.
2 R%2 2 R4}

It can be shown that the two series in (13) converge for any positive
r and R in the appropriate domains. At the same time, these series are
asymptoticasr — @ oras R — =,

Our next objective is to extract the far-field behavior from the in--

tegral representations (4) and (5) with p = 1. For this task the as-
ymptotic formulas in [9] for integrals of the Lipshitz-Hankel type are
needed, which we summarize as follows.

Let (£, 2), for z on [—h, 0], and ®(§) be both N-times continuously
differentiable with respect to £ on [0, ») and meet certain additional
requirements stated in [9]. Then,

f (€, 2)Im(rE)dE = £ >: —
or
x I'm+n+ 1) o oMy
T ({(m — n 4+ 1)/2)T((m + n + 2)/2) 2" &=0
. as r—>o, ze[-h0], (17)
S @t rtia
N=1 . N
= Z R"“n' f nreneosY,J (nsm\,b)dn dE7 |imo +o(R™N)
asR—w, ze[0,»), (18)

where cos ¥ = 2/R and sin { = r/R. The integrals on the right in (18)

7 See, for example, Love [11, p. 191], or Sokolnikoff {12, p. 339].
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are representable in terms of hypergeometric functions® which, for
certain combinations of m and n, assume algebraic forms.

We list here the Cartesian displacement components of the far-field
asymptotic expansion of the generalized Boussinesq solution.

h
o * s
(2, %9, x3) = U (1, &9, 0) + f; @ (21, x4, 23) o)

o h?
+ £ ®(x1, xg, x3) = +0@r % as r—o in A, (19)
r
i (x1, X9, x) = (%1, %2, 23) + F; (x4, x3, x2) R
. h?
+ F;®)(xq, xo, x3)ﬁ+ OR™4 as R— in A, (20)
where

fi®= (1 +v h) Fi®(xy, x4, 0),

f® =0, (21)
- 1 X3 X3 2
@ = — [ce® + ¢, @28 4, (3)(_) ]
fa p o e
o=+ V)i‘i(z)(x1, X2, x3),
1 xax3 X3
F,® = Bo® + B,®
vyl R S
Fy® = 1 [Coan +C® (ﬁ) +C,® (x_‘é) ]
2u R R
1 ?
y=— [(1 —awE - 2»')], (23)
1-v u ‘

B3
in which F;(2 is given in (16), while ¢x®, B, ®), C1,® are constants
dependent upon », v, u’/u. Because of the algebra involved, it is not
convenient to seek explicit expressions for the constants ¢ @, B, ®),

G ®, However, they can be determined numerically without difficulty

for specific values of », v/, and u’/u by use of (17) and (18).

On comparing the far-field expansion of the displaced Boussinesq .
solution (13) with that of the generalized Boussinesq solution (19) and
(20), we observe the asymptotic relations

i (x1, X9, %3) = U; (x1, %9, x3 + h) + O(R™3)

as R—« in A and A/, (24)°

where
h=(1++v)h. (25)

At this point we introduce scaled coordinates and scaled distance
as

xi' - R

f=— R=(g:8)V2= . 26
z T+ (%:%:) T+ (26)
Then it follows from (12), (24)-(26) that
1 .
iZ;(x1, X3, x3) = Ui (%1, £2, B3 + h) + O(R—3)
‘Y .
as B—>oin A and A (20)

< As shown in (24), the generalized Boussinesq solution associated
with the layer of thickness, h, has the same far-field behavior up to

-O(R~2) with that for the displaced Boussinesq solution corresponding

to a half space with the free surface at xg3 = —h. Thus, within the
current order estimate, the far-field displacements in the layered half
space coincide with those for a homogeneous half space even though
the far-field expansions refer to a point on the interface for the former

8 See Watson [13, p. 384].
9 The order statement O(R ~3) is equivalent to O(~3) in A’
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and to an interior point of the depth h from the free surface for the
latter.

If we wish to have the translation for the displaced Boussinesq so-
lution equal to the thickness of the layer, the elastic properties of the
layer distinct from those for the half space emerge as a scaling factor,
1/(1 + =), both in coordinates and in magnitude as demonstrated in
(27). The relation (27) will be employed in the numerical example to
draw some information.

It should be mentioned that the formal differentiation of (24) is
permissible and yields the same results which follow from the integral
representations for the derivatives of &;. This statement holds true
also for the asymptotic relations (19) and (20).

3 Far-Field Displacement Due to an Arbitrary
Pressure Over a Bounded Region

Let a pressure p act over a bounded region II on the otherwise
traction-free surface of the layered half space. Suppose also that the
origin of the coordinate system coincides with the perpendicular
projection of the centroid of Il at the plane x3 = 0. Denote by P, P,,
and P,g the total force, the first moment, and the second moment of
p, respectively, i.e.,

P= f plxy, x0)dA, P, = f %o (%1, Xx2)dA,

Pup= { waxgplan, x)dA. (28)

By appealing to superposition, the displacements in the layered
half space can be written as

ui(x1, £, x3) = f pl&y, Etii(x1 — &1, x2 — &9, x3)dE1d o

in A and A, (29)
where the kernel has the Taylor series representation
i(x1 — &1, x2 — o, x3) = tilxy, x2, x3)
— Eallia (21, %2, 23) + %Eaéﬁﬁi,aﬁ (x1, 23, x3)
—Qilxy, x2, x3; 1, &, £3),  (30)
with
Q= bobaboliog (1~ b va— bz, @)

for some € on (0, 1). We note here that the consecutive terms on the
right-hand side of (30) are of O(R™1), O(R~%), O(R~3), and O(R™%)
as R — «, as is apparent from (24) and its differentiability.

. Substitution of i; from (30) into (29) and utilization of (28) yield
the asymptotic expansions of the displacements as R — « up to
O(R~3):

uix1, 22, x3) = Pi;(x1, 22, x3) — Patli,o{x1, 2, x3)

P(Y
+ =L % wa(x1, X9, x3) + O(R™4).

2! (52)

In anticipation of the GLFEM application, we recast (32) with the
aid of (19), (20), and (24) into forms which are compact and can be
directly employed as the required global functions. One such form
is

ui(xy, xo, x3) = u;Mxy, x9, x3) + O(R73), (33)
with
will(x1, %2, x3) = Pli(x1, 29, x3 + h) = Patli o (1, x2, x5+ h)
in A and A’ (34)
Another form is
uixy, xg, 23) = uiMxy, 29, x3) + O(R™4) (35)

with

Journal of Applied Mechanics

wil(x1, x9, x3) = Pl;(x1, %2, 0)
h
+ P (1 +v+ ﬂ) F*‘,'(2)(x1, x9, 0) —
h r2

h2

— Polii o(x1, X3, 0) + Pf;®(x1, x5, %3) Y
r

X3 o Ld h
- i P (2) —
Pa(1+'y+ha )’FL (xlle,O)r2]

[t

1, o
+§!"Paﬂui,aﬁ(xl:x2, 0 in A% 36)

k3
uiM(xy, xg, 23) = Pl (%1, %9, %3) + P(1 + v) F;@ (x4, x5, x3)

h . h?
X R Pl (1, %3, 13) + PE;®(xy, x5, x3);3§

 Pa 4 ) =B O xg, 20) 2
« Y o% i 1%2, X3 R?

a

1
+ ;Paﬁlji,aﬁ(xb X9, x3) 1In A.

It follows from (33) and (35) that use of u;¥ and u; 1! as global
functions approximates the far-field behavior up to O(R~2) and
O(R~3), respectively. Note that although u; I is inherently less ac-
curate that u; 11, it is far more appealing because of its simplicity. Only -
a single expression is needed in u;!! to describe the behavior in both
domains A and A’, whereas in u; 1, there is a separate formula for each
domain. Moreover, numerical evaluations of some constants in u; 11
are necessary before it can be used.

4 Numerical Example and Discussion

In our numérical example we consider a layered half space on which
a uniform pressure of unit total force acts over a circular region with
unit radius. For this loading the Hankel transform (6) of the pressure
and the loading parameters (28) take the forms:

2
b= EJl(E), (37)

: 1
P=1, Pu=0, Puy=7 e (38)

Further, let the thickness of the layer be unity. For mechanical
properties, we take v = v’ = 0.3 and treat the shear-moduli ratio u//u
as a parameter to be varied. However, the bulk of the numerical results .
will be restricted to u'/u = 2 and u’/u = 10.

For comparison purposes the exact displacements along two lines
from the center of the load region IT are evaluated: (a) along the axis
of symmetry (x, = 0, —1 < x3 < @) and (b) along a line on the surface
(0 <x3 < =, x9 =0, x3 = —1). The integral representations for the
exact solution appropriate for the uniform pressure are given by (4),
(5), and (37). These results are shown by solid lines in Figs. 1 and 2
for u'/p = 2 and w'/u = 10.

We next examine the accuracy of the asymptotic displacements ;1!
and ;! by comparing them with the exact solution. Note from (34)
and (38) that

wl =1 (x1, 22, 23 + h) (39)
This asymptotic result, for the lines () and (b), is plotted on Figs. 1
and 2 as dashed lines. In contrast, ;11 given by (36) and (38) involves
certain coefficients appearing in (21) and (22), which are found nu-
merically. Along the lines (a) and (b) the asymptotic displacements
;1T assume the following forms:

€2 €3

: o
(@  pu"=0, pugM=———+—,
z z z

where (40)

z=%x3 (1<z< w)
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Fig. 2(b) Displacements on the surface: u'/u = 10

with the constants ¢, for u’/u = 2 and u’/u = 10 listed in Table 1. Note
that the leading terms in (40) and (41) are those of Boussinesq’s so-
lution, and thus the constants ci, ¢4, and cg are independent of the
stiffness ratio. This asymptotic result is superimposed on Figs. 1 and
2 as dotted lines. In addition, numerical vlues of u; ! and u; ! at dis-
crete locations are given in the inlaid tables to reveal their quantitative
differences. As anticipated, both asymptotic solutions gain accuracy
with the distance from the center of II. The accuracy is slightly more
favorable for u; 1! when R is large. However, departures from their
exact values are greater for u;™ than for ;1! as this distance becomes
small. This fact, coupled with the greater algebraic effort needed to
obtain ;11, makes ;1! much more attractive as a global function.
Therefore, we will not consider ;™! in our GLFEM example. It is also
seen that these asymptotic displacements are sensitive to the shear-
moduli ratio with the accuracy diminishing as u’/u increases.
In the GLFEM numerical example with u;™ as the global function,
a sequence of finite-element mesh sizes was considered. The master
finite-element grid is shown in Fig. 3. This mesh sequence is obtained
by successively removing elements that lie beyond a certain set of
mesh radii. The displacements exterior to a mesh will be represented
by aqu; 1 with agy as the global coefficient. If a global function is exact
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Table 1 Coetticlent ¢, for uu,"

u'/u 2 10

¢ 0.190986 0.190986
c, 0.300121 1.17320
Cy 2.10211 58.8307

C, 0.0318310 0.0318310
Cg 0.0636620 0.572958
Ce 0.111409 0.111409
g 0.236193 3.49430

for the given loading, then the global coefficient should emerge from
the GLFEM analysis as unity. Even though u;! is merely asymptotic
as R — «, global coefficients close to unity are indications of proper
modeling of the far field. In Table 2 are shown the global coefficients
obtained for various mesh radii for stiffness ratio 1, 2, 5, and 10. The
“values of the global coefficients for u’/u = 1 are quoted from [5] and
as are all the other results for this stiffness ratio. Also given in Table
2 are the degrees of freedom from the mesh sizes. Table 3 gives the
displacement uus for w'/u = 2, 10 along the x3-axis from both GLFEM
and conventional FEM based on several meshes. In FEM, zero dis-
placement conditions were imposed along the boundary of the
mesh.
The accuracy inherent in GLFEM vis-a-vis conventional FEM may

be seen in Figs. 4 and 5, where results for the depression at the center-

of the load region by the two methods are shown. In these figures, the
relative error (the difference between the GLFEM or FEM result and
its associated exact value divided by the exact value and expressed
as a percentage) is plotted. The dependence of the mesh radius and
the stiffness ratio on the results are clearly seen. Also included in these
figures are GLFEM results based on the classical Boussinesq solution.
The flat portions of the GLFEM curves in Figs. 4 and 5 indicate that
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Table 2 Global coefficient

u'/u
R DOF 1 2 5 10
5 175 + 1 0,98949 1.00420 0.74876 0.54058
10 291 + 1 0.99668 1.00812 0.98972 0.73361
25 639 + 1 0.99776 1.00072 1.01386 1.0i263
50 749 + 1 0.99881 0.99956 1.00485 1.01620

R = mesh radius

DOF = FEM degrees of freedom + one global coefficient

the associated mesh sizes incorporates the far-field behavior as ac-
curately as would be possible using the given global function and the
interior finite-element discretization pattern. Thus the beginning of
the flat portion can be interpreted as the minimum required mesh
radius. Any further improvement with additional degrees of freedom
in the model should be invested in the refinement of the interior mesh
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Table 3(a) GLFEM and FEM values of yu, along xg-axis: u'/p = 2

EXACT GLFEM with u}l FEM
R - 5 10 25 50 25 50 100
Xy - 176 292 640 750 639 749 857
-1 165.26 164 .45 164.87 164,87 164,82 157.66 161.13 162,92
0 125.97 124.86 125.45 125.47 125.42 118.21 121.72 123.53
1 79.770 78.068 78.781 78.819 78.763 71,517 75.056 76.868
5 30.250 29,185 29,986 30.099 30.045 22.687 26.294 28.136
10 16.844 16.574 16.639 16.895 16.847 9.4479 13.060 14.924
25 7.2296 7.2178 7.2460 7.1928 7.2108 0 3.3945 5.2621
50 3.7102 3.7189 3.7334 3.7060 3.7017 - 0 1.7696
100 1.8813 1.8882 1.8956 1.8817 1.8795 - - 0
3 '
b uy(0,0,x4) x 10 (u'fu=2)
Table 3(b) GFLEM and FEM values of ju3 along xs-axis: y'/u = 10
1
EXACT GLFEM with uy FEM
R - 5 10 25 50 25 50 100
X4 - 176 292 640 750 639 749 857
-1 97.383 75.599 89.112 95,427 95.669 88.798 92,107 93,830
0 90.739 68.374 82,211 88,688 88,944 82,046 85,373 87,103
1 63.216 41.631 55.115 61,700 61.967 55.048 58,389 60.124
5 27.269 9.2654 19.997 26.695 27,012 20,044 23.410 25,164
10 15.600 6.3956 8.6793 15.193 15.578 8.6103 11,960 13.726
25 6.8241 3.3151 4.4989 6.2100 6.7562 0 3.1542 4,9128
50 3.5529 1.8389 2.4956 3.4447 3.4569 - 0 1,6675
100 1.8273 0.97268 1.3200 1.8221 1.8285 - - 0
3 '
b uy(0,0,x,) x 10 (u'/u = 10)

and not in its enlargement. The conventional FEM results are much
less accurate in comparison and lack the asymptotic flat portion in
the range of mesh radii considered. Displacements obtained at other
locations exhibit the same general trend for accuracy in terms of mesh
radius and stiffness ratio.

As apparent in these two figures, the GLFEM solution improves
with increasing mesh radius % and deteriorates as the stiffness ratio
increases. With a view toward combining these two effects, we note
from (24), (27), and (39) that

1
ui(xy, x9, x3) = T Ui (%1, %o, B3 + h), (42)
where %; are scaled coordinates defined by (26). Thus u;!! for any

layered half space has, in scaled -coordinates, exactly the same

mathematical expression as that for a homogeneous half space except .

a multiplier 1/(1 + 7). We may, therefore, expect the same degree of

510 / VOL. 47, SEPTEMBER 1980

accuracy for a layered half space (y = Q) and a homogeneous half
space (y = 0) if the scaled mesh radius 7 is the same, i.e.,

By =Fo=Ro or R,={1+7y)Ro (43)

When the results in Figs. 4 and 5 are replotted in Fig. 6 in terms of %,
the GLFEM curves for various stiffness ratios are brought closer to-
gether even though they remain far from coalescence to a single curve.
The FEM curves are also brought closer. For a fixed scaled mesh ra-
dius &, the accuracy of GLFEM results deteriorate as y’/u increase
while those of FEM improve. The better quality of the latter for large
w’/u ratios is due to the diminishing multiplier 1/(1 + ) in (42) and
hence vanishing displacements, which are more in agreement with
the prescribed boundary conditions in conventional FEM. On the
other hand, the deterioration of the GLFEM results may be attributed
to the coarse mesh configuration in the vicinity of load region and the
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interface and to the high displacement gradients when u’/u is
large.

The beginning of the asymptotic flat portions of the GLFEM curves
for 1 < w'/u < 10 occurred in the range 6 < & < 9. Thus the finite-
element mesh size # in a GLFEM application for a given u’/u ratio
should be in the corresponding range 6(1 + v) < # < 31 + ).

Finally, Figs. 7, 8, and 9 show, for u’/u = 10, errors of the GLFEM
results for 77 = 50 and those of the FEM results for 2 = 100 along the
two lines (a) and (b). In these figures the solid lines refer to the relative
error as previously defined while the dashed lines refer to the signif-
icant error, i.e., the difference between the GLFEM or FEM results
and their associated exact values divided by the largest displacement
which, in this case, is ©3(0, 0, —1). In fairness to conventional FEM,
it is noted that even though the relative error increases with the dis-
tance from the center of I, the corresponding significant error re-
mains almost constant after a certain distance. Both relative and
significant errors for the GLFEM results are much smaller than their
FEM counterparts, except in the neighborhood of the load region,
where errors are due to inadequate element discretization. Although
the results for u//u = 2 are not shown, they are similar in nature but
are better than those for p//u = 10.

5 Concluding Remarks

Far-field asymptotic expansion of displacements was established
for a layered elastic half space under a concentrated normal force. This
fundamental result.designated as the generalized Boussinesq solution
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can be used to generate far-field asymptotic expansion for arbitrary
normal loading by superposition. Far-field displacements for a uni-
form normal pressure confined to a circular surface region were es-
tablished and their accuracy was compared with the exact solution.
This expansion was applied as a global function in a GLFEM example
to show its modeling capabilities. The benefits of GLFEM based on
this asymptotic solution over conventional FEM solution were seen
in the significant reduction in the number of degrees of freedom and
the increased accuracy. With global functions derived from the gen-
eralized Boussinesq solution, soil-structure interaction problems
involving a layered half space may be easily and economically ex-
plored.
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Introduction

The equilibrium distribution of pressure along the circumference
of a belted radial tire loaded at its hub and in contact with a rigid, flat,
frictionless roadway is obtained here using simple beam theory. The
hard rubber in which the steel or fabric belt is embedded is assumed
to be an inextensible, initially circular ring, the side wall is supposed
to be an elastic foundation, and the tread rubber is replaced by a
second distribution of linear springs in order to account for tread
compression.

In the past, bias ply and radial tires have often been modeled as a
ring connected to a rigid hub by a distribution of springs representing
the side wall. These springs transmit the load applied at the hub to
the ring which is in contact with the roadway [1-4}. Using this model,
Clark [5], for example, has discussed the contact problem of a rolling
tire under load. The geometry of the contact region is determined
kinematically and, in the static limit, the distribution of contact
pressure is obtained in a balance between it and the transverse forces
due to bending and the side wall springs. To obtain numerical results,
the stiffness of these springs must be determined in an experiment.
The load is then calculated by integrating the contact pressure over
the contact region. However, as pointed out by Clark [6] in a review
of such tire models, the transverse shear and bending moment are
discontinuous at the edges of the contact region and a pressure dis-
tribution resembling that observed experimentally is obtained only
if shear deformations are included.

Here, shear deformations are ignored, but the compressibility of
the tread rubber is taken into account in a way proposed by Akasaka
[7]. Following Rotta [8], the stiffness of the side wall spring is obtained
in terms of the geometry of the side wall membrane and the inflation
pressure. For the tire at rest, the linear differential equations gov-
erning the small deformations of the ring in the contact and free re-
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The Circumferential Contact
Problem for the Belted Radial Tire
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Fig. 1 The model tire

gions are derived, taking care to include the initial tension in the ring
due to the inflation pressure. The solutions of these differential
equations are easily obtained, and the arbitrary constants involved
in the solutions are determined by using the symmetry of the problem
and requiring continuity of displacement, moment, shear, and tension
at the edges of the contact region. In the contact region there are two
different types of exact solutions possible depending upon the relative
magnitudes of the parameters that characterize the tire geometry,
inflation pressure, bending stiffness, and side wall and tread spring
moduli. The first solution is obtained for the relatively large diameter
and highly inflated truck and bus tire, while the second solution
applies to the smaller diameter and less highly inflated passenger car
tire.

The geometrical and structural parameters are evaluated or esti-
mated for a commercial steel belted radial truck and bus tire. The
predicted distribution of contact pressure is compared with experi-
ment.

Equilibrium Equations

The model radial tire illustrated in Fig. 1 consists of a circular ring,
representing the hard rubber of the tread region, connected to a
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central rigid hub by a continuous distribution of identical linear
springs that models the effect of the side wall membrane of the in-
flated tire. On the outside of the ring a similar distribution of springs,
with a stiffness different from the first, represents the tire tread.

With the unit vectors n and t, fespectively, normal and tangent to
the deformed ring, the arc length s along the deformed ring, the cir-
cumnferential tension T, the transverse shear V, the bending moment
M, and the normal force density p, the local balance of force for the
deformed ring is

d d
o (Vn) + E (Tt) + pn= 0 1)

Upon introducing the radius of curvature p of the deformed ring and
the relations

t, (2)

the tangential and normal components of the equilibrium equation
(1) may be written as

dT V
- = 01 (3)
ds p
and
av. T
—+—=-p=0, @)
ds p :
respectively. The local balance of moment is
dM
—=-V=0 (5)
ds
The ring is assumed to be inextensible; so
s =ab, ®

where @ is the radius of the circular ring and § is the angle from the

- vertical to a material point in the undeformed configuration. Because
of the constraint, the tension T is determined by the equilibrium
equations.

The ring is assumed to be a simple beam for which the relation
between the bending moment and the change in curvature is

M=EI (l - l), @)
a p
where E is the Young’s modulus of the material of the beam, and I is
the second moment of its. cross-sectional area about the neutral
axis, . :

The circumferential displacement T, the normal displacement w,
and their derivatives are assumed to be so small that their products
may be neglected. In this event

l = l —_ _15 (w// — U/), (8)
p a a
where a prime indicates a derivative with respect to §. The inextens-
ibility assumption, expressed in terms of U and , is, then,

D'+ W =0 9

80, if I is known, U may be determined, up to an arbitrary constant,
by an integration: From equations (7)-(9) the bending moment is
given by

EI
M=— (w" + ). (10)
a?
In the contact region the distributed load p is
p= bP — 2Q0 - klw - kz}\, (11)

where b is the width of the ring, P is the inflation pressure, & is the
loading of the inflated side wall, &y is the stiffness of the gide wall
spring, kg is the stiffness of the tread spring, and A is compression of
the tread spring. The load @o and the spring stiffness k; are deter-
mined in terms of the side wall geometry and the inflation pressure

514 / VOL. 47, SEPTEMBER 1980
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Fig. 2 The tread geometry and the contact angle

in the Appendix. From the geometry of the deformation given in Fig.
9, the tread spring compression is determined to be [7]

A=+ -2 «E( L —1), (12)
cos 0 .

cos §
where dg is the displacement of the point on the bottom of the tire,
and @ is the distance from the center of the tire to the bottom of the
tread. To the accuracy of the approximations already introduced

(71,

A=+ do—a(l —cosb). (13)

In the free region the compression of the tread spring is zero, and
the distributed load is given by equation (11) with the last term de-
leted. :

The circumferential tension T is decomposed into two parts,

T =To+ AT; (14)

T is the tension in the circular ring due to the inflation pressure P,
and AT is the additional tension due to the deformation. For the
inextensible circular ring subjected to the inflation pressure P, the
equilibrium equations (3)-(5) and the constitutive equation (7) re-
quire that the moment and shear vanish, while

To = abP — 2aQo. (15)

The contact angle §*, at which contact between the tread and the
the roadway is lost, is assumed to be known, and the differential
equation governing @ and AT are to be formulated and solved in the
contact region and the free region subject to boundary conditions
applied on the axis of symmetry and continuity conditions applied
at 9%, )

The displacement do of the bottom of the tire is determined by the
condition that, at 8%, the compression of the tread spring vanishes:

0 =@(0*) + do — &(1 — cos 0*). (16)
The contact pressure p, is, then, given by
De = koA = kol + do — @(1 ~ cos 0)], am

and the total load W is obtained by integrating the contact pressure
over the contact region,

0*
W=2b J; k[ + do — G(1 — cos 6)]d0. (18)
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If equations (8), (10), (14), and (15) are used in the equilibrium
equations (3)—(5), and terms of second order and higher in the de-
formation are disregarded, there results the three equations

(ATY =V =9, (19)
To _
V' 4+ AT — =2 (%" + B) + To— pa = 0, (20)
a
and

EI

— @ + W) -V =0. (21)

a

If AT is eliminated from equation (20) by a differentiafion and a
substitution, and equation (21) is used to express V in terms of the
derivatives of D, the single equation

EI EI T
pansiel (w/// + w/)// + = (w/// + wl) 1o (wl/ + w)/ —_ p/ =0 (22)
at at a?

is obtained for . Because p’ is discontinuous at 6%, this equation must
be solved in each of the two regions; each solution must satisfy
boundary conditions on the axis of symmetry, and the two solutions
are joined by applying the appropriate continuity conditions at §*.

In the contact region, the displacement is normalized by a, and the
nondimensional displacement is called w,. Then, by equations (11)
and (13), the form of equation (22) appropriate to the contact region
is

we® + (2 — e Dwe® + (1 + ar e + age B, D

= pge~8sinf, (23)

where

a 2k2 a
==, ayz—- ag=——¢€, az=og— (24
To ’ To 8T a 24)
In the tire to be considered as an example, €? is small, and oy, a0, and
ag are order unity.
The particular solution of equation (23) is
w %3 [
=——————cos#.
K 1+ a12)e? + oy
The characteristic equation of the homogeneous differential
equation is

(25)

oot — (2~ e Ho? + [1 + ared + e 6] = 0. (26)

The nature of the solutions of this characteristic equation depend
upon whether § = 4[(1 + ay)e® + aa€? is less than, equal to, or greater
than unity. For the truck and bus tire to be considered as an example,
only the first of the three possibilities is or interest. The last possibility
corresponds to the smaller, less highly inflated passenger car tire [10,
11].

When 62 < 1, the roots are

=0, o=4v1, 0=y, (27)

where v, and +yg are given by

VI3y1i= /=24 €41+ V1 = 89,
VEye=v-2+eH1-VI-0D), (28)

and, for sufficiently small ¢, both «y1 and <4 are real.

In the free region the tread spring compression X is zero, so by
equation (11) the form of equation (22) governing the nondimensional
displacement wy in the free region is

wr® 4+ (2 — e Hw O + (1 4 are YV = 0, (29)
The characteristic equation here is
oglot — (% —2)0o? + (1 + cue )] = 0. (30)

Again there are three cases to consider, depending upon whether u?
= 4(1 + ay)et is less than, equal to, or greater than unity. Only the first
possibility is of practical interest.

Journal of Applied Mechanics

When p? < 1, the roots are

=0, o=z2xvy; 0==+yy (31)

where

Vi3vs=+/—2+ M1 —vI- D),
VIve=v-2+ 1 +VI- ). (32)

In each of the regions the solution involves the five arbitrary con-
stants associated with the exponential solutions of the homogeneous
differential equation. An integration of equation (9) gives the non-
dimensional circumferential displacement v in each region up to an
arbitrary constant.

On the axis of symmetry the circumferential displacement and the
transverse shear must vanish and the tangent must be horizontal.
Hence, at § = 0,

ve = w, D =y, B8 + .,V =, (33)

while, at # = ,
vp = wr® = wi® + W =0, (34)

At the edge of the contact region, the displacements, tangent, moment,
shear, and tension must be continuous. Hence, at 8 = #*,

(35)
(36)

We = Wy, V¢ = Uy, wc(l) = w,‘(l),

wWe® + we = wD +wy, WS 4w, = W@ 4 D),
and, from equation (20),

eHwe™ + we @) — (WD + we) + aze™ 2w,
= e4w D + wp?) — (wr@ + wp) + aze 2wy (37)

These 12 conditions determine the 12 arbitrary constants. The
boundary conditions (33) at § = 0 are satisfied by retaining only those
terms in the solution which are even about # = 0. Likewise, the
boundary conditions (34) at § = 7 are satisfied by retaining only those
terms even about 6 = . The remaining conditions (35) and (36) may
be written more compactly as

.
Ve =vf, W =wp, we=wd (38)

where! = 1,2, 3 and 4.

Given 6*, the displacements w and v are determined at every point
of the ring in the fashion just outlined. The displacement dg of the
bottom of the tire is then given by equation (16), the distribution of
contact pressure p. over the contact region follows from equation (17),
and the load W applied to the hub is obtained as a function of §* or,
alternatively, as a function of dy through equation (18).

In the contact region, the solutions w, and v, of equation (23) and
(9) which satisfy the boundary conditions (33) are, when 62 < 1,

[24

» = ¢1 + 2 cosh y10 + h g —~ —————— s 0, 39
w, 1 + cacosh vy c3 cosh 3 (1+a1)€2+a2co (39)
and
Cy . €3 . .
Ve = —c18 — —sinh v16 — —sinh yof) + ———————sin 6.
‘ Yy o 725 s (1+ o)+ an
(40)

For the passenger car tire, the homogeneous solution contains terms
that oscillate [10, 11].

In the free region, the solutions wy and vy which satisfy the
boundary conditions (34) are, when u2 < 1,

wy = ¢4 + c5 cosh [ys(w — 0)] + cg cosh [ya(mr — )],  (41)
and
C5 Ce .
vf = —cq +—sinh [ys(zr — 0)] + —sinh [ys(x — 8)]. (42)
Y3 Ya
The constants ¢; to cg are determined by the continuity conditions

(35)-(37) applied at 8*.
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as calculated

Numerical Results

Numerical results are presented for the Bridgestone Radial Truck
and Bus Tire 10.00-20. For this tire, the geometrical parameters
identified in Fig. 1 are estimated to be

b =14 cm,
t =27cm,

a=50cm, 7=22cm,

a = 52.7 cm. (43)

These quantities are determined from the tire in the following way:
b is the width of the two center layers, or breakers, of the four layers

that comprise the steel belt, a is the distance from the center of the °

hub to the innermost breaker, 7 is the distance from the outermost
breaker to the bottom of the tire, ¢ is the distance from the innermost
breaker to the bottom of the tire. The last four of these lengths are
measured along the center line of the cross section.

The geometry of the side wall is idealized as a section of a circular
cylinder shown in Fig. 5 of the Appendix. The angle ¢o is taken to be
the tangent angle of the radial cord in the inflated tire at the point on
the cord at the edge of the center breakers. The chord of the circular
arc of the side wall section is assumed to be the vertical distance from
the point at which ¢¢ is determined. to the inner surface of the side
wall. The radius rg of the circular arc is found from the length of the
chord and the tangent angle. However, without performing a detailed
analysis of the natural shape of the side wall, similar to those described
by Béhm [4], it is not possible to determine ¢p and r¢ exactly in the
inflated tire from the geometry of the uninflated tire. Consequently,
ro is here estimated from the uninflated cross section as 11 c¢m, and
numerical results were obtained for several values of ¢g.

The cross section of the circular ring is assumed to be a rectangle
of width b and thickness ¢. In calculating the bending stiffness of the
ring the neutral axis of the rectangular cross section is supposed to
be at the inner edge of the rectangle along the inner breaker of the
relatively inextensible steel belt. The displacement @ is that of this
axis and the second moment I of the rectangular cross section is cal-
culated with respect to it. The Young’s modulus E of the ring is taken
to be that of the rubber in the tread region; so E = 50 kg/cm? and D
= EI = 4590 kg cm?2,

The stiffness kg of the tread spring is given in terms of E and the
tread geometry by kg = Eb/T = 318 kg/cm?2. Note that it has been
assumed that the tread resists both compression and bending.

The experiments on the truck and bus tire were performed at the
relatively high inflation pressure P = 7.0 kg/cm?2; consequently, the
numerical results presented here employ this value.

1t is supposed that ¢ = 75° and that the hending stiffness is D.
Then, as detailed in the Appendix, Qo = 1992 kg, and k; = 17.0 kg/
cm? so To = 2900 kg, and * = 6.33 X 1074, a1 = 13.66, ag = 6.93, a3
= 7.30. In this case, 62 = 0.735 and u2 = 3.71 X 10~2 Consequently,
the displacements in the contact region are given by equations (39)
and (40) in which, from equation (28), y; = 34.6, y2 = 19.6, and a/[(1
+ a)e? + ap) = 1.000; while, the displacements in the free region are

given by equations (41) and (42) in which, from equation (32), y3 = .

39.6, v4 = 3.7.
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Fig. 4 The contact pressure versus the circumferential angle as determined
experimentally at three stations across the tread and as calculated

For a given value of the contact angle, here taken to be 8* = 18°,
the continuity conditions (38) result in a system of six linear algebraic
equations for the six unknowns c; to cg. Because of the presence in
the relatively large values of 7y, and s, the matrix of the coefficients
of ¢1 to ¢ contains both extremely small and extremely large entries.
Because it is difficult to calculate the inverse of such an ill-conditioned
matrix by standard techniques, the problem is reformulated utilizing
an approximation to the solutions (41) and (42) in the free region
which avoids the numerical difficulties. In the free region these so-
lutions are replaced by

wy =4+ Tse 70 + Tge V4, (44)

and

vf = Cylw — ) + % e~ 3l + C—ee—‘“”.
Y3 Y4
The functions wy and vy satisfy exactly the differential equations (29)
and (9), respectively; but only approximately satisfy the boundary
conditions (34) at § = .

In situations where the coefficient of the highest derivative in a
differential equations is extremely small, it is anticipated that nu-
merical difficulties will be encountered in determining the exact so-
lution. In this problem, the fact that ¢4 is small indicates, for example,
that the effects of bending are important only in the neighborhood
of 8*. In a sequel to this paper [9], singular perturbation solutions to
equations (23) and (29) are obtained which illustrate the nature of the
boundary layers about §* in which the effects of bending and shear
are significant.

With (39), (40), (44), and (45) the continuity conditions (38) applied
at §* = 18° determine the constants appearing in the solutions to
be

(45)

e =452X 10, ¢2=1.89X1078 c¢3=1.56X10"3 (46)

and
T4 =6.69X 1071, ¢5=2.45X103, Gg=—9.21. (47)
With these values the solutions (44) and (45) give, at # = =,
vr=0, w® = 407X 10-3(0.017°),
wi® 4.0, = 4,065 X 1073, (48)

The last value is to be compared with the maximum value of the
nondimensional shear, which is 750.4 at § = 8*, Thus the solutions (44)
and (45) satisfy almost exactly the boundary conditions at § = 7.

. The displacement do of the bottom of the tread, calculated using
equation (16), is 4.6 cm. The deformation ¥ of the inner breaker is
sketched in Fig. 3. The distribution of the contact pressure is drawn
in Fig. 4 superposed upon the experimental determinations of the
pressure at various stations across the tread. The total load W sup-
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ported by the tire, found through equation (18), is 2900 kg. In the
experiment, do = 4.6 cm and W = 3635 kg. Thus, while the contact
pressure obtained from the mode is a smooth distribution with a shape
similar to those of the experiments, the level of the contact pressure
is somewhat low.

The distribution of pressure was found to be insensitive to increases
of the side wall tangent angle ¢o. This was unexpected, because an
increase in ¢ reduces the shear o exerted upon the tread beam by
the side wall, and this decrease in shear loading increases the tension
T in the ring. However an analysis of equation (56) of the Appendix
shows that this increase in tension is compensated for by a reduction
of the stiffness k; of the side wall spring.

It might be tempting to single out the linearization as the source
of the disagreement between the analysis and the experiments, par-
ticularly since the change in nondimensional curvature in the contact
region is close to unity on and near the axis of symmetry. However the
nonlinear terms which have been neglected enter the governing
equation multiplied by high powers of a small parameter; so their
contribution to the equation is insignificant.

A more probable reason for the low level of the calculated contact
pressure is that a distribution of normal loads due to meridional
prestress and changes in the meridional curvature has been ignored
in the model. A preliminary analysis [10] of the meridional section cut
by the plane of symmetry that begins with the equilibrium equations
for a cylindrical shell shows that the level of contact pressure is raised
about 20 percent when this load is taken into account, This brings the
calculated pressure distribution into good agreement with the ex-
periments, and indicates that excellent results can be expected from
a complete analysis of a cylindrical shell model.

However, before this analysis can be carried out, the circumferential
problem must be solved as a true contact problem. That is, when the
deflection dy of the bottom of the tread is specified, the contact angle
6* should be determined in the course of solution. This problem is
treated in the following paper [9]. ‘
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APPENDIX

Here Rotta’s [8] model of the side wall is employed in order to de-
termine the normal load on the ring due to the inflated side wall and
the resistance of the inflated sidewall to deflections of the tread re-
gion.

Journal of Applied Mechanics

Fig. 5 The side wall geometry before and after deformation

The geometry of the side wall in the inflated tire and in the inflated
tire with a displaced tread region is shown in Fig. 5. The subscript zero
identifies quantities associated with the inflated, undeformed tire.
For the purposes of these calculations the tread region is assumed to
be rigid, and the side wall of the tire is assumed to be a cylindrical
membrane reinforced by inextensible cords of length [ running parallel
to its circumference.

In the inflated, undeformed state the circumferential tension in
the side wall is Pry. At the juncture of the side wall and the steel belt
the side wall exerts upon the steel belt a horizontal force and a shear
force Qo = Prg cos ¢g directed as shown in Fig. 5. After the deforma-
tion the vertical force @ = Pr cos ¢. Their difference AQ,

AQ = Pr cos ¢ — Prg cos ¢, (49)

represents the resistance of the side wall to the displacement of the
tread region. In order to determine the stiffness k; of the side wall
spring it is first necessary to express AQ in terms of the displacement
w of the steel belt.

The geometry of the deformed tire is related to that of the unde-
formed tire by the inextensibility of the cords

| = 2rogo = 2ro. (50)

Before the deformation, ry sin ¢g = ho/2; while after the deforma-
tion,

ho+ W

rsing¢g = = pq sin ¢0+-2—. (51)
Upon combining equations (50) and (51), ¢ is determined in terms

of i by

sin¢_sin¢o+ w
¢ o 2rodo
Then r is obtained in terms of ¢ and w through (51).
The stiffness k1 is twice the derivative of AQ with respect to W
evaluated at ¢ = ¢o and w = 0. With

(52)

w
R

recos ¢ = cot ¢(ro sin ¢o + ;) (53)

dr_ﬂ@ or

- —+—. (54)
dw Jd¢dw O
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and d(AQ) -p (cos ¢g + oo éin bo)

kl =2 — " . (56)
W |w=0 (sin ¢g — ¢ cos ¢g)
de - ¢? . (55) This expression for the side wall stiffness is the same as that obtained
dW  2ropold cos ¢ — sin @)’ by Rotta [8] by a different argument.
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Introduction

Here, a singular perturbation technique is used to obtain asymp-
totic solutions to the differential equations, boundary conditions, and
continuity conditions which govern the circumferential behavior of
a model steel belted radial tire.

The formulation of the model is discussed in detail in a previous
paper {1]. The belt is assumed to be inextensible and the tread region
of the tire, consisting of the hard rubber in which the belt is embedded
and the rubber of the tread, is idealized as a circular ring with a rec-
tangular cross section which resists changes in curvature. The side
wall of the tire is assumed to be an inflated membrane, with simple
geometry and material properties, which, as a consequence of its in-
flation and subsequent deformation, exerts transverse forces upon
the ring. The transverse force due to the inflation of the circular side
wall modifies the initial tension in the circular ring due to the inflation
pressures. That part of the transverse force due to the deformation
of the side wall enters the model as a distribution of linear springs with
a stiffness which may be calculated from the inflation pressure and
the side wall geometry. The effect of the compression of the tread
rubber is included by girdling the ring with an elastic foundation with
a stiffness based upon the modulus of the tread rubber.

Because the tension in the ring is large compared to its bending
stiffness, bending is important only in limited regions in the neigh-
borhood of the point at which the model tire loses contact with the
roadway. Mathematically, the large difference in the size of the ten-
sion and the bending stiffness renders the coefficient of the highest
derivative of the governing differential equations extremely small.
This small parameter is the source of the numerical difficulties which
are encountered when attempting to obtain exact solutions [1]. One
possible alternative to obtaining exact solutions is to consider ap-
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Singular Perturbation Solutions of
the Circumferential Contact Problem
for the Belted Radial Truck and

proximate solutions which are series expansions in the small param-
eter. In situations in which the small parameter multiplies the highest
derivative, an expansion of this type is not uniformly valid, but must
be modified in regions where the highest derivative is important.
These regions are the boundary layers. The expansions appropriate
to each of the regions are joined, or matched, in their common region
of validity. Such a singular perturbation analysis of the differential ,
equations of the model radial tire is undertaken here for three reasons:
first, because such an approach illuminates the physical phenomena
by delineating the regions in which various physical effects are im-
portant; second, because the approximate solution which results is
simple in form and easy to interpret; third, because such an analysis
appears to provide the only means of obtaining solutions to contact
problems for the cylindrical shell model of the tire. The problem
considered here is similar to the “bheam-string” discussed by Cole [2]
and the nonuniform prestressed beam treated by Hutter and Pao [3].
An important difference is that the present problem is a contact
problem; and, for a given vertical deflection of the tire bottom, the
extent of tread in contact with the roadway is not known at the outset,
but must be determined as part of thé solution. Additional compli-
cations result from the initial curvature of the ring and the presence
in the problem of a second small parameter, other than the ratio of
the bending stiffness to the tension, which appears as a coefficient of
high derivatives in the differential equation. In principle, these two
small parameters may be varied independently, generating model tires
of various sizes, side wall geometries, tread stiffnesses, and inflation

_pressures. However, in the problem at hand, it is convenient to relate

the second of these small parameters to the first, converting the
problem from one with two small parameters to a problem involving
only one. In a tire of fixed geometry and tread displacement, as this
parameter approaches zero the inflation pressure and the stiffness
of the tread spring both increase without bound, but in a fixed ratio.
In this “distinguished limit” corrections are obtained to previous
analyses of simpler tire models, reviewed by Clark [4], which neces-
sitate that a concentrated moment and a concentrated transverse
shear be applied at the edge of the contact region.

Where the tire is in contact with the road, different solutions are
found in each of three regions. In the boundary layer closest to the
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Fig. 1 The model of the steel belted radial tire

point at which ¢ontact is lost, bending and tension dominate. In an
intermediate layer, the effects of tension and the tread spring are most
important, while the deformation in the outer region, furthest from
the contact point, is governed by the side wall and tread springs. In
that part of the tire not in contact with the road, there are different
solutions in each of two regions. In the boundary layer closest to the
contact point, bending and tension again dominate, while the defor-
mation in the outer region is governed by the side wall spring.

The Singular Perturbation Solutions

The differential equation governing the radial displacement i, for
the portion of the model steel belted radial tire shown in Fig. 1 which
is at rest and in contact with a flat, smooth rigid roadway was deter-
mined in [1] to be

a 2To)

wc(5>+(2— 7l w, &

o, + qui AW =90, (1)
EI EI EI
where the number in parenthesis indicates the number of derivatives
with respect to the circumferential angle 8, a is the radius of the ini-
tially circular ring, T is the initial tension in the ring, EI is the
bending stiffness of the ring, k1 is the stiffness of the side wall spring,
ko is the stiffness of the tread spring and A is the compression of the
tread spring, given in equation (13) of [1] as

A =1, +do— @l — cos 8), ) 2)

where dj is the displacement of the bottom of the tire, and @ is the

distance from the center of the tire to the bottom of the tire.
In the noncontact, or free, region the differential equation governing
the radial displacement 7y is
a?T at 2T
W) + (2 ————0) w® + (1 + -2
EI EI EI
Because the ring is assumed to be inextensible, the circumferential
displacement T is determined in each region by integrating the con-
straint equation

w,’(l) = 0. 3)

W+ @=0. (4)

On the axis of symmetry, the circamferential displacement and the
transverse shear must vanish, and the tangent must be horizontal. At
# = 0, these conditions require

0, = wc(l) = wc(li) =9, 5)

so D, is an odd function of # and @, is an even function of 6; while at
8=, '

Df = wf(l) = w7(3) =0, 6)

thus Uy is an odd function of = — 6 and @ is an even function of 7 —
0. :
At the point, called the contact point, at which the tread loses
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contact with the road, § is #*, and the displacements, tangent,
transverse shear, bending, and circumferential tension must all be
continuous. These conditions are equivalent to the requirements that,
at f = 0%,

D, = oy, W, = wy, wc(l) = mf(l), N
where ! =1, 2, 3, and 4.

The differential equations (1) and (3) in the contact region and the
free region may each be integrated once to give

2 4 4 2
W@ + (2 . °)fu‘c<2> + (1 + =k +a—k2—a—9)wc
EI EI EI EI
% , 4
=aE12(E 0)——}—za_cosﬂ+g1-a—lg, (8)
and
2 4 2 i
wf(4)+(2_a_T°)wf(2)+(1 +¢_1_k1_a To)_f=a_c’ (9)
Y EI EI EI EI ‘

respectively. The constant of integration  is the same in both equa-
tions by virtue of the continuity conditions (7).

In each region the displacement @ is nondimensionalized by a and
the nondimensional displacement is denoted by w.

Estimates based on a real tire [1] indicate that the dimensionless
ratio €4 = EI/a2Ty is extremely small; while the dimensionless ratios
ay, ag, ag, and ay, defined by

aZky _a2k2 2 a
o= =1, ag=—07"¢, ag=az—,
To To a

(10)

are all of order one. The asymptotic solutions to the differential
equations which are obtained here are strictly valid only in the limit
as € goes to zero with ay, ag, g, and a4 remaining fixed. Consequently,
for a tire of given geometry with a definite tread displacement dg, the
process of passing to the limit corresponds, according to these defi-
nitions, to the consideration of a succession of such tires in which the
bending stiffness EI decreases to zero, the initial tension T or,
equivalently, the inflation pressure P increases without bound, and
the stiffness kg of the tread spring increases like T%2. Such a limit
is called a distinguished limit, for in restricting attention to this limit
a special case, involving the single small parameter ¢, has been dis-
tinguished from the general case which involves the two small pa-
rameters ¢ and To/a2ks.

Expressed in terms of the dimensionless quantities, the differential
equation (8) in the contact region becomes

Sw® + 20D + w) — Hw® — aw) + @aw = g — w3 cos § + €%
(11)

while the differential equation (9) in the free region becomes

etw® + 2@ + ) —wD + aw =c. (12)

The methods used here to obtain asymptotic solutions to the dif-
ferential equations (11) and (12) are discussed in detail in Cole’s book
[2].

To initiate the process, the constant ¢ is expanded in a power series
ine,

C=A0+€A1+62A2+..., (13)
where the coefficients of the powers of € are constants.

In that portion of the contact region away from the contact point,
the outer solution w,° of the differential equation (11) is expressed

as a power series in ¢,
w0 = wo + wie+ w2+ ..., (14)

where the coefficients of the powers of e are functions of §. Substitu-
tion of the two series (13) and (14) into the differential equation (11)
yields, to third order,
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ooy ~ a4 + agcos § + eagwy

+ 62(0[211)2 - wo(” + g — Ao) +...=0. (15)

Consequently, the outer solution in the contact region is, to third
order, )
ajeqy A

e s

w0 =

a—d @
—gcosﬂ+£2 g-s—(1+a1)cosﬂ—-

a a ag? Qg oy

(16)

Because w.? is an even function of 0, it satisfies, to third order, the
boundary conditions (5).

In a similar fashion, the outer solution wy? in the free region which
satisfies the differential equation (12) and the boundary conditions
(6) is, to third order,

A
wy® = =04 Do cosh [vay (r — 0)] + ¢ lA—l- + D1 cosh [ ey (m — 0)]}
o o

+ €2 [ﬁ_z + Dy cosh [v/ay(w — 0)]}, (%))
1

where the coefficients of the hyperbolic cosines are constants.

In the part of the contact region close to the contact point the higher
derivatives in the differential equation (11) are expected to become
important. The way in which these terms increase in the neighborhood
of the contact point may be determined by making a change in inde-
pendent variable from 6 to a “stretched” variable obtained by dividing
the angle from the contact point by ¢ raised to some power. The power
is to be chosen so that a balance between terms in the differential
equation involving high derivatives dominates the remaining terms
in the limit as € goes to zero. Two such balances are found to be pos-
sible in equation (11). In one stretching, the first term in parentheses
in equation (11) becomes negligible, and the balance is between the
remaining terms which represent the effects of the initial tension and
the tread spring. In the second stretching the terms in the parentheses
balance one another, and the remaining terms become negligible in
the limit. Here the dominant terms represent the effects of bending
and the initial tension. Because the highest derivative in the differ-
ential equation is preserved in the second stretching, the solution to
this equation can also satisfy the continuity conditions at the contact
point. Consequently, there is the possibility of obtaining different
solutions of the differential equation (11) in each of three parts of the
contact region: the outer solution (16) in the region away from the
contact point, an inner-inner solution in the boundary layer with the
contact point as an end point, and an inner solution in the layer be-
tween the boundary layer and the outer region. This possibility will
be realized if these solutions can be joined, or matched, in their
common regions of validity.

A similar analysis in the free region shows that there is only one
stretching which yields a balance, which dominates in the limit, be-
tween terms involving high derivatives. With this stretching the term
in equation (12) multiplied by a1 becomes negligible. Again the bal-
ance is between bending and initial tension, and the highest derivative
is preserved. The free region, then, will contain a boundary layer, in
which the inner solution applies, and an outer region, in which the
outer solution (17) is valid, provided that these two solutions can be
matched.

In the contact region, the differential equation governing the inner
solution w,! is obtained from equation (11) by the change of inde-
pendent variable £ = (6* — §)/e. This equation is

—w® + aow + 2w + ayw) + 2e%w P + fw

= a4 — oz cos (0% — e£) + e%¢, (18)

where the numbers in parentheses now indicate the number of de-
rivatives with respect to & With the expansions (13),
0* = fp* + O e + 0% + .. ., (19)

in which the coefficients are constants to be determinéd,
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cos (0% — €£) = cos Bo* — e(01* — £) sin Gp*
1
-3 e2[(61* — £)2 cos Go* + 202* sin Bo*], (20)

and
wel=wo+ wie+ woe Fwzed ..., (21)

in which the coefficients are functions of £, the differential equation
(18) becomes, to fourth order,

— wo® + aowp — oy + g cos Og*

+ 6['— w1‘2) + agwy — ag(fr* — f) sin 00*]

+ €2 {“ w2@ + aowe + we™ + aywo — Ao
o3 ' )
- ; [(81* — £)2 cos Op* + 202* sin 00*]}
a
+ 63 {—‘ w3(2) + [s DYIEY + w1(4) + ajwy = A] + ?3 [(01* bt 8)2

sin fo* — 6601*02* cos Bg* — 603* sin 00*]] =0. (22)

The differential equations which result by separately equating the
coefficients of the powers of ¢ to zero have the solutions

wo = Boe Ve + L fo*, (23)
(s2)} g
o
wy = Bye~V3 + =2 (0, — £) sin 0%, (24)
23
1 ajos | A
wa = Boe~ vt + =22 (9% — £)2 cos fg* — 2 + =2
2 ag a?

. ; O
+ 22 6% sin g* + = (1 + @) cos f*, (25)
o (2423

and

N
wy = Bge~ Vet — %3 sin Bo* [— 6:* - 5+ A 0* = §)
oy 6 - an
1 A
— 0% + —| + Z20,%6,* cos Og* + =, (26)
3ag]  az a

where the exponential solutions with positive argument have been
discarded because it is impossible to match them to the outer solution,
and where the coefficients of the remaining exponentials are constants
to be determined through the matching and the continuity conditions.
Thus the inner solution in the contact region is determined up to
fourth order.

The differential equation governing the inner-inner solution w,
in the contact region is obtained from equation (11) through the
change of variable n = (6* — §)/e2 as
w® —w® + 2ogw + 42w + ayw) + 8w

) = e2[ay — ag cos (6% ~ e2n)] + e2¢, (27)

where here the number in parentheses indicate the number of de-

rivatives with respect to . With the expansions (13), (19), (20) and
N
wet = wo + wie + wae? + waed + weet +.., (28)

in which the coefficients are functions of 7, the differential equation
(27) is, to fifth order,

wo® — wo® + €(w; @ — 10;®)
+ €2(wo® — wo® + qowo — ag + ag cos Ho*)
+ 63(w_3(4) — w3® + aowi — agfi* sin Bp*)

+ ¢4 {w4(4) — w4 + aows + 2wo'? + agwe ~ Ao

- ‘—"23 [8:*2 cos fo* + 2(6% — 7) sin 00*]} =0 (29
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The differential equations obtained by separately equating the
coefficients to zero have the solutions

wo=0Cq + CQ‘I] + Cge™, (30)
wy=Cyq+ Csyp+ Cge, (31)
_ 1 asCy
wy=Cr+ Cs‘n + Coe—n+ 5 (aeCy — g + g cos 00*)7]2 + 7]3,
(32)
C C
w3=C10+Cun+C12e"’+a2 6ne_”+a2 41]2
C 1 .
+ a—26—5 7 - Eagﬂl* sin 8g*n2, (33)

and
A 1 a

wa =2 C1g+ Cran + Crse—7 + 5(—&207 —asCr + ?4 §1%* cos bo*
43/

1
+ azfs* sin 90*) 72— 5 (a2Cg + a3 sin 00*)7]3

+ —;%2 (aaC1 + a3 cos O™ — ag)n?, (34)

where the exponential solutions with positive argument have been
discarded because it is impossible to match them to the inner solution.
The arbitrary constants involved in the solutions are determined from
the matchings and the continuity condition.

In the free region the inner solution wy? is obtained to fourth order
from the appropriate form of equation (12). Here the stretching is
again 5 = (§* — 6)/¢2, leading from (12) to the differential equation

w® —w® + 4w + aw) + 8w = ele, (35)

where the derivatives are with respect to 7. The expansions (13)

and
We! = wqo + wie + woe? + waedt . . ., (386)
used in (35) result in the approximate differential equation
wo® — wo® + €@ — W, @) + 2(we® — W)
+ e3(ws® —wy@) =0 (37)

to fourth order. Equating the coefficients to zero and solving the re-
sulting differential equations, yields

wo = E1+ Eon + Eagen, (38)
w = E4 + E5‘n + Eoeﬂ, (39)
we = E7 + EB"I + Ege", (40)
and
wa = E19+ Eym + Eqge™. (41)

The exponentional solutions with negative argument cannot match
with the outer solution.

The constants which appear in the expressions for the approximate
solutions are determined by the continuity conditions (7) and by
matching solutions in adjoining parts in each of the two regions. The
constant coefficients in the expansion (19) for the contact angle are
determined, for a given tread displacement do, from the contact
condition which follows from equation (2) by requiring that A = 0 at
0 = 0*. A solution is obtained to third order, for example, when the
contants in the coefficients of the powers of ¢ up to and including the
second in the expansions in each layer and in the outer regions have
been determined.

In matching the inner solution to the inner-inner solution in the
contact region the first four terms in the inner solution expansion are
first expressed in terms of the inner-inner variable 5 = §{/e. With g
fixed, these terms are expanded in powers of ¢ and the first five terms,
up to and including the fourth power of ¢, are retained. The coeffi-
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cients in this expansion are then separately equated to the coefficients
of the first five terms of the inner-inner expansion. Such a four-five
matching is found to be necessary in order to determine the solutions
to third order. The conditions which result from this matching are
Cz = 0,

Cl = Bo + % - ﬂ c0s 00*. (42)
(8] g
o3 .
C4 = Bl + —“91* Sin 00*, (43)
a2
C5 = —BO\/ X9, (44)
o o
Cqy =By + =2 f1* cos fo* — 2] + 13 cos Bo*
2ap ag? oy’

o i A «a
+ =2 f* sin f* + 20, —35 cos fo*, (45)
g o2 Qg

Cg=—-Bivay— 2 sin 0o*, (46)
a

2

oo
9

. ag
01* sin HO* + — 91*02* COs 00*

-1
CIO = Bg - -'9201*2 sin 9()* -
6 [22>]

(s3] oy
a . 1ag A
+ -903* sin g — - — gin fg* + —1, (47)
asg 3 ag? 22

(a1 + 9?)  ag (48) :

Cii= —Bo-2T227 239 4 cos 8s* — Bov/oey,
1 0 2\/?2 s 1 0 2V &
and
1«
Cia= —Bsv/ag + = 2 0,% sin o* + X %36in 6*.  (49)
3 ay ag?

Any such matching procedure between the outer solution and the
inner solution in the contact region is found to be identically satisfied
to third order and, consequently, furnishes no new information.

In the free region a four-five matching of the outer solution and the
inner solution yields Eg = E5 = 0,

A
E; = Dy cosh [v/en(m — fo*)] + =2, (50)
ay

E4= —Dov ay8:* sinh [/ a (7 — 0p%)]

+ D1 cosh [\/(:Tl(ﬂ' - 00*)] + ﬂ, (51)
23]

Eqr= %Dotaﬁl“ cosh [v/a(m — 60%)] — 2v/a 62*
sinh [v/a;(r — 80*)]} = D1v/ay sinh [v/a (7 = 60*)]
+ Dy cosh [v/ar (w — 00*] + i—f , (52)
Eg = Do/ sinh [V a7 — 6*)],

E10 = D3 cosh [vay (7 ~ 86%)] — Dav/ag sinh [\/a1 (7 — 66%)]

243 D
+==24 ?" {—arv/ay01*3 sinh [vay(r — 06*)]

aq

(63)

+ 60[101*02* cosh [\/L\Tl(ﬂ - 00*)]
= 6v/a183* sinh [V ap(m — 6o*)]}

D
+ ?1 {a101*2 cosh [y (7 — 8p*)]

— 24/ fs* sinh [ o (x — 0,%)]]  (54)

Eu = ‘-D()Dl101* cosh [\/ a1(7r - 00*)]
+ Dy sinh [\ ai(w — 66%)], (55)

and

1
Ei4 = ZDoan/ a191*2 — Dia1601* cosh [\/ oy(m — 00*]

+ Dav/a sinh [vas(r — 66%)).  (56)
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The second, third, fourph, and fifth of the continuity conditions (7),
expressed in terms of 7 and derivatives with respect to 1, are

weit(0) = wri(0), wei¥'(0) = w7 (0), (57
and '
e (0) = wy”(0),  wei” (0) = wyi” (0). (58)
These require that, at first order (%), C3 = E3 = 0,
A
Bo+ 24— 22 005 f* = Do cosh [Var(m ~ )] + =2;  (59)
do Qg e 4]
at second order (¢), Cg = Eg =0,
By + 20 sin 80* = — Dov/ag* sinh [va (x — 66*)]
[2%)
Ay
+ Dy cosh [ oy {m = 8p)] + —; (60)
. oy
at third order (€2).
By + ﬁﬂl* cos fp* — %4 + i)"i(ECOS Oo*
209 ag? ag?
+2 Bo* sin Oo* + Ao + _a% cos fo*
Qg g Oy
1
= -éD(){Ollﬂl*Z cosh [\/ 0{1(7!' - 00*)] !
— 2¢/a02* sinh [v/ gy (7 — 80%)]}
— D1V o sinh [V (7 — 80%)]
A
+ D cosh [y/az(m — 80%)] + =2 + azBo,  (61)
oy
- (Bl\/ oy + & sin 00* = DoV o sinh [V al(ﬂ’ - 00*)], (62)
(23]
1
Co=—Eg =~ Py asBy; (63)
at fourth order (¢3),
o1+ a2 as )
Bo———= + — 61* cos bp* + Baov/
(02\/a_2 a21coso 2v oz
= +Doa10:* cosh [vVay (r — 6%)]
— Dy sinh [v oy (7 — 80%)] + asBovVaa, (64)
and, at fifth order (¢%),
1
—BsvVag + = i 01* sin Go* + 2123 in fo*
3 oy ag?
1
= ZD()O{[\/ a101*2 - Dlal(h* cosh [\/ a1(1r - 00*)]
+ Dav/a; sinh [\ ay(zr — 00*)).  (65)

The last of the continuity conditions (7) has already been satis-
fied.

In order to apply the first of (7), the constraint condition (4) is in-
tegrated from 0 to 7 and the first of the boundary conditions (5) and
(6) are employed; so that the continuity of v at # = 8* requires that

j; " we(#)d = fﬂ " wy(6)de.

In order to use this condition to determine constants which appear
in the expansion a composite solution is constructed for the contact
region and for the free region. A composite solution is obtained in each
region by adding together the solutions which are valid in each part
and subtracting the terms which each pair of solutions has in common.
These terms are those which have participated in the matching. The
composite solution w; in the contact region is, to third order,

(66)
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a4 o
we = 22T s+ Boe—v2 + ¢Bie~Veait
[(25)) g
@ arey A
+ €2 —3—(1 + ay) cosﬂ*-l—é+——0+Bge—V"2f
ag? ag? 23]
_lar+ag?)

Bofe~ vVt + Cge|,
W oke 9e "] 67)

The composite solution wy in the free region is, to third order,

A
wy = Do cosh [v/ar(r — )] + =2

o
Aq
+ ¢{D1 cosh [/ ay{m — )] + —
ay
Ay
+ €2{D3 cosh [\/ oy (m - 0)] +—+ Egen;. (68)
ay
If the composite solutions are used in the continuity condition (66),

after a long calculation there result the requirements that, at first
order,

o o3, D :
2 * — 2 5in o* + —=sinh [v o (1 — o%)]

o9 43} (23]

A
+ =2 (1 = 85%) =0,
(431

(69)

at second order,

% 01* - 21_3 01* cos 00* + B() b D001* cosh [\/ a1(7r - 00*)]
(82} g
Ao Dy
—— 0% + sinh (m — 0¢*)
PRl [Veu 0*)]

A
+=(x — 66*) =0, (70)
(241

and, at third order,

o 1
=40, + 85* cos Bo* — = 0,*2 sin B* + By
@y 2

A
~ 220, — Dyfy* cosh [va(r — 66*)] — Ar Go*
451 a
Dy

Vag

There remains the contact condition

+ sinh [vai(r — 66*)] + Az (7~ Op*) = 0.
(23]

aw(0) + do — @(1 = cos *) = 0. (71)

If this condition is expressed in terms of the expansions, it requires
that, at first order, Bg = 0, at second order, B; = 0, and, at third
order,

0?2Bo — oryoeg + opag cos Bg* + agAg + ag cos Gp* = 0. (72)
and
1 A
Ba— 2% % gin o* ~ = 2 gin fo* + - = 0. 73)
(22 3 0122 (29}

In the contact region and the free region the constants appearing
in the composite solutions (67) and (68) are determined, at first order
by (59) with By = 0, by using By = 0 in (62), and by (69)

o3 sin 00*

Do=-2 , (14)
0 az v az sinh [V ay(r — %))
Ap = ﬂ[a‘; — ag cos fo* + 2 sin f* coth Valr ~ 00*”}:
[+7)] Vo1

(75)

where fp* satisfies
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a3 sin fp* + ( — 65*)

(a2} ag o,
h— 90* = ——§In 00* -

(2] g (251057
o g sin fp*
x 12— 82 08 B + — = coth [ (r — 90*)]} =0 (76)
ay @ a2 Ve

At second-order use of By = 0 and ('74). in (60), and By = 0 and (59) in
(70) yields A; = Dy = 0. Then (72) used in (64) gives

aalerg cos Bg* — Doy cosh [ ay(r — 00*)]} 0%

= g+ aa(l + ay) cos fo* — vy, (77)

The constants which appear in the composite solutions at third order
are determined by (61), (70}, (65), and (73), which, because of their
length, will not be repeated here. These four equations serve to de-
termine the four constants Asg, D9, Bo, and f9*.

For small values of 8* equation (76) for §p* may be approximated
up to an error involving (60%)% by

Va (1 - g \/?.Z) (862 + (1 = /) c*

+ o(1 — (!3'-1014)7\' =0. (18)

The quantity in the last parenthesis is the ratio of the bottom dis-
placement dg to the radius @ of the tire. In this approximation the

. contact angle depends upon this and upon a;—essentially the
strength of the side wall spring relative to the inflation pressure. This
illustrates the importance of side wall design on the contact geom-
etry.

Comparison With the Exact Solution

Numerical values of the parameters were determined for the
Bridgestone Radial Truck and Bus Tire 10.00-20 in the way described
in the preceding paper [1]. They are, for a bottom deflection dg of 4.6
cm,

T€=0.16, o1=1366, oz=693, a3=730, as=66T.
) (79)

Using these values equation (78) gives flo* = 0.25 (14.3°). To secoﬁd
order (77) and (78) yield )

0% = 0% + eby* = 17.96°. (80)
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—~— First Order Solution
—— Exact Solution

-4.0
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10° 20° 30° 40° =

2.0

3.0

%

Fig. 2 The first-order solution for the radial displacement compared to the
exact solution with the first-order contact angle 8,* and the exact contact
angle §*

which compares quite favorably with the exact value of 18° [1].

With 8%, the first-order terms in the composite solutions (67) and
(68) were plotfed against the exact solution in Fig. 2. Even at the
lowest order of the approximation there is good agreement between
the exact and approximate solutions.
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Exact Dynamic Surface Response
for Sub and Through-Surface Slip

The motion of edge dislocations and slip on fault planes are important mechanisms in-
volving sub and through-surface slip. Here exact solutions for largely arbitrary in-plane
slip in a half plane along zones normal to the surface are dertved and the general wave-
front pattern described. For two examples of finite zones of uniform slip, the displace-
ments on the free surface of the half plane are examined. In the case of the slip zone pass-
ing through the half-plane surface, separate and prominent systems of surface waves are
seen to be generated at the surface-zone intersection point. Data illustrating this and
other behavior is presented.

Introduction

Edge dislocation motion has been viewed as a mechanism for ex-
plaining effective strength [1] and plastic effects [2] in crystalline
materials. Similarly, slip along faults in the earth’s crust has been
treated as a source of shallow-focus earthquakes [3]. In a continuum
approach, both processes involve the extension of slip zones, i.e.,
surfaces over which material points initially adjacent across the sur-
face undergo relative tangential motion.

Calculation of the dynamic displacement fields in materials due
to slip zone motion is therefore an important problem, especially on
the material surface. Indeed, surface responses may provide the only
experimental data available for comparison with theoretical calcu-
lations. However, dynamic displacement calculations often use so-
lutions for infinite media, and account for the material surface by
imaging argur®ents or approximations [4-6]. Such approaches may
be exact only for certain cases, such as two-dimensional antiplane
strain [7] and may avoid the possibility that slip zones may reach the
surface.

As a first step in a more exact approach, this article considers the
two-dimensional problem of slip occurring over zones normal to the
free surface of an isotropic, homogeneous, linearly elastic half plane.
Slip occurs in the plane and the zones will be allowed to travel through
the surface of the half plane. In this first step, the slip magnitude and
zone location will be specified, thus making the mathematics more
tractable. However, these properties will be largely arbitrary. Hope-
fully, some insight into more difficult problems involving prescribed
slip zone stresses, for example, can be gained by studying the present

solutions. .
A general analysis leading to exact expressions for the displace-
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ments in the problem is outlined in the next few sections. The analysis

is based on a recent treatment of wave propagation due to displace-

ment discontinuities [8]. The general wavefront pattern is then dis-

cussed and two examples of slip zone motion with bearing on edge

dislocation motion and fault slip are considered. In one example, the

slip zone remains below the surface. In the other, the zone moves

through the half-plane surface. Some numerical results for the surface’
displacements generated by each type are given and discussed.

Basic Problem

In terms of the Cartesian coordinates x, y consider the half plane
y > 0, where cq, cs and 1/7 are the dilatational and rotational wave
speeds and shear modulus. For convenience the variable s = ¢, X (time)
is introduced. For s > 0 the half plane is completely at rest. For s >
0, the tangential displacement discontinuity defined by V(y,s) is in-
duced along the positive y-axis where V is piecewise continuous and
| V| is finite for finite y, s and grows at less than exponential order as
|y| = ® or s — =. Because of antisymmetry with respect to x = 0,
attention can then be focused on the quarter-plane x, v > 0 by in-

troducing the conditions
v=3%Viys), o:=0 (1)

for s > 0 as x — 0%, where u, v are the x, y-displacements. The
stress-free half-plane surface requires that for s > 0 along y = 0,

Oxy, Oy =0 (2a,b)

while the governing equations for x, y, s > 0 are
M0y + Oryy) =i, TMHowx+ 6yy) =0  (3a,b)
™m0 =u,+ (1 —2m%v,, tm20,=v,+ (1-2m%u, (4a,b)
TOry =Uy+ Uz, M= cpleg (5a,b)

Here ( }.=3( )/oz and (') = ( } 5. The solutions should be bounded
above almost everywhere in x, y > 0 for finite s while

s<0 uv=0, uv=0 ®)
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Transform Solutions
The Laplace and Fourier sine and cosine transforms [9]

&= fogls)e~psds; g% g¢= f5g(x)(sin pgx, cos pgx)dx (Ta—c)

over s > 0 and x > 0 are employed, where p is real and positive and
large enough to insure convergence of (7a) while g is in general com-
plex. Application of (7a,b) and (7a,c¢) to (2b), (3b), (4) and (2¢), (3a),
(ba), respectively, in light of (1) and (6) yields the transformed
equations

m20%, — pZa?i + pq(l — m»)v%,
24V
VD) e @)
2 dy
0%, — m2p2b20° + pq(m? — 1)1,

m2
=- '—é—pqv(}’), b= (m_2 + q2)1/2 (9)

for y > 0 while for y = 0,

4%+ pqd* — 3 V(y), 0% — (1-2mIpquc =0 (10)

For p real and positive a, b are defined in the plane cut along Re (¢)
=0, |Im (q)| > 1,1/m, respectively, so that Re (a), Re (b} = 0. Solu-
tions to (8)—(10) which are bounded above in y > 0 are [8]

gc=A+B-34a_+B_, o=-2a-Ip_a,+%B,
a : q b b
(11a,b)

4b R
AePay =}—2—qTa+(O) ~Etb+(0), Ar=ar(y)xa-(y) (12)

4q? R
Bepby = E"— Tb(0) — (‘j—Ria+<o>, Bi=bi(y) £ b_(y) (13)

Ri=4dabq2+T? T=b2+q? (14) -
2a+,a-) = ~m2ga(f5, [§) V(z)e palz—vldy (15)
Abs, b-) = —m2T(f5, f§) V(z)e~Pblz—yldz (16)

Here R_ is a form of the Rayleigh function which has simple zeroes
at ¢ = xi/mp, mg = cg/c,, where cg < ¢ is the Rayleigh wave
speed.

Transform Inversions for x, y, s > 0
The inverse Fourier sine and cosine transforms are {9}

2 igo+e i
glx)=x f (8° sin pqx,g°¢ cos pqx)pdg  (17a,b)
1q0

where the real constant ¢ is chosen so that the integration path lies
in the region of analyticity for g%, g¢ and convergence of (7b,¢). For
(11a,b) we can choose go = 0. Upon performing the z-integrations in
a4, b by parts and formally writing the operation (7a), it is readily
shown that operating on (11b) with (17a) yields

- w wdV
omd = f e-pt f [ f 2% t)(K; + K,)dz
0 —o |JO Jy

+ V(©, t)Ko] eirardqdt

+ f “e=pty(y,t) f "L pivardedt  (18)
0 —o b2

Kr=sgn(z — V)(Kqe—Pely=z| + Kye~pbly-zl) (19)

K, = (Kbe~pbs + Ko paz)e=pay + (Kfe~Pes + Ko ~pb%)epby

(20)
Ko = K% —Pay + KQe—pby (21)
2qa Ry aT?
o 2 0 — e — .. T b 9 27 :
Ko =m?q, Kq msz_,Ka 7 Ke Ka=2m?q 0 (22)

526 / VOL. 47, SEPTEMBER 1980

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

_,Tq

_ b R+ Tq3
m2b2R_’

K}=~"Kp, K§= dm?>——
b R b b m R_

Tq
Ky = —mzﬁ,Kg

(23)

The complex exponential and g-integration range (—, «) in (18)
follow from (17a) and (11b) by recognizing that Im (6%) = 0, Im (q)
= (. The inverse of (18) can be obtained by following the Cagniard-
deHoop [10] procedure. As outlined in [8], this scheme uses the
Cauchy theorem to switch the g-integrations in (18) to Cagniard
contours along which the resultant exponential factor for each term
is recognized as the Laplace transform of the Dirac delta function. The
result is that for x,y,s > 0

xv=Im j; S[V(O,t)Lo+ j; "’%’ @ t)(Lf+L,)dz] dt

+ I \%4 (y,s - i) (24)
2 m

Li=sgn (z — y)[KodaH(s —t —r-) + KpgeH(s —t —m~r2)]  (25)
L, =KUUH (s — t — ng) + K§q8H(s — t— np)

+ KogeH(s—t —ry) + KJGoH(s —t—T74)  (26)

Lo=K%3H(s —t—rl) + K§gbH(s — t — 7} 27

where the K-functions now depend on similarly sub and superscripted
¢’s. These quantities are, in turn, functions of s — ¢ representing
Cagniard contours. In particular, where we replace s — ¢ by n for
brevity,

irfgh= (v +2)m~Zr = nHV2 - nx,ry = 22+ (y £2)22 (28)

rigl =inx + (y + 2)(n® — m=2r})1/2 (29)

forFy <n <m~Iry and n > m~'ry, respectively, where 7. = m~1ry
for x < m(y + 2)/(1 — m2)¥/2 but otherwise 74 = x + (y + 2)(m =2 —
1)M2, Similarly, for n > ry .

rigl =inx + (y + 2)(n2 - r})i/2 (30)

The definitions for g5 and g follow from (29) and (30), respectively,
by replacing y + 2 with |y — z|. The definitions for ¢ and ¢ follow
directly from (28)—(30) by setting z = 0. The contours ¢, g§ are de-
fined as the g-solutions to, respectively, the equations

ay+bz—igx=n>0, by+az—igx=n>0 (3la,b)
where n, and ny in (26) are given by
ng=m-Iri+rey np=m-lrg+nry (32)
ri= (x+ 2912 ry = [(xo — x)2 + y2 2 (33)
and for ny and n,, respectively, xo must satisfy
mxgro, m”lxgrg = (x — xg)ry (34a,b)

Finally, in (25)-(27), 7 and r} follow from 74 and r4 by setting z =
0 and H( ) is the Heaviside step function. Because Im (Iy, L;, Lg) =
0 as x — 0 (24) clearly satisfies the displacement boundary condition
in (1). By a similar process, the inverse of (11a) forx,y, s > Ois

: oV
mu = Re j; [V(O, t)Lo + j; oy O+ Lodz| de - (35

where in (25)-(27) the K-functions are now defined by

g2 —2q*
Ko=m?2=—, Kj=—r-—

m2bR_"’
R, T2
K:=—"K, Kb=-2m2?2— (36
2= Ka T h (36)
T
Ky=-m2—, K{= ;
S Ty T R
R bT
Kb=—R—*Kb, Kb=—4m2%2— (37)
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When 2/x, y/x — 0 care must be taken in evaluating the integrals
in (24) and (35) because the Cagniard contours collapse onto the
positive Im (g)-axis. This necessitates deforming the contours about
the Rayleigh pole due to R_ in the integrand denominators, which
results in special contributions to the solution. In the surface dis-
placement expressions presented later, these contributions will appear
as Rayleigh surface waves.

General Wavefront Pattern

Some general information about the wavefront patterns in the half
plane can be obtained by examining the Heaviside function arguments
in (25)-(27). The Ly, L,-terms in (24) and (35) represent the integral
sums of the disturbances due to all displacement discontinuities oc-
curring at a given x = 0, y = z and instant ¢t > 0. As indicated in Fig.
1(e), any one such discontinuity acts as a source which radiates di-
latational and rotational rays. For s > ¢ these rays are of length s —
- t and m(s —t), respectively, thus defining the wavefronts shown in
Fig. 1(a). The r— defined in (28) is the distance from the source to any
other point x, y > 0 in the half plane. The Heaviside functions in (25),
therefore, show that the K, and Kp-terms in (24) and (35) represent
the dilatational and rotational disturbances received for x, y, s > 0
directly from the displacement discontinuity region. In seismology
[11] these disturbances are called P and S-waves.

As seen in Fig. 1(b), a dilatational ray eventually reaches the half-
plane surface and, in view of the stress-free surface conditions [12],
is reflected as a dilatational and rotational ray. The dilatational ray
leaves the surface at the same angle as the incident ray, so that the
wavefront generated is the same as that which would arise from di-
latational rays traveling from an image point x = 0,y = —z inan un-
bounded material. The total distance traveled along the path from
the source to the surface to a point x, y > 0 is the r4 defined in (28).
Clearly, then, the K%-terms in (24) and (35) represent PP-waves, i.e.,
the dilatational surface reflection of P-waves. The rotational ray,
however, does not leave the surface at the angle of incidence. It can
be shown that (32) and (34b) give the elapsed time ny/c, between the
generation of the source point dilatational ray and the receiving of
the rotational reflection at x, ¥ > 0. Therefore, the K¢-terms in (24)
and (35) represent PS-waves, i.e., the rotational surface reflection of
P-waves. ) '

As seen in Fig. 1(c) by analogy with Fig. 1(b), the K} and K’-terms
in (24) and (35) represent, respectively, SS and SP-waves, i.e., the
rotational and dilatational surface reflections of S-waves. However,
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the SP and S/SS-wavefronts no longer intersect at the half-plane
surface when the angle of the former becomes perpendicular to the
surface there [13]. Subsequently, the wavefronts separate and the
head waves shown in Fig. 1(d) are generated. It can be shown that the
points x, y > 0 confined within the resulting wedgelike regions must
satisfy the relations mFy <m(s — £} <ry,x > m(y + z)/(1 — m?)1/2,
which are identical to those required when g} is defined by (28). Thus
the K§-term occurring for this g4 in (24) and (35) represents the
headwave contribution.

As indicated previously, the parameters and variables for the K2
and KJ-terms follow from those for K2 and K3, respectively, by setting
2 = 0. Therefore, the discussions for these terms need be modified only
by placing the source point at x, y = 0. Then, the K? and K)-terms
represent, respectively, dilatational and rotational disturbances ra-
diating from the origin x, y = 0, i.e., the corner of the quarter-plane
of mathematical interest. The rotational disturbance may of course
include head waves.

Returning to (24), the nonintegral term represents the propagation
of the displacement induced by the displacement discontinuity along
% = 0 normally into the quarter-plane x > 0 as a rotational wave. The
argument of the term shows that an instantaneously induced dis-
continuity produces jumps at the wavefronts.

In summary, then, the b and a-subscripted terms in (24) and (35)
represent, respectively, rotational and dilatational signals arriving
at a location x, y > 0 due to the radiation of waves from points in the
displacement discontinuity region. The Ly, or fundamental, terms
represent signals received directly from the points while the L,, or
reflected, terms represent the signals received upon reflection by the
half-plane surface. The Lgo-terms represent signals received from a
special point, the origin, x, y = 0. Finally, it should be noted that the
aforementioned Rayleigh surface waves can be associated with the
K? K)-terms and P,S-wave reflections at x, y = 0. These wave con-
tributions will be seen explicitly in the following two sections.

In light of these observations, (24) and (35) show that the reflected
and fundamental terms depend on the spatial gradient of the dis-
placement discontinuity and vanish when

Viy.s) = Vis)

Equation (38) also guarantees that the nonintegral term in (24) is a
plane wave, Thus a spatially uniform relative displacement produces
only plane waves perturbed by cylindrical, head and Rayleigh waves
due to the “corner” at x, y = 0. On the other hand, (24) and (35) show
that the origin terms depend on the displacement discontinuity at the
half-plane surface. Thus, if V(0, s) = 0 for all s > 0, then the origin
terms vanish. Finally, it is readily shown that the fundamental terms
and the nonintegral terms represent the complete solutions for y >
0 to the present problems in the unbounded plane.

(38)

Half-Plane Surface Displacements
Fory =0, (24) reduces to
7 = == (1 + d2) (5— 1) V(O,s —-’f—)H(s——x—)
2G d mg mp
20ZT(iZ)

« X
+ j; V(O,t)m[‘[(sft'—x)H(;L‘“l-t—s)dt

s =V -
+0n [ 172 ) [LHG ~ £~ 1)
o Jo 2y
+ LyH(s — t — py)]dzdt

T -t
La=—k—qq, Ly=~L, a=(Z2-1)V2 Z=""" (40)
— X

(39)

d
G=§(1+d2)+—-(1+02)—1—d2, c=(1—-mhv2,
. c

m2 1/2
d= ( 1- —’2—’)

m
for x, s > 0. In (40) the L-functions depend on correspondingly sub-
scripted g’s which are themselves functions of s-t. With s-¢ replaced

(41)
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by n for brevity, the ¢’s are defined by (28)-(30), where now the su-
perscripts are dropped and y = 0. Similarly, p+ and p4 follow from
r+ and r+ by setting y = 0. The first term in (39) is the contribution
obtained when, as y — 0, the g2, g)-Cagniard contours are deformed
around the pole at ¢ = i/mg. Analogously, for x, s > 0, ¥ = 0 we find
that (35) becomes
9
u = TR V(O,s —i)H(s __x_)
4m4dG mg mg
—————————— H{(s —

. X
V(o ~ X
- { " vor 46|R (zznz : x)H(m+t s)dt
1 x
+£ V(O,t)—~———————4x6|R (iz)‘zH(s—t—--ﬁ—l]dt

+Ref f ——(zt)[L H(s—t—py)

+ LyH(s — t — p4)]dzdt  (42)
where in this case :
2bg -T2
La=——4q, Ly=—=4¢, B=(Z22-m=H? 43
R q b 2bR_q ﬁ ( m=2) (43)

In (42) the f-symbol denotes Principal Value integration when the
zero of R_ at Z = 1/mp lies within the ¢-integration range. In (39) and
(42) and L, and Lp-terms represent the combined effects of, respec-
tively, the P,PP,PS and S,SS,SP-waves. The remaining terms rep-
resent the dilatational, rotational, and Rayleigh waves generated by
the Lo-terms. It will be seen that an important Rayleigh wave con-
tribution also arises from the Principal Value integral in (42).

The next section considers the two example problems. Both ex-
amples are essentially superpositions of the following problem: At s
= 0 a uniform displacement discontinuity of unit magnitude instan-
taneously appears in an undisturbed half plane along a semi-infinite
region of the y-axis defined by x = 0, y > ho > 0. Subsequently, the
region is defined by x = 0, y > h(s) where h(0) = hg and h(s) must be
at least piecewise smooth. The displacement condition in (1) assumes
the form

5 = 3H[y — h(s)|H(s) (44)

where (7) denotes the solution to this particular problem. Then, for
example, (39) becomes
T ¢ x
o= = 09 (5 ) oo~ 2o 2]
w0(h) ZG( )(d ) [ s s -
@ 2aZT(iZ) (x )
+ ———————"——H(—h)H(s — t — x)H|— + ¢t — s|dt
j; bRz Wt H A =

+Im J; [LaH(s — t — p4+) + LyH(s —t —p,)]H(R)dt  (45)

where 2 is replaced by h and the ¢-dependence of h is understood
unless specified otherwise. For convenience, the implicit dependence
of 0 on h(s) is expressed.

Two Examples

Consider a slip zone of finite length and uniform tangential relative
displacement v which instantaneously appears at s = 0 within the
half plane and moves along the y-axis. If the locations of the zone
edgesarex =0,y = h.(s), where hy(s) > h_(s) and h+(s) are at least
piecewise smooth, then by superposition the resulting surface dis-
placements u, v can be written as

(46a,b)

We consider {wo cases: In Case I the slip zone is of fixed length and
moves into the half plane at a constant speed. Therefore

hi(s) = ha: + ks, h?; = h()— + Ao

where k, Ao, by are positive real constants. In Case II, the same zone
moves toward, and eventually through, the half-plane surface at a
constant speed. Thus (47) can be adjusted by choosing £ < 0. In Figs.

u =vei(h-) —voi(h+), v=v0(h-) —vei(hs)

(47
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Fig. 2 Normal and tangential displacements at x = 1,0 on surface

2 and 3 the surface displacements u, v are plotted versus s at the
surface location x = 1.0 for both cases. Here m = (1/3)V2, hj = 1.0,
Ap = 0.1.In Case I, B = 0.2 while £ = —0.2 in Case IL It is understood
that values of x, s, hg, Ag, U, v, g are all multiples of the same arbi-
trary length unit, while & is dimensionless.

Case I1 is plotted in Fig. 2, where the upper and lower sets of vertical
dashes denote the first arrivals of waves associated with, respectively,
the h_ and hy-edges of the slip zone. As numbered from left to right,
the dashes represent the

1 P/PP/PS-wavefront.

2 SP/head-wavefront (SS/SP-wavefront separation has
occurred).

S8/8S-wavefront. i

Rayleigh wavefront due to P-wave reflection at x, y = 0.
Rayleigh wavefront due to S-wave reflection at x, y = 0.
Dilatational wavefront due to zone edge reaching x, y =
0.

7 Rotational wavefront due to zone edge reaching x, y = 0.
8 Rayleigh wavefront due to zone edge reaching x, y = 0.

SO W

Fig. 2 indicates that, in general, the tangential surface displacement
u is of larger magnitude than the normal surface displacement v. It
is noted that the wavefronts 6-8 signal prominent changes in u, v. In
particular, finite discontinuities in v and infinite discontinuities in
u occur at the Rayleigh wavefronts. The finite discontinuity follows
from the first terms in (39) and (42). The infinite discontinuity can
be extracted from the Principal Value integral in (42). It can be shown
that for (47), k <0,
7rll(h)~-————1-—ln s +}ﬂ—-i
4mim3dG k. mg
as s — (mz'x— k~1h§)*+. The wavefronts 1-3 have a smaller effect
on u, v. The Rayleigh wavefronts 4, 5 are included in, respectively, the
La, Lp-terms in (45) and its iZ (h)-counterpart. By following the work
of [8, 14], these wave contributions near the wavefronts can be ob-
tained for (47) as

{48)
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M(c) N(e)

xiaph) ~— G'© dx, wip(h)~ 2G @ ——(1+d?) (49)
aaB(h) ~ %%g)—d (1+d%)2%, xd%h)~ N(:i)) 1+4d%) (50)
M(2) = mr ln l[(mas —x)2+ z;:g;/z[z(il”jiz)+ )2 + 22h |12
+ kz tan™1 {;ﬁ% (51)
N(z) = mp tan™?! zzz—z?s(;)—% - mp tan™! ﬁ%@f‘z‘:“;
+hzIn % (52)
m2cdG’(2) = mp(m} + k222)[c2(1 + m2d?) — cd(1 + d?)] (53)

where the superscript R denotes the Rayleigh contribution, the sub-
scripts denote the wave reflected at x, y = 0 while the + notation on
h(s), hois implied and k = —0.2. As indicated in Fig. 2, the Rayleigh
contributions are finite at the wavefronts. It is also noted that they
vanish at x, y = 0.

In Fig. 3, short-time plots of u, v for Case II are presented with
complete plots for Case L It is seen that, even prior to the slip zone
arrival at the half-plane surface, the u,v-magnitudes for Case II are
generally larger. The wavefronts 6-8 do not occur for Case I and are
thus omitted in Fig. 3. However, another vertical dash pair, denoted
by 9, does appear for Case I. In light of Fig. 1(c, d), the SP and SS-
wavefronts generated by S-waves from the slip zone as it moves away
from the surface will eventually always intersect at the surface location
x = 1.0. The dashes identified by 9 indicate the arrivals of the first
signals of this event from the two zone edges. These arrivals seem to
have a noticeable effect on u, but an effect can also be detected for
v. Fig. 3 shows that, as in Case II, the u-magnitudes are generally
larger than those for v. However, the degree of difference, especially
as s grows, appears to be much greater for Case 1. Finally, the con-
tributions near the Rayleigh wavefronts 4, 5 are again glven by (49)
and (50), where now £ = 0.2.

Discussion

A general analysis for the two-dimensional dynamic problems of
largely arbitrary tangential displacement discontinuities on planes
normal to the surface of an elastic half plane has been outlined. Exact
formulas for the in-plane displacements both within and on the sur-
face were presented, and used to'discuss some general wave propa-
gation features of the solution. The results were specialized to examine
the surface displacements for two types of instantaneously appearing
uniform slip zones of fixed length. One type moved at a constant speed
away from the half-plane surface. The second type moved at the same
speed completely through the half-plane surface. The surface dis-
placement behavior indicated that, not surprisingly, the displacement
magnitudes are larger when the zone approaches the surface. In hoth
cases, the tangential displacement magnitude is generally larger than
the normal displacement magnitude. However, the degree of differ-
ence is greater when the zone moves away from the surface. More
importantly, the behavior indicated that the passing of the slip zone
through the surface generates separate and prominent wave distur-
bances. In particular, the Rayleigh wave disturbances cause both finite
and infinite discontinuities in the surface displacements. Thus care
is advised in using imaging arguments and approximations to study
through-surface slip.

The analysis was motivated somewhat by the possibilities for
studying edge dislocation motion and shallow focus earthquakes due
to fault slip through surface displacement measurements. Thus the
two examples could be classified as dislocation pairs of constant
strength or as fault slip regions. However, these examples were meant
to be representative of, and not necessarily identical to, actual models
of such mechanisms.

It should be noted that the present general results can readily ac-
commodate many features not mentioned or emphasized here, such
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as non-uniform or supersonic slip zone speeds, non-uniform slip over
the zones, zones which move from equilibrium, zones which enter the
half-plane, oscillating zones or multiple zones. Perhaps the generality
of the analysis will allow insight into solutions, perhaps approximate,
for specified stress problems. Moreover, the analysis can be used to
study in more detail the contributions of the various waves mentioned
here for different types of slip zones. In summary, then, it is hoped
that the present results provide a useful starting point for the problem
of studying physically important slip mechanisms through the asso-
ciated dynamic surface disturbances.
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Numerical results are presented for the dispersion spectrum for harmonic wave propaga-
tion in an unbounded, periodically layered elastic body in a state of plane strain. Both
real and complex branches are considered. The spectrum is shown to be multiple-valued
and quite intricate in detail. Some analytical properties of the Floquet surface are also

discussed.

Introduction
The problem of harmonic waves in plane strain propagating
through an unbounded, periodically layered elastic body has been
analyzed recently by the present authors [1]. This problem is of in-
terest due to its application to wave-propagation problems in layered
composites and to the construction of acoustic filtering devices. In
{1] we derived the dispersion equation for the layered elastic body and
discussed some of the qualitative aspects of the dispersion spectrum,
along with presenting a limited number of numerical results. In the
present work we present a more detailed set of numerical results for
this spectrum, evaluated over a limited range of wave numbers for a
_particular set of material parameters. Our purpose here is not only
to illustrate the extraordinary complexity of the spectrum, but pri-
marily to provide a set of benchmark data for use in the construction
and validation of approximate theories for wave propagation in
layered solids. The need for such data is apparent from the relatively
large number of approximate theories which have appeared in recent
years, the authors of these theories quite often comparing the pre-
dictions of their theories to the exact, plane strain solution for an un-
bounded body. However, as we discussed in detail in [1], existing
formulations of the unbounded body solution, such as in [2], may well
be lacking in physical significance, and, in addition, the intricate
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Fig. 1 Geometry of layered solid

coupling found to exist between real and complex branches has not
been revealed so far. Hence it seems that a proper and detailed eval-
uation of this spectrum is in order.

To consider the problem in more detail, we assume the body to be
as shown in Fig. 1, consisting of periodically alternating layers of
homogeneous, isotropic elastic layers perfectly bonded to each other
along their interfaces. Any two adjacent layers in the body comprise
a unit cell, and this unit cell is completely invariant under a lattice
translation along the positive and negative y-axes. For each unit cell,
the layers have elastic constants (; ), (\’; &), thicknesses 2h; 2h’,
and densities p; p’, respectively. The union of an infinite number of
similar cells comprise the periodically layered, infinite, elastic

body.
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Fig. 2 Spectral lines corresponding to modes of opposite symmetry, at the
ends of the Brillouin zones .

Let u, v, and w be the Cartesian components of displacement in the
x, y, and z-directions, respectively. For plane strain motion, we take
w = 0; u, v % 0. Then, as shown in detail in [1], application of the
methods of classical elasticity and Floquet’s theory of differential
-equations with periodic coefficients leads to the dispersion equation
expressed in the form of an 8 X 8 complex-valued determinant ([1,
equation (12)].
The dispersion equation relates two-nondimensional wave numbers
n = (2hk,)/7 and { = (2hk,)/7 to a nondimensional frequency Q =
(2hw)/(w+/ u/p). Here k,, is the wave number of the Floguet wave
measured in the y-direction, k, the wave number in the x-direction,
and w the frequency in radians per unit of time. Thus the dispersion
equation implicitly represents a multiple-valued surface in fre-
quency-wave-number space, with frequency as a real parameter.
Since the dispersion equation is in general far too complex to be
evaluated analytically, numerical computations are required. This
paper presents the results of such an evaluation for a limited range
of wave numbers over the first two Brillouin zones. Some earlier nu-
merical results are given in [2). The parameters used in this study are
v =0.02, 62 = 0.06, ¢ = 4, v = 0.30, and ' = 0.35. Here v = u/u’, 6% =
(up)/(’'p), € = h’/h, and v and ¥’ are Poisson’s ratio for the layers with
unprimed and primed constants, respectively.

Real Branches

It was shown in [1] that the dispersion equation for plane strain
motion factors along the ends of the Brillouin zones, were 7 = n/(1
+¢),(n=0,1,2...), into the product of two 4 X 4 determinants.
These determinants were then shown to represent the dispersion

equations for motion in which the u component of displacement is.

either symmetric or antisymmetric about the layer midplanes. For
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even values of n, the two factors correspond to motion in which the
u displacement is either symmetric or antisymmetric about both layer
midplanes in the unit cell ([1, equations (13)—(14)]. These cases will
be referred to as symmetric-symmetric and antisymmetric-an-
tisymmetric motion, respectively. For odd values of n, one factor
represents motion in which the u displacement is symmetric in the
layers with unprimed constants and antisymmetric in the layers with
primed constants (symmetric-antisymmetric motion, [1, equation
(16)]. The other factor represents the converse situation, antisym-
metric-symmetric motion ([1, equation (17)]. The first four branches
of each mode are shown in Fig. 2. As noted previously, these curves
define the ends of the Brillouin zones on the dispersion surface.

Similarly in the { = 0 plane, the dispersion equation may also be
shown to factor into the product of two 4 X 4 determinants, one of
which represents a longitudinal (P) wave propagating normal to the
layering and the other a shear (S) wave propagating normal to the
layering, [1]. The spectral lines for these two cases are shown in Fig.
3, along with the complex branches originating at the énds of the
Brillouin zones. The surfaces which emanate from the longitudinal .
and shear wave spectral lines in the { = 0 plane will henceforth be
called the P and S surfaces, respectively. The S surface will generally
be the lower of the two. _

Fig. 4 shows the intersection of the S surface with planes of constant
{ over the first two Brillouin zones, plotted on an extended zone
scheme. It is of interest to note that, while the derivative 9Q/07y was -
always positive on the extended zone scheme in the antiplane strain
case [3], this is not so in general in the plane strain case. In fact, 9§/
may change sign within a Brillouin zone, as may be seen by comparing
the curves for { = 0.10 and { = 0.30 in the first Brillouin zone. This
change in sign occurs between { = 0.26 and { = 0.27 and is illustrated
in Fig. 5. The derivative a{2/0n becomes positive again around { = 0.82
and remains positive thereafter. A similar-behavior occurs in the
second Brillouin zone, where 0£)/0n becomes negative around { = 0.48
and remains so for increasing (.

It was noted previously that lines defining the ends of the Brillouin
zones were given by the factored forms of the dispersion equation, i.e.,
symmetric-symmetric modes, etc. For conciseness, let SS1 denote the
spectral line for the first symmetric-symmetric mode, AS2 the second
antisymmetric-symmetric mode, ete. This notation will be useful for
labeling points on the ends of Brillouin zones. Then the S surface in
the first Brillouin zone is found to be bounded in the n = 0 plane by
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AATto { =0.33, by SS1 to { = 0.82, and by AAI thereafter. In the
= .20 plane, the bounding lines are AS1 to { = 0.04, SA1 to { = 0.82,
and AS1 thereafter. The portion of the surface in the second Brillouin
zone is bounded in the 7 = 0.20 plane by SA2 to { = 0.15, by AS1 to
¢ =0.44, by SA2 to { = 0.57, and by AS2 thereafter. In the 7 = 0.40
plane, the surface is bounded by SS2 to ¢ = 0.35 and then by AA2
thereafter.

Fig. 6 shows the intersection of the P surface with planes of constant
{ over the first two Brillouin zones. An especially interesting feature
is the existence of a local minimum in the curve for { = 0.30 in the
second Brillouin zone, at about 7 = 0.30. This minimum first appears
at the left-hand end of the zone at { = 0.26 and moves from left to right
within the zone with increasing { until it reaches the right-hand end
of the zone at { = 0.32. From { = 0.32 to { = 0.77, 02/07 is negative
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over the entire second zone, but becomes positive again at { = 0.77
and remains so for increasing ¢{.

In the first Brillouin zone, the P surface is bounded in the p = 0
plane by SSlto { = 0.33, by AAl to { = 0.82 and by SS1 thereafter. In
the n = 0.20 plane, the bounding lines are SA1 to { = 0.04, AS1to {
= 0.15, SA2 to { = 0.44, AS1 to { = 0.82, and SA1 thereafter. In the
second Brillouin zone, the surface is bounded in the 7 = 0.20 plane
by AS2to { = 0.22, by SA3 to { = 0.29, by AS3 to { = 0.73, by SA3 to
{=1.25,by AS3 to { = 2.58, by SA3 to { = 2.82, and by AS3 thereafter.
In the 7 = 0.40 plane, the surface is bounded by AA3 to { = 0.12, by
SS3to {=0.18, by AA3 to {=0.77, by SS3 to { = 1.25, by AA3to { =
2.58, by SS3 to { = 2.82, and by AA3 thereafter.

. Complex Branches

We will now focus our attention on the complex portion of the
spectrum, considering first the branches for which 7 takes on complex
values. As shown in [4], these branches originate from points on the
real spectrum at the end of the Brillouin zones and from other points
on branches where 0Q/[d Re (5)] = 0. Along branches originating from
the end of the Brillouin zones, the real part of 7 in general remains
constant while the imaginary part varies. Complex branches will also
arise from points on other complex branches where 9Q/[0 Im ()] =
0. To avoid excessive detail, results are presented here only for the
range 0 < { < 0.35 over the first two Brillouin zones.

We consider first the left-hand end of the first Brillouin zone, in
the plane Re () = 0. As the spectral lines SS1 and AA1 move away
from the origin (Fig. 2), simultaneously complex branches originate
from these lines and run down to the Q = 0 plane. Fig. 7 illustrates
these branches at { = 0.10, where again the imaginary axis has been
rotated 90° onto the real plane for clarity. This situation continues
to between { = 0.25 and { = 0.26, where an interesting phenomenon
occurs. Here the branches are observed 1o touch each other at a point
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along the curves and then with increasing ¢, to split and rejoin into
branches having different endpoints. This process is shown qualita-
tively in Fig. 8. Here, and henceforth, we denote real branches by solid
lines, complex branches upon which the real part of the wave number
remains constant by dashed lines, and complex branches upon which
both the real and imaginary parts vary by dashed and dotted lines.
The branches which originally ran from SS1 and AAl1 tothe @ =0
plane are seen to split and rejoin into a single branch running from
SS1 to AAT and another which loops up from and back to the ¢ =0
.plane. For { = 0.26, a short complex branch upon which both Re (1)
and Im (n) vary connects a local minimum in the SS1-AA1 branch to
alocal maximum in the branch originating and ending in the (1 = 0
plane. This 'is in accordance with the previously stated result that
complex branches may also arise from portions of the spectrum where
28/[0 Im ()] = 0. The local minimum in the SS1-AA1 branch dis-
appears around { = 0.27, as shown in Fig. 9. The situation shown in
Fig. 9 remains qualitatively unaltered through { = 0.35.

Now consider the complex branches in the Re (1) = 0.20 plane. Here
the situation is considerably more complicated. Fig. 10 shows the
branches for {"= 0 (see also Fig. 3). Here the P and SV waves uncouple,
leading to intersections between the complex branches. However, once
{ increases away from zero, the P and SV waves become coupled and
the complex branches immediately split at their points of intersection
and rejoin into different branches, accordilng to the process described
earlier. Fig. 11 shows a qualitative sketch of the rejoined branches at
{ = 0.02. The intersections of the P and S surfaces with the { = 0.02
plane are labeled accordingly. The local maximum in the AS1-SA1
branch and the local minimum in the SA2-AS3 branch disappear
between { = 0.10 and { = 0.15, and with them the complex branch
connecting the two. Also, the AS1 and SA1 spectral lines intersect at
¢ = 0.04, so the relative position of these two is reversed.

At {=0.15, the SA2 and AS1 spectral lines intersect, and a variant
of the splitting and rejoining process is observed. Fig. 12 shows the
branches before the intersection, at { = 0.14, and afterwards at { =
0.16. The AS1-SA1 and AS3-SA2 branches are seen to merge and
rejoin into an AS3-SA1 branch and an AS1-SA2 branch.

The situation shown in Fig. 12 for { = 0.16 continues qualitatively
unaltered with increasing { until a value of { between ¢ = 0.25 and {
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= (.26. Here an intersection, splitting, and rejoining of the AS3-SA1
and the SA3-AS2 branches occurs, resulting in a local maximum in
the newly formed AS2-SA1 hranch. At the same point, a local mini-
mum is observed to form in the real branch on the P surface in the
second Brillouin zone, and is connected by a complex branch to the
local maximum in the AS2-SA1 branch. This process is sketched
qualitatively in Fig. 13.

As { increases, the local minimum in the real branch moves from
left to right through the second Brillouin zone until it reaches the
right-hand end at about { = 0.32. Now the derivative 9Q/[d Re ()]

Journal of Applied Mechanics
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is completely negative on the P surface throughout the second Bril-
louin zone. A local minimum now forms in the complex branch orig-
inating from the right-hand end of the zone, and the complex branch
which previously ran to the minimum in the real branch, now runs to
this minimum. Fig. 14 illustrates qualitatively the situation for { =
0.29 and { = 0.34. ‘
We will now briefly consider those branches of the spectrum for
which { takes on complex values, These branches originate from the
real spectrum in the Re ({) = 0 plane, and from other lines in the real
spectrum along which 9Q/[d Re ({)] = 0. In general, the real part of
¢ remains constant along branches originating in the Re ({) = 0 plane,
while the imaginary part varies. Complex branches may also be ex-
pected to originate from points on other complex branches where

aldeIm (] =0.

Fig. 15 shows a qualitative sketch of the branches with complex ¢
along the end of the first Brillouin zone in the plane Re (3) = 0.20 (see
also Fig. 2). Here the dispersion spectrum uncouples into symmet-
ric-antisymmetric and antisymmetric-symmetric motion. A partic-
ularly interesting feature is the existence of a complex branch running
from a local minimum in the real AS3 branch down to a point in the
Q = 0 plane. ’

We have restricted ourselves in this section to a discussion of those
portions of the complex spectrum where only one of the two wave
numbers (either 5 or {) takes on complex values, while the other re-
mains real. However, there exist portions of the spectrum upon which
both wave numbers are complex-valued. These portions of the spec-
trum are shown to originate from points at which either 9Q/d[Re (31)]
= 9Q/3[Re ({)] = 0 or 3%/3[Im ()] = 2Q/3[Im ({)] = 0. They describe
in general a five-dimensional surface in frequency-wave-number
space.

As an example, consider the point = 0.20, { = 0 at the end of the
first Brillouin zone. From this point there arises a surface upon which
both Im () and Im ({) vary, and upon which Re () and Re ({) may

SEPTEMBER 1980, VOL. 47 / 535

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Q /
)
As3 —p ARG
® \—{AA3
s L P =
’/I//SAB g = .25
/i
Anz '-\ L TAst
ss1 B ———misa2
AA1 ==15A1
S Re ()
20 40
Im(n)
[
Q JAS3 __—7] AAs
/ 4 '
! lsas P _Aqna3
I‘_" -
AA2 Vo S
p ". { ASt £=.26
88t T sA2
ARY A a1
Re (7)
20 40

“Im(n)
Fig. 13 Qualitative sketch of spectrum for {=0.25,0.26

vary as well, Fig. 10 shows a section of this surface in the Im ({) = 0
plane, while Fig. 15 shows a section in the Im (5) = 0 plane.

Discussion

It is evident from the numerical results presented in the last section
that the dispersion spectrum for plane strain motion is quite com-
plicated. This complexity makes the task for properly interpreting
the spectrum a difficult one. By proper interpretation of the spectrum
we mean the selection of those portions of the spectrum for which
energy is propagated in the positive coordinate directions, and which
can be reached from the zero frequency plane by a path along every
point of which energy is propagated in the positive coordinate direc-
tions. '

For real wave numbers, the selection of portions of the spectrum
for which energy is propagated in the positive coordinate direction
corresponds to the selection of portions of the spectrum for which the
components of the group velocity 92/[0 Re ({)] and 29Q/[d Re ()] are
both positive. The interpretation of the antiplane strain spectrum [4]
is thus straightforward, since both these derivatives are always posi-
tive (or zero) on the extended zone scheme.

In the plane strain spectrum, however, 392/[0 Re ({)] and 2€/[d Re
(1)] have been shown to change signs several times within a Brillouin
zone, indicating the presence of saddle points and critical points of

. more complicated nature. The interpretation problem is further
complicated by the fact that any portion of the dispersion surface may
be reached by one of a number of different paths by traveling along
different real and complex branches.

Perhaps the major difficulty which remains to be resolved before '

the plane strain spectrum can be successfully interpreted is the de-
termination of the portion of the complex branches of the spectrum
which correspond to energy propagation along the positive coordinate
axes. The criterion for making this determination along real portions

of the spectrum has already been stated. However, for complex por-

tions of the spectrum, no corresponding criterion exists.
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For these reasons, a proper interpretation of the plane strain
spectrum cannot be given at this time, pending a more detailed
analysis leading to a resolution of the difficulties mentioned. The
interpretation must therefore be deferred to later studies which in-
volve the application of Morse theory for the study of critical
points.

In addition, there are a number of other problems connected with
this subject, which have not yet had a satisfactory answer. It is well
known that for the Floquet exponent nw/d <k, < (n+ 1)w/2, n =
0,1,2,...,the two linearly independent solutions for the potentials
¢(x, yn; t) and Y(x, yn; t) are quasi-periodic or “almost-periodic” in
the sense of Bohr. At the end points of the Brillouin zone, one of the
solutions is periodic with period (half period) d when n is even (odd).
For a second-order ordinary differential equation with periodic
coefficients, such as equation (5) of [1], it can be shown that when ky
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= nw/d, the second independent solution is a sum of a periodic part
and a linearly varying part, and as such it is aperiodic. These solutions
and their explicit forms still remain to be determined in the case of
plane strain problems. The ability to solve initial-boundary-value
problems depends upon a detailed knowledge of the properties of
these solutions.

Tt is also known [5] that there exists coincidence of frequencies for
suitable values of parameters. It can be shown that if F($, £,) = 0 (k
= 1,2) is the dispersion equation, which is a function of one real and
two complex variables, then the slope of the surface at the point of
coincidence is given by

o 1 '

— = — [ —=Fqs, £ \/ F2q, — FooF k=12,
ok Fan | =Foy, + v/ F2qp — FaaF g,
and the second derivatives are not independent -but satisfy the con-
dition

(FanFaog, = FaoFug)? — (F2an — FaoF i) (FPag — FaaF ) = 0.
At the point of coincidence, the two linearly independent solutions
for the potentials ¢ and ¥ are both periodic. However, the qualitative

Journal of Applied Mechanics

nature of the displacement field has not been examined so far. The
problem of coexistence in the theory of ordinary differential equations
with periodic coefficients has a long history and was only recently
explained fully. An understanding of similar phenomenon in the
present context requires further study.
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The problem of a cracked sphere is solved with the use of Boussinesq stress functions. Two
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coordinate systems—oblate spheroidal for representing the crack surface and spherical
polars for the spherical surface—are used to satisfy boundary conditions. Integral repre-
sentations and transformations of harmonic functions are used to relate stress functions

in the two coordinate systems. This procedure leads to a system of algebraic equations
which is solved, for axisymmetric tractions on both the surfaces. Graphical results are pre-
sented for one specific loading case.

1 Introduction

The motivation for solving the elasticity problem for a cracked
sphere was the need of this solution in order to solve the problem of
a cracked spherical inclusion in a dissimilar matrix. This cracked
inclusion solution is presented in the companion paper in this issue
of the JOURNAL OF APPLIED MECHANICS on Pages ?. It is often
found in testing of metallic materials with brittle inclusions that the
latter fracture at a relatively low load level, and this fracture event
is the source of detectable elastic wave motion (see Bianchetti,
Hamstad, and Mukherjee [1]). It is of interest to solve the cracked and
uncracked inclusion problems in order to determine the amount of
elastic energy released by the fracture event.

The two-dimensional analog of the cracked sphere problem has
been solved by Erdogan and Gupta [2], but the techniques used there
are not applicable to the spherical geometry. The cracked sphere so-
lution is obtained here by the superposition of two other solutions:
one is the solution for a penny-shaped crack in an infinite medium
and the other is the solution for an uncracked sphere. The solution
of the crack problem exists in the literature in several different forms,
but none of these forms was found to be suitable for use in the su-
perposition scheme for solving the cracked sphere problem. For this
we need the solution for arbitrary axisymmetric normal and shearing
tractions applied to the crack faces. Furthermore, this solution must
have a mathematical representation that permits the evaluation of
the normal and shearing tractions on the spherical surface of interest.
Such a solution is derived in Section 2 for the crack in an infinite
medium in terms of oblate spheroidal coordinates. Sack [3] has also
solved the problem of a crack in an infinite medium using oblate
spheroidal coordinates. However, the solution obtained in [3] contains
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incorrectly defined Legendre functions of the second kind. Also,
Sack’s transformation of harmonic functions from oblate spheroidal
coordinates to spherical coordinates leads to functions that are not
harmonic, therefore, they cannot be used as Boussinesq potentials.
Furthermore, the problem considered in [3] is restricted to uniform
pressure distribution on the crack faces. For our purposes we need
nonuniform pressure and shear distributions on the crack faces.

The axisymmetric solution for the uncracked sphere is given by
Sternberg, Eubanks, and Sadowsky [4] in terms of interior spherical
harmonics. In order to use this solution in the superposition scheme
for solving the cracked sphere problem it is necessary to evaluate the
normal and shearing tractions on the crack face of interest. Trans-
formations ‘are obtained between spherical and oblate spheroidal
coordinates which enable us to make the needed traction calculations.
Superposition of these two solutions leads to the cracked sphere so-
lution in series form. ‘

One particular loading is considered and stress distributions are
calculated on the equitorial plane outside the crack for various ratios
of the crack and sphere radii. The stress-intensity factor is also
computed, and its dependence on this ratio is also graphically illus--
trated.

2 Crackin an Infinite Medium

1 Coordinate Systems and Separable Solutions. The axi-
symmetric problem of a penny-shaped crack is solved here using
Boussinesq stress functions referred to oblate spheroidal coordinates
defined as follows:

x=av 1+ £2)(1 —n?) cos ¢
y=av {1+ )1 -7 sine

z=aly

(1)

" where0<f<ow,—1<p<1,

The surfaces £ = constant (positive) are oblate spheroids of thick-
ness 2 £a along the axis, and of equitorial radius a+/£2 + 1 . The sur-
faces 1 = constant are hyperboloids of one sheet, asymptotic to the
cone of angle cos™! # with respect to the z-axis. The surface £ = 0 is
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a disk of radius a in the x, y plane, with center at the origin. The de-
generate surface n = 1 is the positive z-axis and likewise n = ~1 is the
negative z-axis; also the surface n = 0 is the x, y plane except for the
part inside the disk of radius a, centered at origin.

The separable solutions ®(p)H (n) X () of Laplace’s equation in
oblate spheroidal coordinates are determined by

e,

d¢2+m<1> 0,
2

i[(l—nQ)—}!J+n(n+1)H= mHZ, @)

1-79
m2x

2y . =

[(1+£) g+n(n+1)X 7

The solutions are products of the following type:

{sin mq&j x {P,’;‘(n)} [P’"(LE)] (3)
cosme) QR (n)) QRGEE)

where P} and Q7 are the Legendre polynomials and Legendre
functions of the second kind, respectively. Because of axial symmetry
only the terms with m = 0 are considered. Regularity requirements
at 7 = £1 and £ — = exclude the use of P,(i£) and @, (n). Thus the
required solutions for the exterior of an oblate spheroid are

¢n (& 1) = Po(m@Qn(f). )

Additional hérmonic functions ¥, are generated from these by ob-
serving that if ¢, is harmonic then so is grad z - grad ¢,. In oblate
spheroidal coordinates such ¥, (£, n) are related to ¢, (£, n) by

—n2
Lt ol )
Substituting (4) and (5) into
2uu = V¢ (6)
2uu = V(zy) — [4(1 — v)yK] )

referred to oblate spheroidal coordinates (see [6]), we obtain the first
Boussinesq solution (generated by ¢.) and the second Boussinesq
solution (generated by ¥,,):

First Boussinesq Solution [F,]

Quu{® = L \ 1= o
2 2
&+ n? oy )

ng)_l[(gz'*'l)azd’n_*_ E?—1) d¢n 7](1‘7]2)%
Pl og2 (2 ah? o T (B2 on
) = 1VE+DE =)
K &2+ 9?2
(0% __ 1 06w __ & oo
loton 2+ 02 06 £2+ 0% on
1 9
U(n) -
" a2+ )
%y (1 +£2) 3¢ | (1 +E)E¢n
) 2 ¥ 9%n 9P
X[(l o Bt on | B ok
ST EN
22+ Y K on
Second Boussinesq Solution [Gn]
1 1 -
(10

2uuf?

g -
i fE .
e Ve [GW“ oF ]
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(o = £n(£2+1)62¢/n
T e o
£ (P-1)  (1-20) (1+£2)]a¢n
a (8+ 922 a £2 + 7?2
18- 1 ”ng_
+L &+ 9% (52+n2 2w o
w_ILVEFTDA=—1)
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o = __.__[ Wn Jﬂ]
R ) o1

The displacement component 2, and the stress components o, and
gy wWhich vanish identically by v1rtue of assumed symmetry are
omitted here.

2 The Axisymmetric Problem of an Arbitrarily Loaded
Crack. Consider a penny-shaped crack of radius a in the x, ¥ plane
of an infinite medium and centered at the origin. Furthermore, assume
that this crack is loaded with general axisymmetric surface tractions
given by

a0, m) = f(n), 05(0, 1) = gn). (12) -
In order to satisfy these boundary conditions at the crack face we need
to evaluate from the first and second Boussinesq solutions the ex-
pressions for oy and oy, at the crack face £ = 0. Using (4) and (5) in

(9) and (11), respectively, we find

[Fr]:
af?(0,n)
- ;;';3%:-3—1) [Prsr(n) + (2 + 1)Pazs()]@n (0)
a0, n) a3
= (;%‘/sz_{% [(0 = DPjpa(m) + (0 + 2Py ()]Q(00)
(G, ]:
o9 (0, m)
- ﬂ:—%g%l—) (1P 1 (1) + (0 = 1P (1)]Qn (i0)
0, = VI ‘14?
aZp3(2n + 1)

[(n = DPrar(n) + (0 + 2)P,y(n)] Q4 30)

The form of these expressions suggests that in order to satisfy the
boundary conditions at the crack face £ = 0 we should expand the
following functions into Legendre-Fourier series:

@ 3 w
- = 7P (), 1 = nP,n 15
7% (n) n2=20f () mg(n) n‘élg m (18
in which f,, g, are determined by
2n +1 1 '
= 3
fo= =0 f wi@P Gy (16)

SEPTEMBER 1980, VOL. 47 / 539

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(16)
2n+1 - ! , -
=%l f_ 1 VI = 22(mPa(mdn  (Cont.)

We also observe from (13) and (14) and the definition of P, (5) that
the stress quantities o{}' from both [F,,) and [G,] are regular in the
region exterior to the crack only for even n (except for n = 0) while
the of?) are regular in the same region for odd n. The other terms
possess singularities at n = 0, which is the entire 2 = 0 plane except
for a disk of radius a, and must therefore be omitted. In order to ac-
complish this it is useful to define solutions [A,], [B,] by

[Ap]l =n(n = 1)[F,]
[Bn] =n(n — 1)[Gn] ’
which will omit the singular solution for n = 0 and will aid us in ob-

taining the coefficients of superposition by recursive computation.
We now assume the solution in the form

n

(1n

[S]= ZO an[An] + by [Bn]- (18)
The boundary conditions at £ = 0 supply a system of equations for the
coefficients of superposition a,, b,. Upon substitution of (13) and (14)
into (17), with the use of (15), we obtain

S fPa= % [an + 20 = Dby]
n=0 n=0
2{n2 — :
X [n—(nj—l) [0Pps1 + (n + 1)Ppei] g—(i%}
. . " (19)

Y 8nPr= % [an+ 2v - 1)b,]
n=1 n=1

n(n - 1) - ’ ’ Q;z(LO)

xl o [(n— )Py + (n+ 2)Py_y] (2n_—+ 1‘)]-

Equating coefficients of the same degree Legendre polynomials on
both sides, we get

_ = 1)(n = 1) - 1]@n-1(0)
a?(2n —1)
2(r — in(n — 1)3(n — 2)Q,—1(i0)
- a2(2n — 1)

In

n—1

bn-l

_ (2= 1) - 209, ,6:0)
a2(2n — 1)
_ @ -1 - 1(n — 2)%0,,(0) b
a2n —1)
_ 1 (n+ D3H(n+ 1)2 = 1}(n + 2)Qn+1(0)
T a2(2n + 3) [n(n + 1)(n + 3)Q41(i0)

n(n+ 1)%(n + 2)22(r ~ 1)Q,+1(0)[an+1
nin + D(n + 3)(2r — 1)Q41(i0) { }
n=12,...

n n—1

n—1

bn+1
(20)

For the problems of practical interest the tractions on the two crack
faces are equal in magnitude and opposite in sign. This means that
f(n) and g(n) are even functions of 7. It follows that the Legendre-
Fourier expansion for #%(n) in (15) contains only odd degree Legendre
polynomials while that for (n3/+/1 — 2 )g(n) contains derivatives of
only even degree polynomials. Thus f, = 0 for even integers n while
£r = 0for odd integers n. It further follows that as,, be, determined
by (20) depend only on f, while asn+1, b2n+1 depend only on g,. These
equations must be solved recursively. Nevertheless it is possible to
write them in explicit form once the series has been truncated at a
suitable integer n = N. It is useful to write the resulting system
symbolically in matrix form as

[AfNas} + [A]ibs) = {fi}}
[Aflas} + [Af1bs) = Ll
i=12,...N. (21)

Also we may represent the solution of these equations by
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Fig. 1 The geometry of the crack

—— — IMAGINED SURFACES

Fig. 2 The superposition of solutions S and $2

lai} = [t} + [oflies)
(bi} = [Whlif;} + [whle
which formally completes the solution to the crack problem.

An alternate formulation of the crack problem rests on the known
symmetry of the solutions and the fact that certain displacement
components in the plane n = 0 must vanish. We can demonstrate that
the solution just obtained satisfies these properties. In particular,

i=12,...N

(22)

" consider the solution for the case g(n) = 0, that is, when the crack is

opened by nonuniform pressure only. It can easily be shown by use
of (4) and (5) in (8) and (10) thatu, =0atn = 0.

3 The Problem of a Cracked Sphere

The axisymmetric elastostatic problem of the cracked sphere is
treated here by employing the axisymmetric solution for a sphere
under tractions together with the solution given in the previous section
for the tractions applied to the surface of a penny-shaped crack in an
infinite medium. In order to superpose these two solutions we must
make use of appropriate transformations, which allow us to pass from
spherical polar to oblate spheroidal representations and vice-versa.

1 Statement of the Problem. We consider a homogeneous
isotropic elastic sphere of radius ro which possesses a circular crack
of radius a centered at the center of the sphere, oriented perpendicular
to the symmetry axis and lying in the x, y plane. Assume the spherical
surface is loaded with the general axisymmetric tractions

70, P) = 5(0) = 3 5,Pu(p)

oo, p) = t(p) =B 3 t:PH(p), (23)

where the coefficients of the Legendre-Fourier expansion sy, ¢, are
determined as in (15). The surface of the crack is free of tractions, i.e.
(see Fig. 1).

ag6(0, 1) = a5,(0, 1) =0 (24)

This problem is solved by superposing solutions as depicted in Fig.
2 and demanding that
olh, k] +f=0, oplh k] +2=0
ht+oblf, gl =s k+ ohlf, gl =t

Where superscript “1” denotes the uncracked sphere solution, for

at£=0,]

25)
atr =ry, (

- arbitrary initially unknown tractions represented by h, k and su-

perscript “2” denotes the crack solution, given in the previous section
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for arbitrary initially unknown tractions represented by f and g.
These four unknown functions are determined by the four equations
in (25), which result from the superposition

[S]=[S"] + [S%). (26)

2 Tractions on the Imagined Crack Face From the Un-
cracked Sphere Solution. Let the spherical surface be loaded with
arbitrary axisymmetric tractions,

oh(ro, p) = h(p) = ‘éﬂ hy Py (p)
" @7)
oro(ro, p) =k(p) =P Zl knP(p)
n=
Then the uncracked sphere solution as given by Sternberg, Eubanks,

and Sadowsky [4], using solid spherical harmonics as Boussinesq
potentials, has the form

(511 = 3 calCal +dalDs] (28)
where [C,,] are given by
2uu™ = nrr=1P,, 2uuf) = —pro-1p;, (29)
o =n(n - 1)r"-2p,
ol =rn=2P,_, — n(n — 1)Py] (30)
o) = rn=2p,
off =pre=*(1 = n)P,
while the solutions [D,,] are given by
2uu'™ = nro(n — 3+ 4)Ppy,
QuuiM = —pro(n + 4 — )P, (31)
o™ = nrr=Yn(n — 3) — 2»]Py—1
o) = rv=1(n + 4 — )P, — n[(n + 1)
+(n+ 1)+ 1~ 20]Ppy) (32)

o =rr=Un(2n + 1)(1 ~ 20)Pp_1 — (n + 4 — 40) P
o) = —prr-l(n+ 12— 2(n + 1) — 1+ W]P,_..

In the equations (30) and (32) we observe that the solutions [Co], [C1],
and [Do] correspond to vanishing stresses throughout the sphere, thus
these solutions represent rigid displacement. Equilibrium requires

that the tractions in (27) satisfy
hi—2k1=0 (33)

and the coefficients ¢, d, in (28) are determined in terms of hn, ky
by

ch =

1 [(n2+2n—1+20)h,+ (n+ 1)(n?—n — 2 — 2v)k,}

rg-? 2(n — Dn2+n+ 14+ 2n + 1]
' n=23...) (34)
h, + nk,
dn+1 = -
2r§[n2+ n+ 14+ (2n + 1]
n=0,1...

The coefficients cg, ¢1, and dg are taken to be zero to eliminate arbi-
trary rigid displacements.

In order to find the tractions at the imagined crack surface in the
uncracked sphere we must transform the solutions [C,] and [D,,} into
oblate spheroidal coordinates. This we do by first transforming the
interior spherical harmonics r*P,(p) into their oblate spheroidal
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forms (see [5, Appendix-B] for the derivation of this transforma-
tion). -

"Pu(p) =T £ OPLDPLGE) (35)

where a is the crack radius, i =+/~1, and
1
= fl TP (T)dT

The oblate spheroidal form of the solid spherical harmonics is then
used in (6) and (7) referred to their oblate spheroidal form [6]. This
computation yields the oblate spheroidal form of [Cy,] and [D,].
Substitution of these transformed Boussinesq stress functions into
(28) enables us to determing the tractions at the imagined crack faces
E=0.

1 = n
o}0, ) = ;]g Zo {Cn Zo [ex(n, @)Pgr1(n) + ea(n, q)Py—1(n)}
n= q=

+dn io [61(n, q)Pyra(n) + 85, @)Pq(n)
p2

+ da(n, q)Pq-—Z(T])]]

1 —n2 = n
—-1;7—3—”— > {cn % les(r, 0)Ppna()
p=

n=0

+ ea(n, q)Py_1(n)]

ol (0, 1) = (36)

+dn Y [84(n, @)Pysg + 85(n, q)P, + S6(n, q)PI,—zl}
g=0

where

afn, q) = 11(n, q)q, esln, q) = 1a(n, q)(g — 1),
e2(n, q) = 71(n, q)(q + 1), es(n, @) = 72(n, q)(g + 1),

81(n, @) = 73(n, q)(q2+ 3¢+ 2)—(n -3+ )e(n + 1,9 + 1),
_73(n, q)(4g® + 6g2— 1)
- 2q-1)
_ 73(n, ¢)(2¢% — g*+ 3q)
- (2¢-1)

04(n, q) = 14(n, q)(g%+ q) ~ (n ~ 3+ )ea(n + 1,9 + 1),
05(n, q) = 74(n, @)(2¢2 —3) — (n — 3+ )es(n + 1,q + 1),
_ 74(n, )(2¢3 + 592 + 3q)
- (2¢g — 1) ’

n—20n ;.

T1(n, q) = aa +(;:Ia+ 1)0iqfq(‘0)
‘ an=27P, (i0)

in(2q+1)
2(r —1)(2n + 1)an~102P, (i0)

(2q + D(2g +3)i»

_ (2v = 1)(2n + 1)an"102P, (i0)
B (2q + 3)(2¢ + Di*

Equations (36) can be written symbolically in matrix form as

da(n, q)

(n—38+4)ea(n+1,q+1),

o3(n, q)

dg(n, q)

Ta(n, q) =

73(n, q) =

74(n, q) 37

o140, 1) = (P (Mlf([ackilies} + w;,-ndm;n—ﬁ,

m ,
ol (0,m) = T”{Pm»«h}ﬁ]{ci} + [ @)
By the use of (34), we may substitute for ¢; and d; in terms of h;, k;,
the coefficients of the unknown prescribed tractions on the spherical
surface. But we find it more convenient to work with the coefficients

of superposition ¢;, d;.
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3 Tractions at the Imagined Spherical Surface From the
Solution for a Crack in the Infinite Medium. The axisymmetric
solution for a crack in an infinite medium was given in the previous
section in a form that is useful for our purposes. For normal and
shearing tractions on the crack face given by f(y) and g(n), respec-
tively, with Legendre-Fourier expansions given by (15) the solution
[S?] is given in the form

[S?2] = ¥ a,[A.] + balBn] (39)
n=0
with an, b, determined in terms of f,,, g, by equation (20).

In order to determine normal and shearing stresses at an imagined
spherical surface, we must transform solutions [Ay.], [Bx] used in (18)
into spherical polar coordinates. This is accomplished with the aid
of the following transformation for exterior oblate spheroidal har-
monics (see [5, Appendix B] for the derivation of this expression)
P,(mQ, (&)

2n(nh)?2 @ a)2m+n+1
= M7 |- P ) (40
i"+1(2n + 1)' mz-—:() m , 2m+n (P ( )

in which M% are the coefficients of the series for the hypergeometric
function

y ;n

n+l n+2 +§ (L_)_()ZJ
2 2 2’

defined by
b b(a+ 2
Pla b, = 14205 4 R let DO+
¢ ¢ c+1) 2

=1+ M5y + MEP9%2 4.0 (41)

and
X=z+i(xcosu+ysinu)

This spherical polar form (40) of the exterior oblate spheroidal har-
monics is then used in (6) and (7) referred to their spherical polar
form. This computation yields the spherical polar form of [4,], [B,]-
Substitution of these Boussinesq stress functions into (39) enables
us to determine the tractions at the imagined spherical surface r =

ro-.

Z Z {anfi(m, n)}Poman (D)

n=0 m=0

+ balfa(m, n)Pomen(p) + f3(m, n)Pam+nt+2(p)l}  (42)

tT%,-(I‘(), p)

h(ro,) =B % 3 {anFi(m, n)Plhnsn(o)
+ balfa(m, n>P2m+n<p>+ Fam, 0)Pjins2(]]
* where
a2m+n+1
film, n) = n(n — 1)G)M%LC@2m + n + 1)(2m +n+2) m
‘ _ _Om+4n+1H2mtnt+5—4y)
fa(m,n) = @m+2n+3) fi(m, n),
__[@m+n+2)@2m+n+5) - 2]
falm, n) = 4m + 20+ 3) film, n),
2m+n+1
film, n) = n(n - DGH)MELE2m +n+ 2) m (43)
- ' _@m+n+1)Cmtn+5-4).
fo(m, n) = m 1t 3) fi(m, n),
Fa(m, n)

_[(2m+n+1)2+2(2m+n+1)—1+2v](2m+n+1)
dm+n+3)(2m+n+2)
X film, n)
[2r(nh)2] /i 1(2n + 1)

G(n) =
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Upon collecting coefficients of P, (p) and P,,(p) in (42) and arranging
them in matrix form, we find

oZ(re, p) = (Pull((cdillasd + [B5:1{b:D)
= PP H (Y2 as) + [E2:1b:)

By use of (22) we may substitute for a;, b; in terms of f,, g, the coef-
ficients of the unknown prescribed tractions on the crack face, to
ohtain

o (ro, p) (44)

{Palt(etllwh] + 182 [wfDf)
+ ([o2][wh] + [BRllwhligh
= PP ([yadlwh] + [SElwdlif)
+ ((2dlef] + [SEllwfDigh
4 Superposition of the Two Solutions. The superposition
given in (25) determines f(1), g(n), k(p), k(p) so that the prescribed
boundary conditions at the crack face, and the spherical surface are
satisfied. The conditions at the crack face given in the first and second
of (25), with (38) and (12)? (15) yield
ifa) = —[emlie:} — [Brilidi} l
{gad = ~ [ynillest — [Rlds).
The conditions at the surface given in the third and fourth of (25) with
(22), (44), (45), and (46) yield

(([ed]lwfe] + (B [whD [—etha]
+ (e}l + B3 whD=vhal + [LinlHesd
+ k([auuwjk] + [B “w ])[_ﬁllm]
-+ (adllwh] + [BlwfhDI=$kal + [inllldi} = fsn}
gl wh) + ilefDi—aka)
+ (Y3llwh] + [SFllwhD [=vha] + [Finlilei}

U%r(rOJ p) =
(45)

o%(ro, p)

(48)

) + {(['Yu][w}k + [5-12] ‘-‘-‘Jk] 6kn]
+ (['Yu][w}k] [g‘u][wjk])[ fkn]
+ [GiuBlldi} = {tad (47)

where [I], [/], [F], and [G] are defined, from (27)—(31), as follows:
a1 (ro, p) = {Pull[Lnllei} + [Tnilldil}

= PP [Fultei} + [Grilldil}

These equations determine the coefficients ¢;, d; for given prescribed
traction coefficients {s,} and {t,}. The tractions prescribed on the
spherical surface of solution S! are then determined by using (30) and
(32) in (28). Likewise the functions (1), g(n) which represent tractions
on the crack face are obtained from (46) and (15).

The implied computations were carried out in [5] for several par-
ticular loadings on the cracked sphere. In each case the series were,
truncated with sufficient accuracy after 22 terms. Here we present
results only for the case of

Radial Tensile Tractions Near the Poles. In this case the ap-
plied tractions were chosen as

ats(ro, P) (48)

(1 + cos 56)/2, 0<6=<36°
144° < 6 < 180°

Q, otherwise

orr(ro, p) = s(p) = (49)

arolro, p) = t{p) =

While this loading is somewhat artificial and of little physical rele-
vance it represents a crude approximation to the problem of con-

“centrated loads at the poles and therefore allows comparison with the

results of Rosenthal and Sternberg [8] in the limit of a small crack..
Comparisons of this type are needed in order to test the suitability
of the solution derived here for numerical computations in the case
of more general loading. We also derive, in the context of this example,
asymptotic results needed for calculating stress-concentration factors
from our solution. The results are summarized in Figs. 3 and 4. In Fig.
3 the normal stress on the equitorial plane is shown for the four values
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UNCRACKED
 SPHERE

0.6 08 10
r/ry

Fig. 3 Normal stresses on the equator plane for tensile tractions near the
poles (ro = 2, ¥ = 0.25, gp = Total load/7r3)

of a/ro = 0,0.05, 0.6, 0.875. For a/ry = 0, the sphere has no crack and
the normal stress distribution varies only slightly from the results for
concentrated radial loads applied at the poles given by Rosenthal and
Sternberg [8]. For the other values of a/r¢ the normal stress vanishes
on the crack face, is unbounded at the crack tip, and monotonically
decreases with the radius outside the crack. As the crack radius ap-
proaches that of the sphere the tensile stress at r = rg becomes un-
bounded. This trend can be seen in Fig. 3.

The stress-intensity factor for the cracked sphere is calculated on
the basis of the results derived for the crack in the infinite medium
since in the superposition the solution S! is everywhere bounded and
a singularity occurs only in S2, Consider a point 4 on the plane 1 =
0 at a distance 6 from the crack tip (Fig. 1). The value of the coordinate
£ at this point is

926\1/2
e~ (2" (50)
a
and the stress-intensity factor is defined as
(51)

Ky = lim (20)120,,(£, 0).
80

Using (9) and (11) in conjunction with (4), (5) and (15), we obtain from
(18)
d nin—1)
oy(£,0) = 3 {a, +2((r — 1)bn}——2——
n=0 a
14+ £2 , | nin + 1)Q,GE)
£ g - Mot DG
53 EZ
in which ap, b, are determined by (20). By use of the Legendre
equation and recursion relation for @,(i£) we obtain the following
asymptotic expression, for all even n:
1+£ . n{n+ D@L ()
¢ Q,(§) _nlnt D6, G4)
£ £

X Pn(0). (52)

=G (n)iE24+01) as £E—0 (53)
in which G(n) is obtained from the recursion relations for @, (§).
Therefore ‘

il ) nn—1)
om&0) = 5 o+ 200~ )b, 21
n=0 a

X [G)iE-1+ O()]PA(0) as £—0 (54)
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Fig. 4 Variation with a/r; of the increase in the stress-intensity factor for
radial tensile tractions near the poles (ro = 2, v = 0.25)

In the particular case when the crack in the half space is opened by
uniform pressure py the series terminates at n = 2 and the quantity
G(2) equals —3/2, so that in this case

as + 2(v — 1)by = —poa?/3m. (55)

Use of (65) in (54) in conjunction with (50) and (51) yields the
stress-intensity factor for the case of a uniformly loaded crack in an
infinite medium in agreement with known results. In the case of the
sphere the stress-intensity factor is obtained from (54) and (51) with
@n, bp, determined from the values of ¢, and d,, obtained from (47)
and their use in (46) and then (22). For the loading in (49) the
stress-intensity factor K is plotted as a function of a/ro. As can be
seen K is monotonically increasing with a/rq and becomes unbounded
as a/ro— 1.

Other loading cases considered in [5] include a radial compressive
ring load near the equator and the case of uniform radial tension on
the spherical surface. In both of these cases the crack face is trac-
tion-free. The case of a pressurized crack with a traction-free spherical
surface is also considered in [5]. This problem differs from the uniform
radial tension case only by a uniform uniaxial stress state, but the
computations used were entirely different. The agreement of the re-
sults gave added confidence in the numerical procedure and degree
of accuracy. These results are omitted here for the sake of brevity.
Readers interested in these solutions are referred to [5].
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The Elastostatic Axisymmetric
Problem of a Cracked Sphere
Embedded in a Dissimilar Matrix

The axisymmetric elastostatic problem of a cracked sphere embedded in a dissimilar ma-

trix is solved by using the solution for a spherical cavity in an mfmlte medium together
with the axisymmetric solution for a cracked sphere given in the companion paper in this
issue of the JOURNAL OF APPLIED MECHANICS, Pages 538-544. Numerical results are
presented for (a) interface stress for various composites (b) dependence of the stress-in-
tensity factor on the material parameters and ratios of crack to sphere radii, (c) the dif-
ference in the elastic strain energy for a cracked and uncracked composite.

1 Introduction

The aim of this investigation is to calculate the amount of energy
released when a crack forms in a spherical inclusion when the dis-
similar matrix is loaded in uniaxial tension at points remote from the
inclusion. The fracture of such brittle inclusions has been observed
by Bianchetti, et al. [1], and these fracture events release energy in
the form of elastic wave motion that can be detected by electrome-
chanical transducers attached to the specimen. The nondestructive
testing technique known as “acoustic emission” is used to observe the
motion. In order for this technique to be useful in the characterization
as well as location of such “mini earthquakes” the procedure needs
to be calibrated. Such a calibration process will be aided by an esti-
mate of the energy released in an event that is subsequently de-
tected.

The basic elasticity problem to be solved is that of the cracked
spherical inclusion. In [2], the problem of a cracked sphere with ar-
bitrary axisymmetric tractions on its surface was solved. This solution
is used here in conjunction with the solution for the opposite tractions
applied to a spherical cavity in an infinite medium to solve the com-
posite problem of a cracked spherical inclusion. The geometry and
coordinate systems employed are defined in [2], and this reference
will be used here as if it were part of the present paper to avoid un-
necessary repetition.

2 Cracked Sphere Embedded in a Dissimilar Matrix

1 Statement of the Problem. Consider the sphere, with elastic
constants ¥, i/, of radius rq containing a penny-shaped crack of radius
a lying axisymmetrically in the x-y plane with the crack faces trac-
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tion-free. Suppose this cracked sphere is embedded in a dissimilar
matrix with elastic constants »”, u”, and assume a biaxial stress state
exists at distances remote from the sphere. Then the regularity, in-
terface, and boundary conditions are given by

0Tl =0y Ty as r—w 8
a(ro,p) = o7(ro,p)  ur(ro,p) = us(ro,p)
‘Tlra(ro,P) = Uio(ro,P) u;(fo,P) = U;(TO,P)

2

and /
T5(0,m) = 0. 3)

First assume that the interface stresses in (2) have the following
Legendre-Fourier representations:

17’55(0,77) =

rlrop) = o7 (ro,p) = s(p) = io snPn(p)
Talrop) = o7a(rop) = ) = B T tuPi(p) @

p=cosf, p=sinf.

In these expressions x, y, z represent Cartesian coordinates, r, , ¢ are
spherical polar coordinates and &, n, ¢ are oblate spheroidal coordi-
nates defined in (1) of [2].

Next the displacements u,, uz must be obtained from the solution
for a spherical cav1ty in the infinite medium »”, ,u” loaded at infinity
asin (1) and at the surface r = roasin (4). Alsou,, uyin (2) are ob-
tained from the solution of the cracked sphere presented in [2].

2 The Spherical Cavity Solution. Consider the axisymmetric
problem of a spherical cavity in an infinite medium defined by the
boundary and regularity conditions

G (rop) = h(p) = 3 huPu(p),
n=0
0rop) = k(D) =F 3 kaPi(p), 5)
n=1
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and
gij—>0 as r-—>o, (6)
The Legendre-Fourier coefficients h,, k,, in (5) are given in terms of

h{p) and k(p) by )

2n+1 1
b= == | hEIPap)p,

_@n+ 1) (n—-1)
2 (n+1)!

n

f_ i k()P (p)dp. %

The solution of this prdblem is given by Sternberg, Eubanks, and
Sadowsky [3] and has the following form:

[$) = 3 enlCal + dnlD1] ®)

where [C,] are given by

_P;
p=-t )

rnt2

n+1)
rn+2

ouuf = — Pn 2uu

n+1)(n+2)
rnt3

(n+2)_
pots pPr

ot = \

oty =
(10)

1
ofp) = i [Prs1 — (n + 1)(n + 2)P,]

’

Pn+1

ny = _ _nrl

rntd

while the solutions [D,] are given by

(n+ V(n+4-4p)

(n) =

ZMU, ' i rntl
p(n—3+4y)

- rn+1

Pn+1
(11)

2uuf = Poyy

P
o = (1 Dlln + Do+ 4) = 20] 25

Pn+1
\rn+2

o = (n2+ 20— 14 20)p

oy = —_+1—2 [(n+ D@n2=—n+1-20)Puts (12)
re ’

~(n— 3+ 4P}

-1
rn+2

n)

o [(1 = 20)(n + 1)2n + DPpsy + (0 ~ 3+ 0)P,]

Application of the boundary conditions (5) at r = roin (8) and use of
(10), (12) give a system of linear algebraic equations for the coefficients
of superposition in terms of h,, k,. The solution of this system
yields
[(n2 =2+ 2)h, —n(n?+3n = 20)k,} ..
Cp = — ;
" 2n+ n2+n+1—@n+ 1y °
n=01,..,
[An — (n + Dk, 1rEH?
in
2[n2+n+1—-2n+ 1)y}

dn-1= =1,... (13)

3 Interface Displacemenis From the Spherical Cavity So-
lution With Biaxial Loads at Infinity. Let SO represent the ho-
mogeneous stress-state solution corresponding to (1). Then the de-
sired exterior solution S” is given by

(5] = 1S9 + (9] (14)

where S is the solution outlined in Section 2 that satisfies the
boundary conditions

546 / VOL. 47, SEPTEMBER 1980

orr(ro,p) = s(p) — T9p% — T1p?

“ 1 )
;0 snPp(p) — 3 (T1 + 2T9)Py(p) + 3 (T — T2)Ps(p)

Gro(ro,p) = t(p) + (T1— Ta)pp

) , 1 ,
=P | X taPulp) + 3 (T1— T2)Py(p)

n=1

=P % bPLp) (15)

The displacement compenents from the homogeneous state S° are

ro(Ty+ 2T1)(1 — 2v”) ro(Ty = Ts)

ul(rop) = 6n(L+ 07) Pol(p) + " Palp)
ro(To—T1 _,
uf(ro,p) = ﬁ%;—i) Py(p) (16)

and the corresponding displacements from the asymmetric state S
are

o

QM//ﬁr(rO,p) = Z [Unén + Vn—lan—l}Pn(p)

n=0

2#”120(7‘0,P) =p 2 [Xnén + Yvn—-ldn~l]P/n(p) 17)
n=1:

where

0 (n+1) v __(n+1)(n+4—4u”)

nT = 3 n
r3+2 r8+1
% 1 7 (n— 3+ 4v")
n = _" ) n = _'———_m_f:f__—_
pot2 rg

and é,, d,, are the coefficients of superposition determined by (13)
with hn, k. replaced by én, £, of (15). With the use of (14)—(17) and
(13) we can express the displacement components at the spherical
surface from the solution S” in terms of coefficients s, £, of the Le- -
gendre Fourier expansion of the interface tractions as

I‘o(T1 + 2T2)(1 - V”)

2 (rop) =~ S Pap)
107‘0(T1 _T2)(1 - V”)
7= 50" Py(p)

+ X (Epsp + Fntn)Pn(p)
n=0

PG - 57‘0(T2 - Tl)(l d 1//')
2u”"uy(ro,p) =p 7=

Py(p)

+5 Y (Gusn+ Hatn)Plp) (18)

n=0
4 Interface Displacements From the Cracked Sphere Solu-
tion. The solution to the cracked sphere problem is presented in [2].
Recall that the desired solution S’ was obtained there by superposition
of two solutions S* and S2

[S] = [$1] + [S7] (19)

where S and 32 are the solutions for an axisymmetrically loaded
uncracked sphere and a crack in an infinite medium, respectively. The
interface displacement components corresponding to the solution S
are

2ur(rop) = T [Uner + ViedhalPalp) (20)
. n=0

2w'uf(rop) =F L [Xhen + YiidilPup)

n=0
where ¢} and dJ,; are the cosfficients of superposition determined
by (34) of [2] and
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Ul=nrg~t, V.=nrin -3+ 4 (21)
XL = —ppl, =rjn+ 4~ 4)
Likewise the interface displacements corresponding to S2 are
2“’u72-(r0:p) ZO Z [anfl(m n)Poman + Cn{fz(m n)Pom+n
n=0m=0
+ fs(m, n)P2m+n+2}]
uftrop) =8 L L [@nf1(m,n)Ponin(p)
n=0m=0
+ Cn{;’z(m;n)PZm-i»n + 72&(m:n)P12m+n+2(P)}] (22)
where
q2mtn+l
film,n) = =n(n — DG RIM? m 2m+n+1),
. Cm+n+5-4)2m+n+1)
(m,n) = — 1(m,
fr (m + 2n + 3) Film,n)
, Cm+n+5-4)2m+n+2) ,
m, = —
fa(m,n) lmt 2+ 8) film,n),
_ g2mHntl
film,n) = —n(n = DG )M, m,
. (2m+n+1)[2m+n+1+4(1—v’)]_
felm,n) = 4m +2n 1 3) Film,n),
., (2m+n+1)[2m+n+2 4(1 =] .,
falm,n) = 7T —— film,n).
(23)

G(n) and M%, are defined in (41) and (43) (all of [2]) The equations
(22) can be expressed as

2ul(ro,p) = ZO ZO [WEamPa(p) + W2,bmPp(p)]
2u'ui(ro,p) =P Z Z [W n@mPa(p) + Wi bnPr(p)] (24)

In these equations m is even or odd according as n is even or odd, n
> m. With the aid of (22), (46), and (47) (all of [2]) the equations (24)
can be expressed in terms of the coefficients of the interface tractions
Sn, tn. This computation yields the form

2#/ug(r01p) = 3 Z [Anmsm + Bnmtm]Pn(p)
n=0 m=0
ou'ufrop) =D Zo 2 [ComSm + Damtm]Py(p) (25)
n=0m=0

From (20), (25), and (47) of [2] we finally write the displacements
corresponding to the solution S’ on the surface of the cracked sphere

14 "
wov.

2N'u;(r0,P) Z [J Sp + Kntn + Z (Anmsm + Bnmtm)lp ()

n=0

nSn + Nptn + Z (Crmsm + Dnmtm)} P;(p)

m=0

2Wy(rop) =F 3. {L
. n=0
(26)

With these results and (18), the displacement continuity condition
(2) yields the following system of algebraic equations for the coeffi-
cients of Legendre-Fourier expansion of the interface tractions:

=

Z [Anmsm + Bnmtm]

(Jn — REy)sn + (K, — RFp)tn +

10kr0(T1 - Tz)(l - V”)
(7-5v")

kl‘o(Tl + 2T2) (1 - V”)
= § Sno n2

4 1+

Ly — an)Sn + (N, —kHp)t, + 2 [Cnmsm + Dnmtm] : @7
m=0
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Fig. 1 The interface stresses tor various values of a/ro (V' = 0.4, 1" = 0.2,

k=0.5,ro=2, T1=1,T2=0)

_ Bkro(Ty — T)(1 —v”) 27
- (7 - by") n2 (Cont.).
where k = p'/p” n=0,1,2,...

It is clear that s,, ¢, determined by these equations depend on
elastic constants ¥, »”, and the ratio k = u’/u”. Thus the same is true
of the interface tractions in (4) and the entire stress field.

3 Numerical Results and Discussion

The calculations implied by (27) were carried out for several com-
posites in which »’ and »” were varied from 0.2 t0 0.4 and k& = u’/u” was
varied from 0.5 to 2.0. These composites were subject to the far field
loading T; = 1, Ty = 0. Figs. 1-4 show the interface stresses o,,(ro, p)
and o/y(ro, p) for a/ro = 0.5,0.75, 0.9, and 0.95. For each of the com-
posites we find that these interface tractions vary only slightly from
the case of uncracked sphere if a/ro < 0.5. The effect of the crack on
the interface stresses becomes appreciable if a/rg > 0.75.

Fig. 5 shows the variation of the stress-intensity factor K; with a/rg
for various composites. Bogy [4] has shown for plane problems that
the power of the stress singularity at the crack tip, when the crack
terminates at the interface varies and depends on the intersection
angle and the two Dundurs [6] composite parameters defined by (for
plane strain)

_ u/(l — V//) _ “//(1 _ 1/)
#/(1 - V”) + ,LL”(I _ V’)
3 — YN — ’
6=u(1 207) — (1 — 2v) 28)
2u'(1 — ") + 2u7(1 - V')
Here we record the values 7 of the power of the singularity in the plane
problem, when the crack terminates at the interface at a right angle,
for the six composites shown in Fig. 5. Cases 1-3 correspond to the
situations where v > —0.5 while in Cases 4-6 v < —0.5. Guided by the
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Fig. 2 The interface stresses for various values of a/rg (v’ = 0.2, 1" = 0.4,
k=05r=2Ty=1T,=0)

plane problem we therefore expect that the stress-intensity factor
should tend to zero in Cases 1-3 and to infinity in Cases 4-6, respec-
tively, as a/ro — 1. This trend is seen in Fig. 5 for the present spherical
problem also except for the Case 3 where the stress-intensity factor
appears to increase rather than decrease near a/rg = 1. No explanation
for this unexpected result was found, except the possibility that the
singularity is different for the spherical geometry than for cylindrical
and plane geometry, even when the crack intersects the interface at
a right angle in each case.

4 Energy Calculations
In this section we calculate the change in the elastic energy due to

the presence of the crack in the spherical inclusion. It is easy to show-

that this change is given by

1 ,
=- f TeuidA,
<

where the integral in (29) is taken over the area of the crack, and where
T% are the tractions on the imagined crack surface in the uncracked
inclusion, and u; are the displacements at the crack surface in the
cracked composite.

1 Determination of Displacements at the Crack Surface. At
the crack surface we have

(29)

u'E(O,n) =u,(rz) at z2=0, 0<q <1, 0<r=<a (30)
From (19)
uy{(r,0) = ul(r,0) + u(r,0). (31)

However, ul(r,0) = 0 since the tractions in [S'] are symmetric with
respect to the plane 2 = 0 so that
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Fig.3 The interface stresses for various values of alrg (v =0.4,v” =0.2,
k=2,l‘o=2, T1=1, T2=0)

u(r,0) = u2(r,0)
From (6), (7), (17), and (18) (all of {2]) we have

(32)

WL (r2) = 3 lapnin — 1)V,

n=0

+ ban(n — 1)[V(n) + 400" — DYok]} -k (33)

where ¢,, and ¥, are defined in (4) and (5) (of [2]). At z = 0 the dis-
placement u,(r, z) becomes

2, (r0) = T 20/ = Dbun(n — 1) GnliE) P(m)]g=0
n=0 aE
T (1 + r_zz) VT

= 3 = Dbunin ~ Dint1

n=0

Py (34
T (—- + 2)a
2 2

where [@, (1£)/£] =0 must be evaluated as the limit £ — 0 with £> 0
and I'(n) is the Gamma function. Also r and 7 are related by

r2 = a2(1 — 9?). (35)
In obtaining (34) we have used
ap + (2v' — 1)b, =0 (n even). (36)

which can be obtained from (19) of [2] for the case when o7, = 0 (crack
is opened by normal stress only, so that g, = 0).

2 'Tractions at the Imagined Crack Face in the Uncracked
Composite. Denote the uncracked composite solution by [S$*]. This
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Fig. 4 The interface stresses for various values of a/ry (¥ = 0.2, v” = 0.4,
k=2,r0=2Ty=1,T,=0)

Table1 The value of v

Case w108 /108

No. v v’ psi psi o -y
1 03256 0.25 1 10 -0.8 -0.2 0.3
2 0.2 0.4 2 4 0.454 -—0.227 0.38
3 04 0.2 2 4 -0.2 0.5 0.49
4 0.2 0.4 4 2 0.2 -0.05 0.53
5 04 0.2 4 2 0.454 0.091 0.860
6 0036 0.454 10 1 0.7 0.0 0.69

solution is a special case of that given by Sternberg, Eubanks, and
Sadowsky [3] or Hashin [8]. It is also a special case of the solution
presented here when a/rg — 0. In this case Apm, Bum, Cnm, Dnm in (25)
are zero and (27) yields the result

‘ 1=\ k

so=T

ot (1 + u”) (ke + 2(1 — 2)/(L + )
so= —5kTy(1 — v”)(7 — 5v"') (7 + 5" ){T(k + 4) + 5v/(k — 8)}/A

; 1
=g
2 952

A = 2k2(7 + 51)% {25(v”)% — 551" — 28}

+ (7 — 5¥”)2 {3626 — 3470v" — 3700(v)%/16

—k (7 + 5p')(7 — 5v){375v" v + 518y — 182p” — 273}
n=1 and n>?2 37

Sp=tp =0,

for the Legendre-Fourier coefficients for the interface tractions at the
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Fig. 5 Variation of the stress-intensity factor, for various composites, with
alrg{rg = 2); see Table 1

spherical surface of the uncracked spherical inclusion. By the use of
(34) of [2] with h,,, k,, replaced by s,, t, in (37), the coefficients c,, dp:
in (28) of [2] determining the solution inside the uncracked sphere
are

2= — nglu — u")(T = 50”07 + By )Tk + 4) + 50/ (k — 8)}/A

Y| k 1 1
dy=—=T1|——

2 v e+ 20 -2+l a+v)
where A is defined in (37), and all other ¢, d,, are zero. Use of this
result together with (30) and (32) (of [2]) yields the following for the
tractions on the equatorial plane:

os(r,m/2) = 2[ce — (1 + v)d4],
o%(r,x/2) = 0.

With the help of (37) and (38) we can see that o;(r, 7/2) is uniform
throughout the equatorial plane. We denote

(38)

(39)

oo(r,m/2) = pol¥', v” k). (40)

Since the imagined crack surface occupies a part or all of the equa-
torial plane, depending upon the ratio d/ro, the tractions on the
imagined crack face are also given by (40).

Substitution of (40) and (34) into (29) yields

= ban(n — D — Dirt 101+ n/2)\ 7

AE = —mapy ¥ (41)
n=0 /1" (}_ _|_ 2)
K 2 2
where we have used
1
j; Pondy=1 (neven) (42)

Expression (41) reduces to previously known results for the special
case of a crack in the infinite medium (i/, »’) subject to uniform ten-
sion T'1 at infinity. T'o show this recall from (55) of [2] and (37) that
in this case
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Fig. 6 Energy released (after normalization) versus a/ry(rg = 2) for various
composites; see Table 1

ag=(1—20)T1a%/37

by = T1a%/37 (43)
and all other a,, b, are zero. Use of this result in (41) yields
32 —_
AE = 8a Tl(l V) (44)

I

6u
which agrees with Sneddon and Lowengrub [7).

Calculations implied in (41) have been carried out for several
composites. Figs. 6 and 7 indicate the energy released normalized with
respect to the energy released by a crack of the same radius in the
infinite medium. Fig. 6 shows the normalized energy released versus
a/ro(ro = 2). It can be seen here that this quantity is ingensitive to the
value of the ratio a/rp except for a/rp ~ 1. It is possible to obtain a
good estimate for this quantity (except for a/ro = 1) by considering
the limiting case a/ro — 0. From (41) and (44) we obtain

6mu” (v’ — )po
AEN=~—7"T—"—
N 8a2u'(t — v") T}

(/2 + V7

X 3 banin — 1)in+1 (45)
n=0

1
T (— + n/2)

2
where AEy is the energy released after normalization. When the ra-
dius of the crack is small compared to the radius of the inclusion it

follows from arguments similar to Saint-Venant’s principle together
with (25) and Fig. 2 (both of [2]) that

o%lfgl >0, ohlfgl~0 (46)
and k
hip) ~s(p), t(p)=k(p) (47)
Therefore from (25) of {2]
opls,t]l = —f, oplst] ~—g, (48)

where ¢}[s,t] and o,[s,t] represent the normal and shearing stresses
on the imagined crack surface when the spherical surface in [S] of
(19) is loaded with tractions s(p), t(p). It follows from (40) that

okls,t] =~ —po(v',v”,k), ohlst] = 0. (49)

In order to obtain the solution [87] in (19) we must superpose on [S*]
the solution [S?] subject to the boundary conditions (49). For this case
we find from (20) of [2] that

poa?

by o f—,
? 3
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Fig. 7 Energy released (after normalization) for various composites (a/rq
= 0.995, rg = 2)

ag =~ (1 — 20)poa’i/3m. (50)

All other a,, b, are negligible. Substitution of (50) into (45) yields

2,7 1=y
lim ARy = 200
Tt =)

a—0

The stress po(v’, v”, k) is given by (87)-(40). The computation im-
plied by (51) was carried out and agrees with Fig. 6 at a/ro = 0 (it ac-
tually agrees to plotting accuracy for 0 < a/rg < 0.75). In fact the ex-
pression (51) provides a good estimate of the energy released even
when the inclusion is completely fractured. From Fig. 6 it also follows
that the amount of energy released increases essentially as a for the
composite as it does for a crack in an infinite medium.

Fig. 7 shows the dependence on k = u’/u” of the energy released
from the composites when the inclusion is almost completely frac-
tured. (¢ = 1.99, ry = 2). As expected no energy is released when k£ =
0. It sharply increases to a maximum near k = 1, then it decreases
asymptotically to zero. This limit would be expected to differ from
zero if the corresponding computations were made for a/rg = 1. Notice
also that when k = 1 the curve for 1 = »” passes through the value 1
as it should for the crack in an infinite medium because of the nor-
malization.

(51)
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Introduction

Among the crack configurations that are usually considered in
fracture mechanics, the surface-breaking crack is of distinct practical
interest. The simplest configuration is the two-dimensional normal
edge-crack of depth d in an elastic half plane. For a broad class of
static loads the stress-intensity factor for the normal edge-crack was
analyzed by Koiter [1], and in a different manner by Sneddon and Das
[2]. In the present paper we investigate elastodynamic fields for the
edge-crack configuration.

The cracked half plane is subjected to a class of time-harmonic line
loads which are applied to its free surface. The elastodynamic problem
of a half plane subjected to a time-harmonic line load applied normal
to the free surface is known as Lamb’s problem [3]. It is well known
that sufficiently far from the point of application Rayleigh surface
waves dominate the elastodynamic field near the free surface. Con-
sequently, in this paper we only consider the elastodynamic stress-
intensity factors generated by surface motion.

It is assumed that the faces of the crack do not interact with each
other. Thus the crack never completely closes. This is a realistic as-
sumption if the crack is actually a thin slit of finite width, or if a static
prestress is applied which tends to hold the crack in an open position.
In the latter case the solution sought in this paper is an elastodynamic
perturbation (caused by time-harmonic surface motion) on this static
prestress.
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Elastodynamic Analysis of an
Edge Crack

The elastodynamic response of the cracked half plane is analyzed
as the superposition of the fields in the uncracked half plane and the
fields generated by appropriate surface tractions on the faces of the
crack in the cracked half plane. The resulting boundary-value problem
for the cracked half plane is decomposed into two problems for the
quarter plane, which represent the symmetric and antisymmetric
motions relative to the plane of the crack, respectively. These two
boundary-value problems are reduced by integral transform tech-
niques to two uncoupled singular integral equations, which are solved
numerically using a collocation scheme due to Erdogan, Gupta, and
Cook [4]. The stress-intensity factors and crack opening displace-
ments are then easily calculated from the solutions of the singular
integral equations. .

Mode-I and Mode-II dynamic stress-intensity factors at the crack
tip and the corresponding crack opening displacements due to several
combinations of line-loads applied to the feee surface are computed
and plotted versus the frequency. One significant feature of these
results is the existence of maxima at regularly spaced frequencies. It
appears that these frequencies correspond to resonant modes of vi-
bration of the crack faces due to constructive interference of surface
motions on the crack faces.

Formulation

The two-dimensional geometry of a homogeneous, isotropic, lin-
early elastic half plane containing a normal edge crack of length d is
shown in Fig. 1. The origin of a Cartesian coordinate system is located
at the mouth of the crack.

The cracked half plane is subjected to time-harmonic excitation.
In this paper the steady-state fields in the vicinity of the crack tip are
investigated. By virtue of linear superposition the dynamic response
of the half plane can be analyzed as the superposition of the fields in
the uncracked half plane and fields in the cracked half plane generated
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Fig. 1 Half plane containing a normal edge-crack

by appropriate surface tractions 7., and 7., on the faces of the crack.
The fields generated by surface tractions can, however, conveniently
be decomposed in symmetric and antisymmetric fields relative to the
plane x = 0. Consequently the solution sought in this paper is
equivalent to the sum of two problems for the quarter planex = 0,y
= 0. These problems are the symmetric problem defined by the
boundary conditionsonx =0

Tay = 0, 0<y<w (1)
Tx = Toly)eiet, 0<y<d (2)
u=0, d<y<w (3)

and the antisymmetric problem defined by the boundary conditions
onx =0

7= 0, 0Sy<w (4)
Tay = oly)e i, 0<y<d 5)
v=0, d<y<w ®)

For both the symmetric and the antisymmeric problem the boundary
conditions on y = 0 are

Ty =0, Ty5:=0, 220 (7, 8)

In addition it is required that the elastodynamic fields generated by
these crack-face excitations represent outgoing waves, and that the
singularities at the crack tip are consistent with an integrable
strain-energy density.

In the sequel the term exp (—iwt) which is common to all field
variables is omitted. Since the deformation is in plane strain the rel-
evant stresses in terms of the displacement derivatives are

du v )
Te=A+2u) —+A— (9)
ox oy
ou  ov
=yl 4+ — (10)
Tey T H (ay bx)
ov l¢]
Ty = (N 2p) — + A — (1)
oy ox
The displacement equations of motion are
%u %y %
cr2—+cp?2—+ (cp.2 — cp? = —wiy 12)
L et T oy (cL T)bxby (
%y % %
cr.2—cr?) cp?2— 2—— = - (13)
(e T 0xdy T oz y?

where

c.?=0\+2u)p  cp?=plp

In equations (9)-(13), A and p are the Lamé elastic constants and p
is the mass density.

Integral Equations

In this section we derive the governing equation for the symmetric
problem defined by equations (1)-(3) and equations (7)—(13) in some
detail and we state the corresponding governing equation for the
antisymmetric problem.

Suitable solutions to the displacement equations of motion have

been given in reference {4]. They are
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2 ©
us(x,y)=— j; ek 24~ LY — 2apkp~2Ce~TY] sin (éx)d &
™
2 o
+= j; [ ks ~2Be =i + 2Ekp—2De-o7%] cos (£y)dE  (14)
T
2 w©
vix, y) =— j; [apky —24e~2Ly — 2ERp—2Ce—2TY] cos (Ex)dE
m

2 ©
+= f [tk —2Beal* + 2arkp=2De=aT%] sin (&y)dE  (16)
7w Jo
where k7, and kr are the wave numbers of longitudinal and transverse
waves respectively,
kL = wlcy, kr=wler

and 4, B, C, and D are undetermined functions of the transform
variable &, while the functions a7, and a are given by

op = (2 -k 2V2, £>pk; and ;
ar, = —i(k 2 — )12, E<Ek; (16)
ar=(E2~kpH'2, £>kr and

ap = —i(kp? = )12, £ <ky (17)

where £ is real. This choice of branches for ay, and cg, namely, that
Re (ay,) and Re (o) be positive and that Im («y,) and Im (ar) be
nonpositive on the contour of integration, insures the existence of the
integrals in equations (14)—(15) as well as the satisfaction of the re-
quirement of outgoing waves stated in the previous section. The stress
components 7x°, 7y, °, and 7,,° corresponding to equations (14)-(15)
are easily calculated from equations (9)—(11) and they will not be given
here.

Application of the symmetry boundary condition (1) leads to the
following algebraic relation:

(ap? + £2) D
art

while the application of the free surface boundary condition (8) leads
to

B = —(ky%/kr?) ) (18)

ark A
(ar? + £2)

with D and A still undetermined. Now define D in the following
manner [6]:

C = (kr?/kL?) (19)

3

d

D= f b(s) sin (£s)ds. (20)
0

Substituting equations (18) and (20) into equation (14) and evaluating

at x = 0, the following expression is obtained for the normal ¢is-

placement on x = 0:

d o
us(O,y)=% j; b(s)ds j; £1sin (£s) cos (&y)dE.  (21)

The inner integral in this expression is a representation of a gener-
alized function and may be evaluated as, reference [5],

j;m £-1sin (£s) cos (£y)dE = gH(s — ),

where H(s — y) is the Heaviside step function. This result reduces
equation (21) to

d
us(o,y)=f bls)ds 0<y<d
Yy

=0 d<y<w (22)

and hence boundary conditions (3) is automatically satisfied for any
choice of b(s). It is also seen that b(y) is proportional to the tangential
derivative of the crack-opening displacement in the x-direction and
hence has the physical meaning of the dislocation density.

Using equations (18)—(20) and applying the remaining free surface
condition (7) yields an integral relation involving A and b{s) of the
form
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2 o .
- fo FEA®) cos (Ex)dE

= fmG(x g)dgfdb(s)sin (Es)ds  (23)
0 ’ 0

where F and G are known functions. Taking the Fourier cosine
transform of this expression with respect to x yields the following
explicit expression for A in terms of b(s):

A(E) - f'l' (kLQ/kT2)(0£T2 + 52)[F1€—“Ls + Foe™oTs + FS]b(S)dS

4apart? — (ar® + £2)°
(24a)
where
Fr1= —~ar " kr22k1? — kY + 40127 (24b)
Fy = 42 (24c),
Fz = ap~%hp2(2k1? — kr?). (24d)

Having now expressed 4, B, C, and D in terms of b(s), the normal
stress on x = 0 may be written as

Hy= —BL72[x%(2 — ) + 48L%82), (27d)
Hy =42 (27e)
Hz = f17%32(2 — »?). 27f)
Furthermore,
Br = (=D, fr= (-2 (27g)
The following dimensionless variables have been used:

=&k, D=wdle, =krd, S=s/d, Y=y/d, = ¢ /e

(27h)

The governing singular integral equation given as follows for the
antisymmetric problem defined by equations (4)—(13) is obtained in
an exactly analogous manner as that for the symmetric problem. The
unknown dislocation density a(s) is proportional to the tangential
derivative of the crack-opening displacement in the y-direction and
must satisfy,

[Qar?+ kr?)(arp? + £2)e oLy — dapartle oTY|[Fre—oLs + Foe~oTs + FgldE

Tx S(O»y)

2% d -
= b(s)d f
7|'kT2 j:) (S) s 0

tapart? = (ar? + £2)2
w (p? + £2)2 — 4 2
(ar? + 97— Ao ard? o (k) cos (Ey)dE. (25)
ar
The integrand of the second term in equation (25) is O(1) as £ —
« and hence, as it stands, the integral does not converge. However,
if the first term of the asymptotic expansion of the integrand for large
£ is subtracted from the exact form, the resulting integrand is O(£~2) 1 Y(S)
as § — = and the integral will converge. The term which must then J; S - YdS + f ‘MS) + K, (Y )} ds
be added to equation (25) has as its inner integral
o =—~——-E(Y), 0Y=<1 (28
f sin (£s) cos (ay)dE 202 —1) "
0
' . i b,
which may also be evaluated by employing Fourier representations where /() is related to a(s) by
of generalized functions, reference [5], and is found to be Y(S) = a(Sd) (29a)
l ( L + 1 ) and where K, is given by
2% —y sty
- _ _ .22
Carrying out the steps previously indicated and applying the 1(,‘2 — K. (Y, 8)D-1= f [4BLBrs” — (28" = )
boundary condition (2) and normalizing the variables s and y with 4 o l 481§
respect to the crack length d yields the following smgular integral
equation: - (1 — %)} sin ({DS) cos ({DY)d{
L) sy f @(S) [——— + K (Y, S)] ds - fm [(Zs“2 — u?)%eBrDY — 487 (e~ FLDY
0 8-y 4BLBri? — (207 — 42
22
= —-———?O(Y)) 0 <Y<i1 (26) X [Gl\e*ﬁLDS + Gze—ﬁTDS + Ggldf, (29b6)
2uG?-1) ¢ ~ while 5o(Y) is defined by
where ¢(S) is defined as Fo(Y) = 0o(Yd) (29¢)
¢(8) = b(Sd) (27a) The functions Gy, G, and G5 are defined as
and K, (Y, S) is given by Gi=-p2 (29d)
2 -1
(1 =Ke(Y, $)D Gz = =Bp=2({* — #2¢2 + x4 (29¢)
(2 2 — 42
f J(2§2 — 42 I 3L5T+ 202~ 1) Gy = — LBp—24 (29f)
BL

X sin (D(S) cos (D{Y)d ¢
b IEE St D et 45y e
0 4BLBr{% — (2% — #?)?
X [Hie=PiDS + Hye~8rDS 4 Hy)ds,

while 7¢9(Y) is defined by

(27b)

’—r_o(Y) = To(Yd)
The functions Hy, He, Hg are defined by

(27c)

Journal of Applied Mechanics

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Numerical Analysis :
The singular integral equations given by equations (26) and (28)
are solved numerically by employing the collocation scheme discussed
in reference [7]. This collocation scheme is based on expansions in

terms of Chebyshev polynomials.
By the inroduction of the nondimensional variables
§=28-1, §=2Y-1 (30)

the integral equation for the symmetric problem, equation (26), may
be written as
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(1+s)+(1+y)+K(y’s)]ds

™ = ~ ~
= o = 1)7'9 [E (1 +y)} —-1<§<1 (3ta)
where
b(3) = [ (1+s)]—b[ (1+s)] (31b)
.. 1 1
K;(3,8) ==K, ‘2“(1 +_}7),-2—(1+§)]. (31¢)
It is expedient to introduce a fl.lnction b( ) by
b(5) =b(5)(1 — §)~V2(1 + 5~V (32)

Now, using the Gauss-Chebyshev formula for » = 1 given by equations
(7.55)-(7.56) of reference [§], the following system of m — 1 equations
for m unknown values of b(§) follows:

2oy L 1 R ~.~.]

§b3)ls, G arm s asgy TGS
P 7”‘2 = F’. (1 + ~.)
2ut2—1) Clz T J
j=1...,m=-1 (33a)

where
§; = cos (7r il 1) (33b)
¥; = cos (71' i) (33¢)
m

Since 5(3) represents a dislocation density it must be square root
singular at the crack tip § = 1, (s = d), hence the factor (1 — §)"12in
equation (32) appears. The factor (1 + §)~%/2 appears to impose the
same singularity at the crack mouth § = —1, (s = 0) which is physically
unreasonable. However, if b () vanishes at § = —1 in such a way as to
cancel the (1 + §)~1/2 factor then 5(3) will approach a finite value at
§ = —1. Therefore, since b(—1) must be zero, the mth unknown, 5(5:,,),
is assumed to be zero since §,, is the closest of the §; to —1. This as-
sumption is in fact true as m — «. Eliminating this unknown yields
m — 1 equations for the m — 1 remaining unknowns. The kernels
K, (#y,8;) are evaluated numerically in the complex £ plane. The de-
tails of this integration are given in the Appendix. The linear algebraic
system given in equation (33a), where the sum is taken only to m —
1, is solved using Gaussian elimination for m — 1 values of 5(5;).

Now, it is easily seen upon examining the boundary conditions
(1)—(6) for the symmetric and antisymmetric problems, that only the
symmetric problem contributes to Mode-I crack deformation and only
the antisymmetric problem contributes to Mode-II deformation.

Therefore, the Mode-I stress-intensity factor at the crack tip may
be expressed as

av
Ki= lim (v =270, = £ sl 6o

The normal crack-opening dxsplacement is also easily expressed in
terms of b(3) as

Bu)= [ BOUAHV -5 (36)

The integral equation for the antisymmetric problem, equat{on (28)
may be treated in an analogous manner by letting

=q =a(d)(1 + 5121 - §)‘1/é (36)

wEa+a

d
—(1+9
2 4
Then a linear system for m — 1 values of @(§) is obtained just as in the

symmetric case. The Mode-II stress-intensity factor is then given
by
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Fig. 2 Normal crack-opening displacement versus y/d for 3 values of the
dimensionless frequency
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Flg. 3 Tangential crack-opening displacement versus.y/d for 3 values of
the dimensionless frequency

d e~1),_
m—muymwwwmpijr—mm(m
and the tangential crack opening displacement by
) 1 )
B == [ @0 +8 - 95 (3)
2 2Y-1

As a check of the kernels K, and K, and their evaluation, a con-
vergence analysis of the collocation scheme was performed. For the
range of frequencies treated in this investigation, a valueof m — 1 =
14 was found to be sufficient in order to achieve an accuracy of 3-4
percent. As a further verification of the analysis the crack loading
represented by

roly) = psin (kLy)) soly) _ msin (kry)

D xD

was considered for small D and »D. In the static limit these loads re-
duce to a linear loading on the crack faces. Numerical results for Ki,
Ky, Au, and Au,, from the present analysis with the foregoing loading
for krd = 0.05 were compared to results from reference [2] for the
static problem of linear normal and shear loading. Agreement of better
than 0.5, percent was obtained for the stress-intensity factors and
crack-opening displacements at the mouth of the crack.

In order to obtain the results described in the next section, the
following general forms of crack-face loading which correspond to the
tractions induced by an arbitrary surface disturbance in a semi-infi-
nite medium are considered for numerical computations.

(39)

— 0y 2 2

To(y) = —2udkgpdi 2= 2 +2”T“€_(k32'k’«2)1/23’ — e—Gker?=RTH2y
. - xT

(40)

(2 — x7?)

[e—kR?=R1D M2y — g —(kR2~kTH2Y]
(1 = xp?)l/2

ooly) = —uAkgrd

()

where kg is the wave number of Rayleigh surface waves, x1, = kr./kp
and x7 = kr/kg. The linear system in equation (33a), where the sum
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Fig. 4 Crack-opening displ t
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Fig. 5 Mode-l normalized dimensionless stress-intensity factor versus the
dimensionless frequency; k,d= D

is only taken up to m — 1, was solved for a Poisson’s ration of 13 and
a frequency range corresponding to D ='0.1 to D = 6.0, using the ex-
pression in equation (40) for 7¢(y). The corresponding linear system
for the antisymmetric problem with a¢(y) given in equation (41) was
also solved over the same frequency range for a Poisson’s ratio of
Ys. -

It should be noted that the dimensionless constant A in equations
(40) and (41) is unspecified. Its value depends on the particular surface
loading configuration which causes the surface disturbance. In the
following section results are presented for crack-opening displace-
ments and stress-intensity factors normalized with respect to this
arbitrary constant A. To obtain the results for a particular surface
loading configuration one need only multiply the computed results
by the appropriate value of 4. It is also noted that the crack-face
loadings are proportional to the dimensionless frequency, krd, and
as a result these loadings go to zero as the dimensionless frequency
goes 1o zero.

Results

Figs. 2 and 3 show the crack-opening displacement versus y/d for
a few values of the dimensionless frequency. When wd/cy, increases
the wavelength decreases, and the variation of the crack-opening
displacement with y shows the formation of waves on the crack faces.
The crack-opening displacements at the mouth of the crack (denoted
by subscripts “cm”) have been plotted versus D in Fig. 4. In this figure
the peaks at certain frequencies suggest resonance effects of surface
motions on the faces of the crack. The normalized nondimensional
stress-intensity factors K1/(udV2|A|) and K11/(ud'/2)A]) have been

/

A
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Fig. 6 Mode-il normalized dimensionless stress-intensity factor versus the
dimensionless frequency; kyd = D
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(2¢) (24d)
(2e) (2f)

Fig. 7 Loading configurations; each arrow represents a line load of strength
T exp (—iwt) applied in the indicated direction at the points (—x4, 0) or (x4,
0) to the left or right of the crack, respectively

plotted versus D in Fig. 5 and Fig. 6, respectively. Again, there are
distinct peaks at resonant frequencies.

Note that the results presented in Figs. 2-6 are absolute values or
amplitudes of the corresponding complex-valued quantities.

It should be noted that the results presented in Figs. 2-6 are for
crack-face loadings of the general form given by equations (40) and
(41), where A is an arhitrary constant. These results may now be used
to assemble solutions to a family of corresponding time-harmonic
loadings of a cracked half plane by appropriate choices of A.

We consider here the six loading configurations shown in Fig. 7. For
each case a time-harmonic line load of strength T per unit length,
whose position and direction are indicated, is applied to the surface
of the half plane. It is assumed that kgx; > 1, and hence only the
surface motions due to these loads interact with the crack. The
loadings shown in Figs. 7(a) and (b) induce traveling surface waves -
propagating toward the crack. The other four loads, shown in Figs.
T(c)-(e), induce standing waves all along the free surface of the half
plane.

By virtue of linear superposition the field in the cracked half plane
subjected to external loads consists of the sum of the field in the
loaded uncracked body and the field in the cracked body when the
crack faces are subjected to appropriate surface tractions. Normal
crack-face loadings generate Mode-I deformations with symmetric
displacement fields. Tangential crack-face loadings induce Mode-1I
deformations with antisymmetric displacements. The loadings shown
in Figs. 7(a) and (b) cause both Mode-I and Mode-II deformations

'SEPTEMBER 1980, VOL. 47 / 555
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Table 1 Definition of A for various loading cases; kg =
w/cr, where cg = velocity of Rayleigh waves

Loading A

i (T/4u)By exp (ikpx1)
(T/4u)By exp (tkrx1)
(T/2p)By sin (kpx1)

i (T/2u)By cos (krx1)

= (T/2u)By cos (krx1)

i (T/2u)By sin (krxy)

RO 20 O R

and the solution to these loadings must be composed as the sum of
solutions to a symmetric and an antisymmetric problem. Due to
symmetry about x = 0, the loadings shown in Figs. 7(c) and (e) will
cause only Mode-I deformations, and their solutions are obtained from
appropriate symmetric problems or normal crack-face loading. On
the other hand, the loadings shown in Figs. 7(d) and (f) yield only
Mode-II deformation and their solutions are obtained from appro-
priate antisymmetric problems of tangential crack-face loading.

The previous observations imply that the appropriate stress-in-
tensity factors for the six loading configurations shown in Fig. 7 may
be obtained from the single pair of curves shown in Figs. 5 and 6 for
the normalized nondimensional stress-intensity factors. Each loading
configuration induces known stresses at the position of the crack faces,
of the general form given by equations (40) and (41). The amplitude
constant A for each loading is given in Table 1. The coefficients By
and By are defined by

B =(1-xr?)G, By=—-3(1-»?)2Q2~x?)G (42)
where
G = (1= mAV22 = xr?)[(4 — %D (1 = V2L = wp?)1/2
— 22— 2.2 + }cTZ)]—I (43)

These coefficients are functions of Poisson’s ratio only. The stress-
intensity factors for the loadings shown in Fig. 7 can thus be obtained
by multiplying the results of Figs. 5 and 6 by the factors A listed in
Table 1. i
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APPENDIX

The kernels given in equations (27) and (29) must be evaluated
numerically to solve the integral equations, equations (26) and (28).
The choice of possible integration contours in the complex £-plahe
for the kernel integrals are governed by the behavior of their inte-
grands as |£] — = and by requiring that

Re(az) >0, Re(ar)>0 (44)

and

Im () £0, Im(ar) <0 (45)

for £ on the integration contour. Assuming the branch cuts shown in
Fig.‘ 8 for oy, and ar and requiring that (44) be satisfied everywhere
in the §-plane, it is found that £ must either lie in the 2nd or 4th
quadrants or on the real axis in order that (45) be satisfied; therefore,
the integration contour must lie in the 4th quadrant or on the positive
real axis. Furthermore, due to the presence of the factor sin (£s) cos
(£y) in the first integral of both equations (27) and (29), Im (£) must
be zero as {£| — = on the integration contour.

The contour, made up of T'y, 'y, I'3, and T'4 shown in Fig. 8 satisfies
the aforementioned requirements and is chosen in order to avoid the
numerical difficulties associated with the pole at § = kg in the inte-
grands of the second integrals of equations (27) and (29).

The choice of 1; was made on the basis of convergence properties
of the numerical quadrature used to evaluate the integrals on I'y. An
optimum value, which is independent of frequency, was found to be
71 = 1.5. A value of £;1* was chosen sufficiently large that the pole at
£ = kg caused minimal convergence difficulties in the numerical in-
tegration. £1* was usually taken to be approximately 1.5 kg.
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1 Introduction

The general problem of mixed-mode crack extension has received
relatively little attention compared to that devoted to single-mode
problems. The main effort of investigators to date has been toward
development of a criterion of fracture for a combination of Mode-I
and Mode-II deformation. It has been proposed that this criterion
should be a functional relationship between Mode-I and Mode-II
stress-intensity factors which can be equated to the strain-energy
release rate or strain-energy density at fracture. Practical application
of such a criterion is limited by a lack of knowledge about this func-
tional relationship for specific materials, geometries, and loadings.
Thus mixed-mode fracture mechanics has reached the level at which
classical fracture mechanics was 15 years ago—the level at which it
is imperative that an effective method be developed for determination
of the relationship required for implementation of the fracture cri-
terion. Crack surface displacements have proven to be quite useful
in Mode-I fracture analysis in that they are directly related to the
strain-energy release rate and the stress-intensity factor. It is felt that

similar relationships can be developed for the mixed-mode case; it -

is the purpose of this paper to study the crack surface displacements
under mixed-mode loading by both experimental and theoretical
methods.

The stress-freezing photoelasticity technigue has been extremely
successful in determining stress-intensity factors in various compli-
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cated three-dimensional geometries. However, an investigation into
mixed load stress-intensity factors [1] discovered that the remote
stresses exerted a measurable effect much closer to the crack tip than
had been expected. This required that the fringe pattern be magnified
by nearly two orders of magnitude in order to obtain valid fringe data.
The errors resulting from such high magnification leave one with little
confidence in the results. The experimental technique described in
this paper makes measurements of crack opening displacements di-
rectly across thin slots electro-machined in metal specimens. The data
obtained are easy to compare with theoretical calculations.

The theoretical method employed here is an “indirect” form of the
boundary-integral equation (BIE) method which includes the effect
of the crack in the kernal of the integral equations. Various forms of
the BIE method have been applied to two-dimensional crack problems
[2-7] with excellent success. The form of the method employed here
is discussed further in [6-8].

The measurement technique is briefly described in Section 2. More
detail can be obtained from the NASA report [8]. The theoretical
approach is described in Section 3, and finally the experimental and
theoretical results are compared and discussed.

2 Experimental Techniques

The crack opening displacements were measured with the inter-
ferometric strain-displacement gage (ISDG) technique. This non-
contacting method has a very short gage length which permits accu-
rate measurement of the displacement of the crack surfaces at several
positions along the crack—even very near the crack tip. The principles
and various applications of the ISDG are well documented, but for
this research a particularly easy-to-use measuring system was de-
veloped. In addition, new techniques were developed to permit
measurement of displacement parallel to the crack.

2.1 The Interferometric Strain/Displacement Gage. The
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Fig. 1 Schematic of the ISDG

basic principles of the ISDG are illustrated in Fig. 1. Two very small
indentations are pressed into the surface of a specimen; these are lo-
cated one on each side of the crack. When coherent light impinges
upon the indentations, it is diffracted back at an angle o with respect
to the incident beam. Since the indentations are very close together,
the two diffracted beams overlap, resulting in interference fringe
patterns on either side of the incident laser beam. Movement of the
two indentations relative to each other causes a movement of the two
fringe patterns; this fringe motion is easily related to the displacement,
by

5d = . A (Am1 + Amz) (1)
sin ayg 2

where A is the wavelength of laser light, Am; and Am are the fringe
motions of the upper and lower fringe patterns, a is defined in Fig.
1, and 4d is the relative displacement of the two indentations. It is
necessary to average the two fringe motions together to eliminate rigid
body motion in a direction parallel to the load application. Reference
[9] describes the ISDG in more detail.

Since a large number of measurements were planned for this series
of experiments, it was important to have a convenient data acquisition
system, and a measurement system for monitoring the motion of the
two fringe patterns was developed. This consisted of two phototran-
sistors (one for each pattern) which monitored the intensity of the
fringe patterns as they moved. The output was a sinusoidal-shaped
voltage signal. The signal from each fringe pattern was fed into an
analog circuit that triggered a one-shot monostable multivibrator
which produced a pulse every time the incoming voltage was in-
creasing and exceeded a certain level. The pulses from the two signals
were combined into a summing circuit which simply incremented the
voltage output every time a pulse was received. This output was fed
to the vertical channel of an X-Y plotter; the signal from the specimen
load cell was applied to the other channel. The final data were then
a plot of load versus displacement from which the slope could he taken
to yield the crack surface displacement per unit load. The optics,
physical arrangement, and electronics of this instrument are described
in reference [10].

2.2 Specimens. The specimen material was type 2219 aluminum,
3.2 mm thick, furnished by NASA-Lewis. The specimens were ori-
ented so that the rolling direction was paralled to the loading direc-
tion. Tests were run on the material to obtain the following elastic
properties: elastic modulus = 70 £ 1 X 103 MPa, Poisson’s ratio = 0.33
+ 0.01.

The specimen geometry is shown schematically in Fig. 2. The slot

in the center of the specimen was nominally 12.5 mm long X 300 mi- -

crometers wide. These slots were electromachined in the specimens.
Six specimens were tested with angular orientations of 0°, 15°, 30°,
45°,60°, and 75°. In addition six different widths of the specimen were
tested; the width was varied by machining down the tested specimen
after each series of experiments. Note from Fig. 2 that displacement
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2b .

Fig. 2 Schematic of the specimens

Fig. 3 Photomicrograph of a set of indentations; the slot is 290 micrometers
wide

measurements were made at five positions along the slot—at the
center, at two quarter points, and at the ends of the slot. The inden-

. tation at the “ends” of the slot were actually located about 650 microns

from the slot tip. The slot tip was a very smooth semicircle. In other
words, the indentations at the ends of the slot were actually slightly

“more than four radii away from the end of the slot.

Fig. 3 is a photomicrograph of a set of indentations and the speci-
men slot. The slot in that picture is 290 micrometers wide. Note that
the indentations are close enough to the edge of the slot that one can
reasonably assume that the crack surface displacements is being
measured. B . ‘

23 Data Reduction. The specimens were loaded in an Instron
screw-driven testing machine. The test procedure was to apply a very
slight preload to the specimen and then set a maximum load value on

. the test machine. While the specimen was cycled several times be-

tween the maximum and minimum load, the positions of the laser and
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Fig. 4 Calibration plot comparing the measured displacements at the center
of the 0° specimens with theoretical values; measurements were made on
the front and back of the specimens

the phototransitors was adjusted so that the fringe pattern remained
bright at the phototransitor during the entire load cycle. The maxi-
mum load was chosen small enough that no plastic deformation oc-
curred at the ends of the slots during the entire series of experi-
ments.

After the adjustment had been completed, the data record was an
X-Y plot of load versus displacement taken as the load was increasing.
It had been determined early in the course of the experiments that
. the difference between loading “up” and “down” was negligible. The
scale on the displacement plots was calibrated using the measured
value of the angle «g in equation (1). The resuiting curves were
“stair-step” in appearance because of the limited sensitivity of the
simple measuring curcuit. A straight line was drawn through this plot
and the slope of the line computed. The total relative uncertainty of
the slope measurement was 3 percent; 1 percent from the load cali-
bration, 1 percent from the human element in drawing the straight
line through the plot, and 1 percent in the measurement of the angle
Q.

To assure that the measurement system was giving accurate results,
the data for specimens with a horizontal slot (# = 0°) were compared
with that predicted from the existing solution [11]. Measurements
were taken on both the front and the back of the specimen as it was
mounted in the test machine to see if there was any bending or mis-
alignment in the machine. The results are presented in Fig. 4 for the
various widths of specimens—ranging from a crack length to specimen
width ratio of 0.17 to 0.79. Fig. 4 shows that the ISDG works satis-
factorily for slots of this size.

2.4 Biaxial Measurement. Special arrangements have to be
made for measurement of displacement parallel to the slot. This is
accomplished as shown schematically in Fig..5. The small tabs were
cut from a Pt-Rh alloy sheet, 250 micrometers thick. The nominal size
of the tabs was 250 microns square for the small tabs, while the tab
across the slot was 750 microns long. These tabs were glued to the
specimen with Eastman 910 adhesive, and then the indentations were
applied. This arrangement turns out to be a suitably smail displace-
ment transducer considering the fact that the slot is over 1200 microns

Journal of Applied Mechanics

Tabs glued to
specimen

C D
Not attached Tu ;3 \ Slot

Fig. 5 -Schematic of the tab arrangement for biaxial displacement mea-
surement

Fig. 6 Boundary-value problem involving region weakened by a sharp
crack

Fig. 7 Auxiliary boundary-value problem

1
long. However, the application of the tabs is a fairly delicate proce-
dure. Note that the measurements on the front of the specimen, as
shown in Fig. 4, were made using the two smaller tabs.

3 Theoretical Approach

Consider the plane linear-elastic region R of Fig. 6, bounded by
contour B and containing a crack of length 2¢. The boundary contour
B is subjected to a specified traction, denoted by t. It has been shown
{271 that this problem can be treated quite effectively by “bound-
ary-integral” techniques and, in this section, one such technique [6-8]
will be applied to the problem of interest in this paper.

We begin by considering the “auxillary” problem of Fig. 7, i.e., an
infinite plane containing the crack of length 2a, with a layer of body
force p* applied along contour B. If Hij, (Z, Zo) and I;;4(Z, Z,) are the
ijth stress component and the ith displacement component, respec-
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tively, at point Z caused by a unit load in the g-direction applied at
point Zy, then by superposition the solution to the problem of Fig. 7
can be written as

0ij(Z) = fB Hijiq(Z, Zo)pg*(Zo)ds (Zo)
)
w(2) = j; L54(Z, Zo)pg*(Zo)ds(Zo)

where s is a coordinate measured along B. The notation employed here
implies summation over repeated indices. If the solutions to the
problems of Figs. 6 and 7 are to be identical within R, then the stress
field given by equation (2) must satisfy

6ij(ZOni(Z1) = ti(Zy) 3)

as Z approaches Z; from the inside of R, where n;(Z1) is the j-com-
ponent of the outward-directed unit vector normal to B at point Z;.
Inserting equation (2) into equation (3) yields

pi*(Z3) + n;(Z1) j—;Hij;q(Zh Zo)pg*(Zo)ds(Zo) = t:(Z1)  (4)

where the singularity which occurs when Z; = Zg has been extracted
and the integral is thus to be interpreted in the principal-value
sense.

An approximate solution can be obtained by discretizing the
boundary and the boundary values and converting equations (2) and
(4) into linear algebraic equations. A simple scheme would be to divide
B into N intervals of length ASy, k = 1, ..., N, and to integrate the
traction of Fig. 6 and body force layer of Fig. 7 over interval ASp,

denoting the results as
Py = f t;ds
ASk

Py* = f pi*ds
ASy

wherei =x,y; k= 1,. .., N.If the resultant loads of equation (5) are
then located at the center point of interval ASy, equations (2) and (4)
are converted to

(®)

N :
3Py*(Z1) + :;1 Hijio(Z1, Zo)Pap*(Zo)nj(Z)AS) = Pu(Z,)  (6)
k#l

‘wherei=x,y;j=x,y,1=1,..,N, and

N
0;i(Z) = El Hij o (Z, Zo)Pygr*(Zo)
N’ ™
u(Z) = E,l Ii:q(Z, Zo)Pyr*(Zo).

In equations (6) and (7), Z1 is to be interpreted as the center point of
boundary interval [ and Zg as the center point of boundary interval
k. :

Once the 2N X 2N system of equations (6) is solved for Py, *, i = x,
y,k=1,...,N,thestress and displacement components at any point
Z in R can be found by simple summation, i.e., equations (7).

The influence functions in equations (6) and (7) can be written in
terms of the complex potential functions, ¢ and y, associated with the
region of Fig. 7 subjected to a point load Pp*(Zo) = Per*(Zg) +
iPy,*(Zo) applied at the point Zg [12]:

Heg(Z, Zo)Por*(Zo) = R(2¢°(Z, Zo) — Z9"(Z, Zo) — Y/ (Z, Zo)]
Hyyq(Z, Zo)Pgr*(20) = R120"(Z, Zo) + Z¢"(Z, Zo) + Y/ (Z, Zo)]
Hayq(Z, Zo)Pgr*(Zo) = I[Z" (2, Zo) + ¥/'(Z, Zo))]

1

Ix,'q (Z; ZO)qu*(ZO) =
2u

Rlag(Z, Zy) — Z¢'(Z, Zo) — Y(Z, Zy)]
1 S —

Lyi(Z, Zo)Pgr*(Zo) = o Ha¢(Z, Zo) — Z¢'(Z, Zo) — Y(Z, Zo)

(8)
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where a = (3 — v)/(1 + v) for plane stress and o = 3 — 4» for plane
strain, u is the shear modulus, » is Poisson’s ratio, and Z = x + iy, Zg
= xo + iyo. It is clear that the complex potential functions can be
written as

0(Z, Zo) = ¢9(Z, Zo) + ¢*(Z, Zo)
WZ, Zo) = y™Z, Zo) + ¥*(Z, Zo)

where ¢ and Y0 are the complex potential functions associated with
an infinite plane, with no crack, subjected to the point load, i.e.,

9

PO(Z, Zo) = ~ PitZo)_ In (Z ~ Zg)
27(a + 1)
Pe*(Zo)y P*(Zo) Z 1
0 = o LM Za) _ Pr*Zo)  Zo
W 2 = a7~ 7

and ¢* and ¥* are the complex potential functions associated with
the problem of an infinite plane, containing the crack, subjected to
a traction along the crack faces equal in magnitude and opposite in
direction to the traction generated along an imagined crack in the
problem of ¢2, Y0, It is shown in [7] that, if we introduce the mapping
function

z=w(§)=%(§+1§) (11

we can determine that

¢*(Z) = ¢1* ()
_ _Pr*(Zo) Lro= §
2m(a + 1) ro
+ Pe*Zo) [ Zof+1 (2= Zoti + 1§ 1]
2r(a+ 1) [2=Zof +1  tilto—t)(§ — t:)
Y*(Z) = Y1*()
_ Pe*(Z) [$2=Z0f+1 (2= Zgi+ D
Tom(at+ D[P -ZoS 1 ritro—r) (= 1)
+s‘(§‘2+1)( 1 o )_1]
to

1= \t=rp (-

P*(Zo) [ to—¢ ro—¢§
n —aln

2m(a + 1) to ro

{2+ 1) [Zo—Zo)(2—1) 2= Zoti+1 |

— (12)
-2 | (@-Zf+ 1?2 (o—t)G—t)d]
provided that Z = Z,, where
ro; = hlZo £ (Z? — 4)1/2] (13)
toi = YolZo £ (Zo?2 — 4)172)
and a = 2 for convenience. If Z = Z;, we have
o*(Zo) = p1*(t;)
_ P2 [, ot Lo — &y
= In —aln
(e + 1) ro to
Pr*(Zo) [t;%2—2tito+ Zoto— 1 _ Zoto — 1]
27(a + 1) (t; — to)? to? ]
V*(Zo) = Yr1*(t;) :
_ Pr¥(Zo) [t;2~ Zot,' +1 r2— Zori +1
2r(a+ 1) |62 = Zoty + 1 ri(ro—r)(ti —ry)
+ti(ti2+1)( 1« \_.1
1—t2 \i—rp ti—t()}
Pp*(Zy) to—t; ro—t;
n —aln
2n(a + 1) to ro
t(824+ 1) 2(kg2 — Zoto + 1)] (14)
-2 (G-t |

The method is now applied to the problem of interest, shown in Fig.
8, i.e., a rectangular region, containing a centrally located sharp crack
of half-length 6.40 mm and subjected to a uniaxial tension of 1 MPa.
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Fig. 10 Comparison of experimental and theoretical results for a/b = 0.794;
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Table 1 Comparison for a/b = 0.291 (displacements in microns)

Loct. Center Transverse Quarter End
L | 1
LE te ¢ RQ RE 8 BIE | IDG | BIE | IDG | BIE | IDG { BIE [ IDG
Fig. 9 Comparison of experimental and theoretical results for a/b = 0.291; ° ]
open symbols are experimental data 0 .386 | .405 | .000 - .320 | .349 | .083 ) .197

15° .360 ¢ .377( .092 | .015¢ .299 ¢ .330 | .075( .172

300 L2921 .295( .162) .165} .241 | .271 | .054 | .148
Plane stress is assumed and v = 0.33, E = 70 X 103 MPa. The following

36 cases are treated: W = 7.62 cm, 4.37 cm, 3.05 cm, 2.34 cm, 1.90 cm, 459 .196 | .215| .189 ¢ .182 | .160| .182 | .025( .095
1.60 cm;and 6 = 0°, 15°, 30°, 45°, 60°, 75°. For all cases, the dis- -
placements u, and u, in the x and y-directions, respectively, are 600 -098 | .105| .165| .128| .077| .094 |-.003 } .034
computed at the 6 field points shown in Fig. 8. The results for crack
opening displacements at the center point, quarter point and end

- point and for relative transverse displacement at the center point can
then be readily detérmined fron

75° .025 | .024 | .096 | .046 | .017 | .023 -.023§ .011

Ocenter = (uy)l - (uy)Z

5tl'a’ns = (ug)1 — (Ux)2

(15) Table 2 Comparison for a/b = 0.794 (displacements in microns)
0 = U — U )4 :
quart ( y)3 ( Y Loct. Center Transverse Quarter End
5end = (uy)5 - (uy)G-
Results are presented in the next section where comparison is made 0 BIE | IDG | BIE ; IDG | BIE | IDG | BIE | IDG
with the experimental results.
0° .600 | .623 | .000 - .509 | .546 | .135| .362

For implementation of equations (6) and (7), the boundary is di-
vided into N = 60 divisions, 10 on each of the loaded sides of length
AS; = W/10, and 20 on each of the unloaded sides of length AS; =
3W/20. The solution of equations (6) was obtained via the Crout al- 30° 462 | .499 ] L1691} .168 | .378
gorithm with equilibration and partial pivoting. Since a crack half -
length of a = 2 was assumed earlier, the problem was first scaled ac- 45° | .311| .337 ) .212 | .219 | .245| .275 | .032 1 .121
cordingly and the solutions were subsequently scaled back.

15° .574 | .620 | .099 - .483 ) .540 1 (123 | .294

.431] .078 | .199

60° .159 | .163 | .197 | .198 | .118( .116 |-.003 | .107

4 Results and Conclusions

A B 759 .040 | .033| .118 .096 | .026 | .041 |-.024 -
The results for displacements perpendicular to the crack are pre-
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Fig. 11 Comparison of experimental and theoretical results for transverse
displacements; open symbols are experimental data

sented in Figs. 9 and 10 for two selected crack-length/width (a/b)
ratios. The measured values are designated as open symbols while the
displacements computed from the boundary integral equation tech-
nique are represented by filled symbols. These data are also presented
in Tables 1 and 2. The complete set of data for all six crack-length/
wide ratios is available in reference [8].

Figs. 9 and 10 show that the agreement between the BIE technique
and the experiments is in general quite good except at the end points.
The fact that the two techniques don’t agree for displacements near
the crack tips is understandable. The BIE computations are for a
sharp crack; whereas the IDG measurements were made on a finite
slot. Note that the IDG values are larger—much larger at the end
points. The difference between the modeled crack and the actual slot
is not very significant away from the end points. Another reason for
the greater disagreement at the end points is that the measured dis-
placements are smaller and thus more susceptible to experimental
erTor.

Transverse displacements at the center of the slot are plotted in
Fig. 11 and tabulated in Tables 1 and 2. Attempts were made to make
IDG measurements at § = 15°, but the displacements were so small
that the data were useless. However, for larger angles the agreement
is quite good. This agreement demonstrates that the elaborate tech-
nique of gluing tabs across the slot didn’t distort the measure-
ments.

562 / VOL. 47, SEPTEMBER 1980

Examination of Tables 1 and 2 shows that the end displacements
were negative for angles of 60° and 75°. In fact, the BIE technique
gave the same negative values for 60° and 75° for every crack-
length/width ratio investigated. This negative displacement implies
that the sharp crack surfaces cross each other—a physical impossi-
bility. Certainly allowing these negative displacements influences the
displacements at the quarter points and at the center of the crack.

The results of this extensive research program show that the the-
oretical and experimental techniques (both of which were developed
in the course of the work) are valid for establishing crack surface
displacements. The choice of method for future problems will depend
on how easily the geometry and applied loads can be modeled. Where
external loads can be accurately predicted and the geometry is rea-
sonably simple, the BIE method is more appropriate. For more
complicated situations, the IDG is an accurate, easy-to-use experi-
mental technique.
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Fracture Criteria of Fibrous
Laminated Composites Under
In-Plane Multidirectional Loading

A study on the validity of various fracture criteria of angle-ply-laminated composites is
presented for in-plane loading. Special emphasis is given to the vectorial presentation
of the J-integral as a suitable candidate for fracture characterization of composites under
general combined loading. The combined loading which is composed of a simultaneous
tension, shear and in-plane bending in any desired proportion, has been produced in a
highly computerized fashion by a specially devised apparatus at the U.S. Naval Research
Laboratory. The fracture data of several angle ply laminates of carbon/epoxy composite
(T'300/5208) result from prescribing the foregoing three combined radial loading until
fracture. Aided by numerical stress analysis (finite-element program) the data points are
cast into more well-known descriptions; namely, crack-opening displacement versus
crack-sliding displacement. Mode-I stress-intensity factor (K;) versus Mode-II stress-
intensity factor (Kir) and energy-release rate vector J versus J,. The main outcome is
that the data displayed on the J-integral plane have a highly distinctive nature of align-
ing the data points along straight lines, thus a clear discrimination between the fracture
properties of different angle-ply laminates can be characterized by only two parameters.
The ability to infer fracture conditions in subcomponents from tests on small coupons is

assessed.

Introduction

The applicability of structural materials is limited in many cases
by their ability to resist propagation of flaws (or implanted notches).
The toughness value associated with such a property, so widely doc-
umented in isotropic materials, cannot apparently be similarly ob-
tained in fibrous-reinforced composites. The reasons are not merely
the technical difficulties of observing and controlling crack extension,
but primarily because the modes of fracture in a general angle-ply
laminate are coupled (i.e., both opening and sliding modes take place
simultaneously under pure tensile loading, etc.). Neither analytical
expressions nor experimental observations yet enable one to relate
the remote applied load to the conventional stress-intensity factors
when the process of fracture is a little more complex than just a coli-
near crack extension. Clearly there are particular cases in fracture of
composites where modes of fracture are separated, so that linear
fracture mechanics approach is transferable (i.e., reference {1, 2}),
notably in unidirectional reinforcement [3, 4] but not without reser-
vations [5, 6]. By recognizing the coupling effect between the different
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modes it was felt that the most reliable situation by which fracture
data should be produced is by activating all possible modes of fracture;
namely, by applying simultaneously the most general in-plane
loading; tension, shear, and in-plane bending. Therefore, an experi-
mental effort is focussed here to produce fracture data on fibrous
composite materials subjected to different proportions of the previ-
ously mentioned three combined loading.

A computer controlled machine was designed at the U.S. Naval
Research Laboratory to meet this demand. The global features of this
machine resemble the computer-aided mechanical testing machine
reported by Wu and dJerina [7] for testing thin-walled tubes, but in-
corporates more independent loading modes with more automation
in the overall procedure. The three load-displacement histories of the
three loading modes are continuously recorded, and the associated
dissipated energy absorbed in situ by the specimen is computed on
real time and displayed on a T-V screen.! The fracture initiation was
defined as the point where abrupt dissipation of energy consumed by
the loading specimen was begun. The meaning of dissipative energy
is explained later. The collection of such fracture data at each
angle-ply laminate of T300/5208 (30°, 45°, 602) is analyzed in dif-
ferent ways in order to reveal the most convenient parameters for

L At preselected small time increments during the test (say, a few miliseconds)
measurements of loads and displacements at each actuator are continuously
recorded and stored. This information is used on-line to compute the current
dissipated energy (equation (1)). It is only a technical matter to display it
graphically (as in Fig. 4) for visualization of the specimen behavior up to total
failure.
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Fig. 1 Grips arrangement and loading conditions produced by in-plane
loader

fracture characterization: (a) crack-opening displacement versus
crack-sliding displacement; (b) Mode-I stress-intensity factor (Ky)
versus Mode-II stress-intensity factor; and (c) energy-release rate in
x-direction (Jx integral) versus energy-release rate in the y-direction
(Jy integral). The main outcome is that the data displayed on the
J-integral plane has a distinctive nature, not obtained in the previous
presentations, of aligning the fracture data along straight lines. The
importance of having a fracture locus as a straight line is dis-
cussed.

A Brief Description of the Test and the Analysis
Procedure :

The in-plane loader machine is used to test small prenotched
coupons (1 in. X 0.5 in.) of graphite/epoxy (T300/5208) of angle-ply
laminates with various angles. The specimen is fixed by a clamped
grip at one edge and free to displace and rotate (in a plane) by a
“floating” grip along the second edge, as shown in Fig. 1. The three
degrees of freedom of this latter edge are controlled by the shown three

Nomenclature

DE,

Ad) do d de

i%0,1,2
l=1,2,..n
r=(z#+o; tigr )l/!

0, = {[f4,8]-ofon]}
DE =DE,+ DE,+ DE

Fracture initiation
R f r

Fig. 2 Fracture initiation as indicated by the global displacement R-at which
a sharp increase in the total dissipative energy, DE, is observed

(hydraulic) actuators, such that any desired combination of shear,
tension, and bending is readily available via a computerized program
which drives the actuators accordingly. Once the combined load is
preselected the test proceeds by maintaining the proportionality?
between the three combined loading until total separation of the
specimen takes place. This proportional displacement loading path
is described as a radius vector (r) in the displacement space with the
coordinates do, d1, and dy, originating at the crack tip (see Fig. 1 for
more details). During the displacement controlled loading, the asso-

2 Any other history of loading can essentially be programmed as well.

o = angle-ply (included angle) of fibrous D,
composite laminate with respect to notch Dy
direction

placement [equations (7) and (8)]

= normalized crack opening dis-

61, s, r = polar coordinates of displacement
vector with origin at the notch tip (Fig.
3)

{t} = (o, ti, t2) = traction components (shear,

a;; = components of elastic compliances

A, B, C, E = coefficients defined in equations
(9) and (10)

cg, €1 = geometrical parameters of the spec-
imen

{d} = (do, d1, d2) = displacement components
(shear, tension and rotation, respectively)
at the notch root which are related directly
[via (4)] to the applied boundary dis-
placement

[E] = matrix of structural stiffness

{fl = (fo, fi, f2) = boundary tractions (shear,
tension, and rotation) which result from
the boundary displacement

Js, Jy = components of J-integral (13)

K, K11 = stress-intensity factors for Mode-1
and Mode-11 i

R = generalized displacement magnitude at
failure (Fig. 3).

ri = distance from crack tip

S1, S = roots of the characteristic operation
(12}

564 / VOL. 47, SEPTEMBER 1980

tension, and rotation) at the notch tip re-
lated directly to the boundary tractions
[via (equation 3)]

{u} = (ux, uy) = boundary displacement at the
edge of the gripped specimen

iy (r;), 8y (r;) = displacements at point r;
w = strain-energy density

w, = bending displacement produced by
rotation of the grip
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Fig. 3 A schematic description of the so-called “proportional loading” used
in the tests. The displacement loading path (dy, d,, d2) and the associated
force path (o, t1, £2), represent the physical situation pre and postfailure (i.e.,
fracture initiation) of the specimen.

ciated forces (tq, t1, t2)® are recorded versus the displacements so that
the change in the three compliances is simultaneously obtained as
shown in Fig. 2. It was observed that the three forces do not decrease
at the same time. When the composite starts to fail not all the com-
pliances necessarily decrease simultaneously, and load-carrying ca-
pacity may still be sustained even if some kind of damage starts to
grow. After a while, as shown in Fig. 8, the increases in the displace-
ments gradually release the loads and substantial damage is seen. A
suggested measure to decide upon the critical load at which failure
starts is to view the variation in the dissipative energy consumed by
the coupon during its loading process. The total energy imparted to
the coupon/machine system namely, the elastic one and all other ir-
reversible dissipations which may possibly occur, is integrated on-line
during the test, which is f§t;8d;. By subtracting the recoverable
elastic energy* 1/2 ¢;d; and summing up the contribution of the three
loadings, one gets the net energy dissipated in the process by the
following expression:

i =1 — ghear

3 dj 1 i = 2 — tension
DE=Y, U;:O tjod; = = () 1)

i=1 i = 3 — rotation

(i.e., in-plane bending)

It appears in our experiments that the sum of the three contributions
as stated in equation (1) shows at a certain point a quite distinctive
increase in the dissipative energy. A typical case is shown in Fig. 4.
Consequently, we identify the load associated with this point as the
“fracture load.” The conjugate critical displacements of the moveable
grip are used as boundary conditions for numerical stress analysis of
the coupon at its fracture load. Various fracture surfaces are then
extracted from such results as shown in Fig. 6.

3 The forces fo, f1, f2 measured by the actuators are transformed for compu-
tational convenience, to a traction vector (¢, t1, t2) located at the crack tip as
explained later (equation (3)) and therefore associated to the displacement
vector of the tip (dg, d1, do).

4 Assuming that in unloading the strain resumes zero value in linear
fashion.
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Fig. 4 Reproducibility of fracture initiation for three different combinations

of loads. These graphs are taken from the T-V dispiay during the on-iine ex-
perimental results,

Fig. 5 Finite-element mesh used for stress analysis of the specimens at

. fracture initiation

Presentation of Fracture Data

The subject of this paragraph is to organize the fracture data
gathered on small coupons into several forms more conceivable by
designers. The computational procedures which follow are based on
the displacement boundary conditions associated with the condition
“at failure” as defined previously. The detailed stress and displace-
ment fields throughout the coupon are resolved by finite-element
structure analysis (Beaubien [8]) whose mesh is shown in Fig. 5. As
mentioned before, the laminate appears to initiate failure without
preceding substantial nonlinearities® as revealed by the abrupt
step-rise in the dissipative energy. Consequently, one can establish

5 This, however, is not entirely true when compressive loading or bending
in the direction which causes crack closure are used as the loading path. Our
work excluded such cases.
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a priori the structural stiffnesses [E] for each angle-ply laminate of
the notched coupons under the three possible displacement loading
Uz, Uy, and w,. It reads

fO EOx AEOy EOz Uy
fl = El_y Elz Uy (2)
fo Sym Eo, o

Values for [E] used in this work are tabulated in Appendix A. For
simplification and convenience the generalized forces {f} which result
from the prescribed displacements {u} are transformed to the notch
tip location and denoted by {t} according to

1 0 0
fi=1Tdlet [Td=40 1 0 (3)
¢1 =—Co 1

where ¢(cq, ¢1) is the location of the load {f} with respect to the notch
tip. Similarly the displacement {u} is also transformed by [T,] to the
notch tip coordinate and denoted there by {d} as shown in Fig. 1 and
Fig. 2. The geometrical relation is

10 —C1
ful = [Tulldl, [Tul=]0 1 co (4)
0 01

It can be readily shown from (3) and (4) that the transformation
matrices for forces and displacements are connected by

[T.]" = [T7] (6)

hence, the general Constitutive Equation for the coupon specimen
emerges from (2)—(4) by the following expression:

{d} = [TATIE]-T){t} (compliance = [TY]T[E]Ty])  (6)

The experiments are continuously monitored by {¢} and {d}. Therefore,
equation (6) serves as a computational device to find out the relative
compliances (three independent compliances) of the testing machine,
so vitally important for precise evaluation of experimental data. The
so-called failure surfaces on the d space are plotted in a polar form®
in Fig. 6. The fracture data on these surfaces compose the tests per-
formed on 30°, 45°, and 60° deg of included angle (with respect to the
notch). The smooth connectivity between fracture points at different
proportions of shear, tension, and rotation is highly manifested. This
can partially be attributed to the automatic man-free nature by which
specimens are loaded and gripped in the testing machine.

Various Fracture Criteria

The goal in applying fracture mechanics concepts in composite
materials is to reduce the numbers of independent parameters re-
quired to characterize their fracture properties. The experimental
tests which depend on three different loading conditions, convey

fracture data (Figs. 5 and 6) which are inherently three-dimensional-

in nature. In the following we will attempt to reduce the dimension-
ality of the experimental data of Fig. 6 from three to two by consid-
ering approaches which have been used successfully in the past to
characterize fracture properties of isotropic materials.

Crack Opening Displacement. The concept of “crack opening
displacement” is based on the premise that the displacement asso-

6 In polar form the variables dg, d, dy, are related to the three polar coordi-
nates r, 01, f2, by

r=(do? + d,2 + ds?)12
01 = tan1 (d1/do)
By = tan~1 [do/(do? + d12)]
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Fig. 6 Failure surfaces in polar coordinates of T300/5208 composite as
produced by various loading paths; each circular black dot represents ex-
perimental failure at a given path; note the clear distinction between failure
surfaces of different angle-ply laminates

ciated with the notch (or with the whole flank) at incipient fracture
constitutes a material property and therefore can be used by a de-
signer as fracture criterion. The question whether this holds true in
composites subjected to combined loading is considered in the light
of our experimental data.

For this purpose we define a normalized displacement vector (D,
D,) along N discrete points along the two flanks of the notch by
1 % 1y (ry) 1 g iy (r;)
Ni=1 Vr; N v
As seen in equation (7) the displacement of the flank is weighted by
the corresponding distance (1/4/7; to the tip of the notched and av-
eraged throughout the flanks. Evaluation of equation (7) is repeated
for each mode of loading (j = 0, 1, 2 corresponds to the three dis-
placement loading u., u,, w, shown in Fig. 1). As a result the total
opening displacement D, and D, (unprimed) is obtained by adding
the contributions of all the acting loading modes as expressed by

D,V = D0 = @)

D, |D,© B, poy |
p,) " |p,® p,0 p,@ ¥ )
. W2

The critical crack opening displacement is resolved from (8) by using
the values of u, uy, w, at “incipient failure.” The results shown in
Fig. 7 are quite scattered without a clear topological structure required
for fracture characterization. Consequently we felt that equation (7)
is not a well-suited parameter for fracture criterion of angle-ply
composite under combined loading.

Stress-Intensity Factors. By assuming that the notch tip is sharp
and the composite is homogeneous, an analytical near-tip elastic so-
lution [9] is valid and consequently used to evaluate the stress-in-
tensity factors (K1 and K1) at the critical loads {f}¢ in all tested
combinations for the various angle-ply laminates. It is the purpose
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Fig. 7 Critical crack-opening displacement versus crack-sliding displace-
ment of several angle-ply laminated composites

of this analysis to see whether the critical stress-intensity factors can
characterize the fracture behaviors of our composites.

The relation connecting the normalized opening of the crack (D,,
D,) to the stress-intensity factors (K1, K1) in composites are coupled
and can be generally described by the following:

PR e
' D,] +/7|C E|\Knu
The coefficients A, B, C, E are readily inferred from the analytical
work of Sih and Leibowitz [9]. These coefficients consist of material
elastic properties A;; and the roots S; and Sy of the characteristic
equation (12) by the following: ‘

Sips =S -
A=Im{————1p2 ZP‘], B=Im{——pz pl}

81 - Sg Sl - S2
S S 1o
C= Im[ 192 — 241]’ = Im{qQ—(h}
8182 Sl - SZ
where
p1=auSi?+ais, pa2=anSe?+an (1)

— (112512 + [25°)) gz = a12822 + aosg
Sl Sg

The values of a;; used in the experiments are tabulated in Table 1. The
characteristic equation for the symmetric case used in our tests is

(12)

q1

H

a118%+ (2a12 + age)S2 + age = 0
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Fig. 8 Critical stress-intensity factors (K versus K;) of several angle-ply
laminated composites

Table 1 Elastic compliances of T300/5208 laminates

Angle-ply
T300/5208
included angle a;;[1077]
psi~!
¢ ayy ai2 azz aes
30° 48.7 -23.4 3.20 6.45
45° 60.3 —43.0 2.96 4,74
60° 82.1 -65.0 2.60 3.73
Table 2 The roots of equation (12)
o S S2
30° 0.751 3.421
45° 0.94 2.360
60° 1.7 + 0.52i —-1.7—-0.52

Using the coefficients a;; from Table 1 we get the complex roots shown
in Table 2.

The values of K1 and Kz are obtained from the inversion of equa-
tion (9) where the data of (D, Dy) are evaluated at incipient fracture.
Results are plotted in Fig. 8. The relatively high values of the apparent
toughness of the composite shown in this figure, particularly for a =
60° might have several hypothetical explanations. Since the blunting
of the notch by matrix separation is most pronounced in 60° angle,
a relatively high stress level for fracture is likely to result. Here again
the data of Fig. 8 is not readily expressible as a convenient fracture
surface (although the data seems to be alittle bit more grouped along
a preferred direction) and therefore, we decline to characterize frac-
ture by critical stress-intensity factors for combined loading condi-
tions.

The J-Integral Vector. The two components of the energy re-
lease rate J; and Jy in a form of path-independent integrals, elabo-
rated and propounded by Budiansky and Rice [10], are applicable to
homogeneous bodies which can be unisotropic and nonlinear in gen-
eral. Their values represent the amount of the potential energy which
would be relaxed when a traction-free crack would extend (differen-
tially) in the x and y-directions, respectively. The integrals to be
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Fig. 9 Critical energy release rate (J, versus Jy) for several angle-ply
laminated composites; the appearance of fracture data of different angle-ply
laminates in multidirectional loading as straight lines (i.e., only two independent
parameters for each laminate) is notable

evaluated counterclockwise along arbitrary contour I' surrounding
the notch are

Jy = (wny, — T;0u;/dx)ds
Jy = (wny — T;0u;/dy)ds

where w is the strain-energy density (i.e., foijde;), T is the traction
vector on I (i.e., T; = oyn;) and ds is an element of the path I". Now
J, and J, are evaluated numerically by equation (13) at incipient
fracture of our coupons, the raw data of which was gathered by the
in-plane loader as explained in our previous cases. The display of the
fracture points for various angle-ply laminates in Jx, J, plane is shown
in Fig. 9.

It appears quite clear in this figure that the data points-align
themselves along straight lines; each line corresponds to a different
angle-ply laminate. The main importance of such an outcome is that
the distinction between the fracture properties of different angle-ply
laminates (and probably between different composites as well) is
reduced to just two parameters as for example the slope of the line
and the value of J, at the intersection with J/,, = 0 line. In passing, it
is worth reiterating that this last parameter (J,-value at J,, = 0) is
strictly the critical energy release rate for a notch which extends
“self-similarly” (i.e., colinearly with its original position). The physical
interpretation of such situations is that this single parameter coincides
with the classical fracture toughness parameter Gy, or alternatively
with the critical stress-intensity factor K1.. Most of the fracture study
of composites up to date was restricted to such particular cases where
only one characteristic fracture property was tested, either by classical
means (L.e., [1, 2]) or by employing the o concept [6, 11, and 12].

(13)

Summary and Discussion

Reduction of dimensionality from three independent coordinates
to two in describing fracture data of composite materials in multi-
loading case was studied. While functional relation in two-dimensional
description was unsuccessful for crack-opening displacements and
stress-intensity factors parameter, a straight line relation appears
to dominate data when parametizing fracture by the corresponding
critical J vector. Consequently, a clear discrimination between the
fracture properties of different angle-ply laminates is achieved in
terms of merely two parameters; the slope of the line and its inter-
section with the J, -axis. As mentioned earlier this distance is identical
to the well-explored toughness Gy, because Jy, is zero only if the crack
is propagating in a self-similar fashion. To such situations the con-
ventional term Gy, is applied. Indeed, values of G, obtained in Fig.
5 are very close to those reported by Konish, Swedlow and Cruse [6]
for the case of “crack running along the fibers” in their three-point
bending tests. The slope of the fracture lines may be considered as
a new parameter for fracture characterization but no profound
physical interpretation has yet been attached to it besides recognizing
its important role in indicating the amount of deviation from colinear

crack extension. The smaller the slope the less tendency for the crack

to branch away from its original position is expected. Such a trend is
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validated by our experiments where smaller slopes are associated with -
fracture of laminates composed of smaller angle-plies along which the
crack was propagating.

It is still an open question whether the two-parameter fracture
characterization of angle-ply composite suggested here is valid for
loading conditions beyond the testing spectrum experienced by us.
For example, two resulting deformation fields near a notch might
differ one from the other in their details and still might yield the same
values of J integrals. Therefore, fracture prediction of subcomponents
via the experimental tests on small coupon necessitates the insurance
that the laboratory tests from which the fracture locus is drawn, are
performed on as wide combination of loadings as possible. This calls
for numerous laboratory tests as a prerequisite for practical fracture
prediction. Indeed, this is the main factor underlying the highly au-
tomotive and efficient nature of the multiloading test machine at the
Naval Research Laboratory (NRL).

If structural subcomponents are subjected to proportional loading
and prediction of fracture from an already detected flow is sought,
one may take advantage of the fracture-data line by checking how far
the radius vector J(Jy, Jy) (emanating from the origin) which is
evaluated on the subcomponent with the working load, can radially
be elongated until its intersection with the experimental fracture line.
This portion of the line between the current value of J and intersec-
tion point indicates the amount of the additional working load
(squared) which might initiate failure in the structure. It is needless
to say that the ultimate goal is to experience such a predictor on
substructure (which is underway at NRL) before this approach is
comprehensively assessed.
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APPENDIX A

The matrix of influence coefficients [E] of the cracked specimen
(ie., [E] {u} = {f} as extracted from the finite-element solution.

Material T300/5208, units [Ib/in.] for unit thickness

18013.94 11.09 4645.92

[Elezszor = 11.10 28282.69 7633.72
4645.83 7674.33 3500.02

922972.80 99.18 5743.24

[Elamise =, 22.18 31626.13 9116.33
5743.23 8388.92 4441.10
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[E]a= 3978. 37880.17 9900.68

073 E-1 —-0780 E-—-3 0322 E-—-1
6693.66 9896.17 5166.18

’ 25959.74 39.78 6693.72 o = 60°
60° =
-0600 E—~1 0991 E—-1 0372 E-2

Note: The small deviation from symmetry of the foregoing matrices
is the result of the numerical nature of the stress analysis (finite ele-

ments). ' APPENDIX C
The matrix of influence coefficients [J] for the J-integral vector
APPENDIX B 0 = shear displacement
The matrix of influence coefficients [D] for the crack-opening |/ J;® J,@ 1 = tensile displacement

displacement vector (D, Dy, nondimensional) J,©0 g, g @ 2 = bending displacement
(D] = le ©® p,w D@ Material T300/5208, units [(in.-1b)/in.?]
D,©® D,W D@ o= 30°
Material T300/5208 161.62 30944 1051'
5.54 412 10.83
o = angle-ply (included angle with respect to the notch).
« = 30° a = 45°
‘0.601 E-1 ~0064 E—-3 0250 E~ 1l 937.30 361.99 15.15
0.214 E -2 0994 E—-1 —~0384 E-2 10.97 530 12.27
a = 45° v o =60°
l 0667 E~1 —0478 E—3 028 E—1 320.82 45538 19.93
-0.713 E-3 0981 E—~1 ~-0417 E-2 15.00 6.57 10.54
i
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Numerical Modeling of Dynamic
Crack Propagation in Finite Bodies,
by Moving Singular Elements

Part 1: Formulation

An efficient numerical (finite-element) method is presented for the dynamic analysis of
rapidly propagating cracks in finite bodies, of arbitrary shape, wherein linear-elastic ma-
terial behavior and two-dimensional conditions prevail. Procedures to embed analytical
asymptotic solutions for singularities in stresses/strains near the propagating crack-tip,
to account for the spatial movement of these singularities along with the crack-tip, and
to directly compute the dynamic stress-intensity factor, are presented. Numerical solu-
tions of several problems and pertinent discussions are presented in Part 2 of this paper.

Introduction

A concise summary of the present status of the theories of dynamic
crack propagation can be found in a recent article by Freund [1].
Several analytical solutions of the linear elastodynamic equations for
crack propagation in unbounded plane bodies have appeared earlier.
These include the works of: Yoffé; Cragg; Broberg; and Baker, for
Mode-I (plane-strain opening mode) crack propagation; and the works
of: Eshelby; and Achenbach, for Mode-III crack extension. All the
aforementioned works are summarized and referenced in a paper by
Freund [2], who considered the problem of a half-plane crack, in an
elastic solid subject to time-independent loading, which is initially
at rest and, at a certain instant, begins to move with either a constant
velocity [2] or a nonuniform velocity [3]. The studies in [2, 3] were later
extended [4] to consider stress-wave loading. However, as is usually
the case, to study dynamic crack propagation in finite bodies of ar-
bitrary geometry, it is necessary to formulate consistent numerical
methods, which may capitalize on the insighilas, into the field behavior
near propagating crack-tips, gained through the analytical solutions.
A critical appraisal of several and varied numerical solution tech-
niques in dynamic fracture mechanics was made in a 1978 paper by
Kanninen [5]. Most of the dynamic finite-element methods, for fast
crack-propagation analysis, reviewed in [5] use the conventional finite
elements with simple polynomials for assumed displacements, and
do not account for the singularity in strains near the crack-tip. Fur-
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ther, in these methods, the dynamic crack propagation was simulated
by a “gradual” release of the restraining nodal force at a finite-element
node which represents the “current” crack-tip. The dynamic stress-
intensity factor is then extracted from the displacement field or from
the work done in releasing the nodal force. It was concluded in [5] that
the foregoing “node-release” techniques were not sufficiently accu-
rate. '

Since the appearance of [5], Bazant, et al. [6], have presented a
calibrated, nonsingular, crack-tip element procedure for the dynamic
analysis of running cracks. In the procedure of [6], the finite-element
grid moves undeformed with the crack-tip. However, the procedure
of [6] has two serious limitations:

(!) Itisrestricted to finite bodies whose surfaces and/or bimaterial
interfaces are parallel to the direction of crack propagation.

(if) More importantly, it cannot be applied to bodies having finite
dimensions in the direction of crack propagation.
On the other hand, Aoki, et al. [7], presented a finite-element proce-
dure wherein the singular nature of stress/strain near the propagating
crack-tip is accounted for a priori. However, in [7], only when the
crack-tip has reached close to the boundary of the singular element,
the entire singular element is shifted, as a rigid body, to a new location.
The numerical details of the procedures are still somewhat sketchy
in [7]. Finally, King and Malluck [8] reported a procedure of simu-
lating crack propagation similar to that in [7], except that the singular
element used in [8] has, built within it, a large number of eigenfunction
solutions corresponding to a stationary crack. In an attempted sim-
ulation of the well-known problem of Baker, the procedure in [8]
produced spurious oscillations, of large amplitude, in the solution for
dynamic stress-intensity factor, as compared to the analytical solu-
tion.-Based on these results, it is suggested in [8] that the procedure
in [8] may not be feasible for simulating large scale fast fracture.

In Part 1 of the present paper, a moving singular element procedure
is presented for the dynamic analysis of fast crack-propagation
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problems in arbitrary shaped finite bodies. In the present procedure
a singular element, within which a large number of analytical eigen-
functions corresponding to a propagating crack are used as basis
functions for displacements, may move by an arbitrary amount AZ
in each time-increment At of the numerical time-integration proce-
dure (as opposed several time steps, say 6 to 8, per increment of crack
growth, used in the procedures reviewed in [5]). The moving singular
element, within which the crack-tip always has a fixed location, retains
its shape at all times, but the mesh “regular” (isoparametric) finite
elements, surrounding the moving singular element, deforms ac-
cordingly. An energy-consistent variational statement is first devel-
oped, as a basis for the foregoing moving singular element, finite-
element method of dynamic crack growth analysis. The present
procedure leads to a direct evaluation of dynamic stress-intensity
factor(s), since they are unknown parameters in the assumed basis
functions for the singular element.

In Part 2 of the paper, several numerical results for cracks propa-
gating in finite bodies are presented and discussed.

In the following we discuss the details of formulation of a moving-
singularity finite-element formulation for analyzing dynamic crack
propagation.

Basis Functions for a Moving Singular Element

We consider Mode-I-type dynamic crack propagation in two-
dimensional (plane-strain) linear elastic isotropic bodies of finite
geometry. Let x, (o = 1, 2) be fixed Cartesian coordinates in the plane
of the body, and x3 be the thickness coordinate of the body such that
x9 = 0 defines the plane of the crack. In the context of the present
numerical method, without loss of generality, we consider the case
when the crack-tip is moving along x1-axis at a constant speed v. We
introduce the coordinate system (£, x3) which remains fixed with re-
spect to the moving crack-tip, such that £ = x1 — vt. Let ® and ¥ be
the dilatational and shear wave potentials, respectively; and let Cy
and Cs be the corresponding wave speeds. It can then be shown [2]
that & is governed by the equation

- 202 0% ey 2% 2
[1—=(/Cy)? o + ord = — (20/C}%) Y + (1/C%)

and that ¥ is governed by a similar equation, except that Cy is to be
replaced by Cs. Consider the “steady-state” solution to the homoge-
neous part of the previous equation, that is, the solution which appears
time-invariant to an observer moving with the crack-tip. This ei-
genfunction solution which satisfies the traction-free condition on
the crack-face (£ <0, x2 = £0), can be derived easily, as for instance
in [9, 10], and is given in Appendix A for the sake of completeness.

In the present procedure, a finite region (which, for convenience,
is taken to be rectangular in shape) near the moving crack-tip is
modeled by one finite element, in which the displacement field is
assumed to be a linear-superposition of a finite number of the previ-
ously discussed eigenfunctions. However since the solution, in general,
will also explictly depend on time, the undetermined parameters, Gy,
are taken to be functions of time. Thus, in the singular element, we
assume

o

2
or2 (1)

ui(€, xo, t) = ¥ u*i, (€ x9, v)B,(t) + Rigid body modes  (2)

us(§, xg,t) = X u*9n (€, x9, v)Bn(t) + Rigid body modes  (3)

where u*gn, u*1, are given in Appendix A, and, in particular, 81 (t)
is identified as the Mode-I dynamic stress-intensity factor. It can then
be seen that, in the present finite-element procedure, the dynamic
stress-intensity factor is an unknown parameter in the element
basis-functions, and thus can be calculated directly. Representing the
foregoing equations (2), (3) in the familiar matrix notation,

us(§, xg, £) = U(E, xo, )B(2) 4)

where bold-faced letters and a bold-faced letter with a tilde under it
denote a column vector and a matrix, respectively; and u® denotes the
vector of displacements in the singular element. We note that the total
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velocity and acceleration of a material point in the singular element
are given by

@ =Uf - v()B ®)

and

= UB — 20(U) ;8 + v°W) 1B ©)

where, a () denotes a total derivative with respect to time t, and ( )¢
denotes a partial derivative with respect to £.

Let the domain of the singular element in the present procedure
be V; and its boundary be aV; and let ps be that part of &V, where
the usual isoparameteric finite elements adjoin. In order that con-
vergence of the present finite-element method may be achieved,
compatibility of displacements, velocities, and accelerations between
the singular elements and surrounding regular elements, i.e., at ps,
is maintained in a least-squares sense as described in the following.
Let the displacement, velocity, and acceleration assumption for the
regular element, at p;, be taken, respectively, as

uf=Nq;  uf=Ng;  0F= Ny (Ta, b, ¢)

where N are functions of the boundary coordinate 5(x,) at 0V;, and
qs is Ehe vector of displacements at nodes at ps. The parameters 8, 8,
and £ are so chosen that they minimize the error functionals

L= § (w—-udp; Ir=

Ps Ps

(s — aF)2dp;

13 = (Us - UR)de

s

(8,9, 10)

Using equations (4)-(7) in (8)7(10), and minimizing Iy, Ig, and I3
successively with respect to 8, 8, and B it can be shown that

B =Aqs; B = A4 + Bag; ,B = Ad; + 2Bg; + Cq, (11-13)

where
A=HTlg; B=(VH'EA (14, 15)
€ = 2()H'EB — (V)HIFA (16)
= f uiudp; e= [ urndp (174, b)
Ps Ps
E= f uTW)dp; E= f UTW),eedp (17¢, d)
Ps Ps

‘Thus equations (4)-(6) together with (11)-(13) represent the dis-
placements, total velocities and total accelerations in the singular
element, in terms of its nodal displacements, velocities, and acceler-
ations, q;, g, and s, respectively. Thus, if g, at p; is determined, then
B (and especially the Mode-I stress-intensity factor 1), can be de-
termined directly. Finally, it is noted that the foregoing equations
(4)—(6) and (11)—(13) represent the assumptions for the relevant field
variables in the singular element at any generic time ¢.

" Now we consider the problem of dynamic crack propagation within
a time increment At between two generic times ¢ and to.

Variational Principle for Dynamic Crack-Propagation
Analysis

In the following, we present a variational statement for dynamically
growing cracks in linear elastic solids. Consider two instants of time
t1and tg (= t1 + At) at which the variables of the problem are denoted
by superscripts 1 and 2, respectively. At time ¢1, let the volume of the
solid be V1, the external boundary of the solid where tractions T are
prescribed, be S,,1; and let 27 and 27 be, respectively, the two surfaces
of the crack. Also, let F7 be body forces per unit volume in the body
at time £o. We assume that between time t; and t9, the crack surfaces
change by AZ. The orientation of A2 to Z, can be determined by some
crack-growth direction criterion; however, for pure Mode-I, self-
similar growth is assumed. The newly created crack surfaces can be
traction-free, but, for the sake of generality, assume that new trac-
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Fig. 1 Schematic representation of the movement of the singular element

tions! T7* and T? are applied on the new crack-faces AZ+ and AZ-,
respectively; likewise, let new tractions T? act at S so. The principle
- of virtual work applied at £2 can be written as

0= f (o%0¢% + pli?ou?)dv
Ve

- f T2ouldo — f T2ulds
Vs Sog
- f o (TO* (bu)y*tds — f _ (T~ (oud)ds
z1 21

- f . Threudrds— [ (TH@ubds  G8)
Azt AZ- .

However, for the case of cracked structures, the changes in volume
and external surfaces between times t1 and o, due to a change in the
crack surface by AY alone, can be assumed to be negligible, i.e., V;
~ Vyand S;1 =~ S,e. It is important to note in equation (18) that
W = (W Jor 5ud)t = (5u?)] at the initial crack surfaces =7
and 27, nor, more importantly, for the newly created crack-faces AZ+
and A%~ during the time interval ¢5 — ¢; (=A¢). If similar virtual
displacements (6u:?), such that (Su?)t # (6u?)~ either on Z, or on AZ,
are considered in the statement of virtual work at time ¢, (prior to the
creation of new crack-faces AX); this statement can be written as

0= f (c}i6ek + piitdutydv — f Flouldo - Tlou?ds
Vg Va

Sa2
~ fLo@reutras - [ Th-eulds
21 21
= ., Ghvhreudrds— [ (Glph-@udds  (9)
wherein the approximations Vo 2 Vi; S,z 2 S,1'are used and v} is
a unit normal to 2. Adding equations (18) and (19), the virtual work

principle governing dynamic crack propagation between times ¢; and
to can be written as

fv (6} + ob)8ed + p(u? + aD)ou? — (F2 + FHoulldo
2
= [+ Thoutas + f L (T2 + TH*+(3u?)+ds
So2 >1 )
+f_(T,2+T})—(6u,?)‘ds+f (T? + ool (bu?)*ds
Z1 AZt ! ¢

+ f (T?+ olohy~(6ud)=ds (20)
A%

1 It is noted that the element basis functions assumed in equations (2) and
(3) satisfy only the traction-free conditions on the crack-face. It is, however,
easy to accommodate nonzero traction conditions on the crack-face by intro-
ducing appropriate additional terms in equations (2) and (3). These additional
terms are so chosen that they satisfy the nonzero crack-face traction conditions
either exactly or in an average sense.
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In the finite-element development, the domain V3 can be considered
to be broken into a singular element Vo, surrounding the crack tip (see
Fig. 1), and a number, N, of regular elements Vog, (n = 1. .. N) (thus
Vo= Vas+ 2 Varn); likewise S g0 = % Soorn. Also, as seen from Fig,
1, 2f = 24 + 2 o1p, Henceforth, for simplicity, we use symbols V,,
Van, Son, 27, and 2%, instead of Vo, Vogrp, Ssomn, 25, and 2%,
respectively. We now restrict our attention to the Mode-I case only,
i.e., when the applied loading is in a direction normal to the crack
plane and is symmetric with respect to the crack plane for all times
t. Thus, for the Mode-I case, using the previous notation, the virtual
work equation as applicable to a system of finite elements may be
written as

= [, W+ ohpse+ ptat + ahiut - @1+ Fyouias
n Rn

_j;q

n

(T2 + T})bulds — f L (T2 4 T})+5u%+ds]

Zn
+ fv {(o,zj+ o}) bek + p(? + al)du? — (F?+F,-‘)6u?]du
- fz+ (T?+ TH*oud ds

~ fA L, T2+ alwlytouttds =0 (21)

Assuming that crack-growth occurs between times t1 and tg (which
can be determined by an appropriate criterion, in the so-called “ap-
plication” calculations using the given material dynamic fracture
toughness as an input; or is known, a priori, in the so-called “gener-
ation phase,” i.e., in the case of simulation of known crack-tip time
history data), the singular element is translated, in the Mode-I case,
along the original crack axis, by an appropriate distance AZ from its

“location at time ¢, as shown in Fig, 1.

It is important to note that in the present procedure, this amount
AZ is not, in any way, related to the distance between any two adja-
cent finite-element nodes at time t1; as is the case with most common
finite-element methods which use the node-release technigue in the
simulation of dynamic crack propagation. As can be seen from Fig.
1, as the singular element is translated by A2 between t1 and ¢, the
nodal pattern of the surrounding regular elements also changes be-
tween ty and tg. It is to this readjusted finite-element mesh at time
to that the virtual work equation in equation (21) is understood to be
applied. However, it is also noted that only the nodes of the elements
immediately surrounding the singular element are readjusted due to
crack-growth of amount AZ between t9 and #1. Thus one has to obtain
data, such as displacements, velocities, and accelerations, at time ¢,
at the new nodes of the regular elements, which are indicated by solid
circles in Fig. 1. This data can be determined, using elementary in-
terpolation techniques, from the known data, at time t1, at the “old”
nodes at time £1, which are indicated by open circles in Fig, 1. The
details of these interpolation techniques are omitted for simplicity
and will be reported elsewhere. Thus one is in a position to know the
relevant data at time ¢, at new nodes and (hence new elements)
corresponding to the mesh in t9; and to assume the appropriate basis
functions for the relevant variables at time ¢ for the mesh at time 5,
as follows:

Known at ¢; for the Mesh at £

In Vgatui = Nai; €= Bqi; o1 = EBq (22-24)
up = Ngg; iy = Nag (25, 26)
InViiug = UiB o1 = UsBh — 01U1:6: (27, 28) -
iy = Uiy — 20101681 + 00y 81 (29)
=818 01=Pif; Ti=Ribs * (30-32)
Assumed at Time t; for the Mesh at Time ¢,
In Vgn: us = Nag; €2 = Bqy; 09 = EBq (33-35)
U = Nfg; g = Ny (36, 37)
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In Vyiug = Usfe; U2 = UsBa — vals B2 (38, 40)
iy = UgBs — 205, e B2 + 03U2¢:B0 (41)
€2= 8202 02=Pafs; To=Rofs (42-44)

where the familiar vector representations for displacements, strains,
stresses, and tractions, are employed as u, €, o and T, respectively. Also,
v1 and vg are velocities of the crack-tip at times 1 and 9, respectively,
and the eigenfunctions U; and Uy depend on v; and vy, respec-
tively.

Using' equations (22)-(44) in equation (21), the finite-element
equations, for arbitrary variations 6gs and 682 can be written, as
shown in Appendix B, as

Ven in Vo—V;

(45)

Kqs + miz = Qs + Q1 —Kqy —mé;  for

'S:‘ISZ + Q:qSZ + T;QSZ = Q; for Vi (46)
where K, m, Qz, O3, K, D;, and m; are defined in Appendix B, from
which it can be seen that the metrices K} and D are, unfortunately,
unsymmetric, while the others are all symmetric. In equation (45),
q2 and g are displacements and accelerations at ¢4 at nodes every-
where in and at the boundary of the region (Vg — Vy); whereas, gz,
Gs2, and 4y are displacements, velocities, and accelerations at 3 at
nodes along the boundary oV of the singular element. When equa-
tions (45), (46) are assembled, it can be seen that the resulting global
“stiffness” and “damping” (which, however, is not a physical damping
term) matrices have only a “small” degree of unsymmetry, confined
to those rows and columns corresponding to nodes around the singular
element. We can use the common time-integration schemes to inte-
grate equations (45)-(46). In particular, we use the Newmark’s
method which can be characterized by the approximations

42 = C1(qz — 1) — Col1 — Csti (47)
42 = Ca(qz — q1) — C541 — Cetix (48)
where .
At
C1= (6/vAt); Ca= (8/v) —1;,C3 = ("2—) [(8/v) ~ 2]
Cy=1/v(A8)% Cs = 1/(YAL); Co = (oy) — 1 (49)

where, in the present calculations, v = Yy, § = %, are used. With the
difference approximations in equations (47), (48), and similar ones
for g,2 and g,9, we reduce equations (45), (46) to

Kge=Q for Vo—V; (50)
Reqs2=Q, for V, (51)
K=K+ Cym (52)
where

@ =0+ Q1 — Ka1 — maz + m(Caar + Cst1 + Cetir)  (53)
Ks = K: + Cam; + CiD; (54)

@; = Q) + m; (C4q1 + Csés1 + Cotis1)
+ D (C19s1 + Cager + Catisr)  (55)

where K is symmetric; however, E(; is unsymmetric. When equations
(50), (51) are assembled, we obtain, the final algebraic equations

[k*]ia3) = {Q*) (56)

where the stiffness matrix in equation (56) is, in general, unsymmetric,
but the unsymmetry is confined mainly to the rows and columns
corresponding to nodes around V;. A rather simple technique of it-
erative solution of the foregoing equation, based on the decomposition
of the stiffness matrix into symmetric and skew-symmetric parts, as
below, was used. :

YolK* + K* Tliqz*P) = 10%) — [k — K*T]jgs"®= D}  (57)
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TYPE A : Moving singulor element
TYPE B : Distorting reqular element
TYPE C :Non-Distorting regular element
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EXAMPLE : v = 1000 m/sec
At = 0.2 psec
AZ= 0.2 mm

Fig. 2 Schematic representation of crack growth in a typical problem:
constant crack velocity v = 1000 m/s; At = 0.2 us; AZ = 0.2 mm; the mesh
of regular elements around the singular element is readjusted at ¢ = 2.0

us

for any pth-iteration. In all the solutions obtained, only two iterations
were found to adequate. Once q3.is computed from equation (56), the
solution for time £9 4+ At can be repeated, with the approximations
for the initial values 43 and g3 as

(68)
a3 = &) + Cq] + Catiy (59)

where Cy, Cs, Cgare defined earlier, and Cq7 = At (1 — §);and Cg = §At
(where a value of § = s is used presently).

Once the nodal displacements q3 (and hence the corresponding
displacements at the nodes of the singular element), at time ¢, are
computed from equation (57), the unknown parameters 8 (and hence
the dynamic stress-intensity factor $1) in the singular element can
be computed from equation (11).

Using equations (58) and (59) as initial data, the time-integration

45 = Calqz — q1] — Csq7 — Ced}

'between the time steps t2 and 3 (t2 + At) can be carried out and, thus

the process can be repeated for all subsequent time intervals. The
successive growth of the crack, for a representative prohlem is sche-
matically illustrated in Fig. 2.

From the example given in Fig. 2, it is seen that the singular element
(A) remains its shape at all times but the regular elements (B) in the
“immediate surrounding” of the singular element continually distort.
However, in the previous example, at t = 2.0 psec, elements B have
distorted sufficiently so that the use of isoparametric approximations
in these elements may introduce spurious numerical errors. For this
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reason, as typified by the foregoing example, at t = 2.0 us, the regular
elements B are readjusted as shown in Fig. 2. This involves a simple
reinterpolation of data, in “B”-type elements from { = 2.0 — 0 us to
t = 2.0 + 0 us, the details of which are omitted for brevity. Finite-
element calculations detailed earlier can be repeated for the read-
justed mesh at ¢t = 2.0 + 0 us until the B-type elements become so
distorted that another readjustment may be warranted. These mesh
readjustments were found to be easy to accomplish in the computer
coding based on the present approach.

Finally, it may be of interest to note that in the present singular
element, 19 eigenfunctions? for a propagating crack (see Appendix
A) were used along with a rigid body translation mode in x;-direction;
whereas, there are 18 degrees of freedom along the boundary p; of the
singular element. The regular elements were of the common 8-noded
isoparametric type.

It should be remarked that the problems dealt with in the present
paper are limited to the case of determining the stress-intensity factor
at the crack-tip which is propagating with a prescribed velocity-time
history. Thus the presently treated problem may be considered to fall
in the category of “generation phase calculations” in the sense defined
in [5]. The present procedure may be used to simulate the experi-
mentally determined crack-velocity-time history in test specimens,
such as the double-cantilever-beam (DCB) specimen [11], to deter-
mine the velocity-dependent dynamic fracture toughness. Using this
as input data, the problem of determining the crack-tip motion in
plane elastic bodies subject to Mode-I-type dynamic transient loading
may be treated. This second phase of research, which is the so-called
“application phase” in the sense defined in [5], is currently being
completed, and will be the basis of a forthcoming paper.

Finally, we wish to note that once the basic features of the procedure
based on the present moving singular element, with embedded
propagating-crack eigenfunctions, are well understood, the numerical
procedure can be further simplified. This can be accomplished, for
instance, by using the well-known distorted isoparametric elements
(the so-called “quarter-point elements”) [12] in place of the present
singular element. Even though the results from the use of a quarter-
point element are not expected to be as accurate as from the use of
the present singular element; such results, with a suitable calibration,
may be used in analyzing large-scale fast fracture in practical situa-
tions. The results from the use of a quarter-point element, and their
comparison with those reported in Part 2 of this paper (using the
present singular element), will be reported on shortly. Also, since it
is known [10] that the eigenfunctions for a crack propagating at con-
stant velocity differ significantly in their behavior from those for
stationary crack only at very high speeds (v ~ C,) of propagation, the
present procedure can be simplified, for practical purposes, by using
the stationary-crack eigenfunctions in the singular element. The re-
sults from this modification, are also to be reported shortly.

Closure

In this paper we have presented a new translating-singularity fi-
nite-element procedure, wherein use is made of analytical eigen-
functions for a two-dimensional crack whose tip propagates at a
constant velocity. The procedure is capable of modeling large-scale
fast crack propagation in finite two-dimensional bodies of arbitrary
shape. However, the type of problems considered is limited to the case
of determining the dynamic stress-intensity factor at the crack-tip
which is propagating with a prescribed velocity-time history.

Implementation of the present approach and numerical example
are discussed in an accompanying Part 2 of the paper.

2 The number of eigenfunctions plus the number of rigid modes must be
greater than or equal to the number of degrees of freedom at the boundary. A
study of the effect of the number of eigenfunctions used, on the results was
conducted, by varying this number from 17-25. The results varied only insig-

nificantly (i.e., less than 0.4 percerit), and the number of eigenfunctions was -

chosen to be 19 in all subsequent computations,
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APPENDIX A

Details of basis functions for the singular element, for the Mode-I
case, are given here. The eigenfunctions given here are solutions to
the following equations for wave potentials ® and ¥: ‘

229 29
11— @/C)—+—=0
{ a3 TR
with a similar equation for ¥ when Cjy is replaced by C,. For any
nonzero, constant, speed of propagation, the eigenfunctions can be
derived to be

(60)

UL = L uinfns Us = ¥ ubaBn; Gag = T GupabBn; o« B=1,2
(61-63)
where
ul, = F(as, ag)(n/2) + 1]{r"’2 cos (n61/2)
— (h)g(n)ry® cos (nb/2)}  (64)
Usn = F(as, ad)l(n/2) + 1]{—aqry? sin (n8,/2)
v + (W) g(n) e )ry? sin (na/2)]  (65)
o1in = Flay, aa)(n/2)[(n/2) + 1]{(2a% — a? + 1)rylev/2-11

X cos [((n/2) — 1)01] — g(n)ral®/D= W cos [((n/2) — 1)65]}  (66)

oo = Flas, aa)(n/2)[(n/2) + 1}{—(1 + a2)r,[/5=1)

X cos [((n/2) — 1)01] + g(n)ral®/D—1 cog [((n/2) — 1)B5]}  (67)
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= Fa, aq)(n/2)[(n/2) + 1]{=2aqr,/»-1)
X sin [((n/2) — 1)1] + (R + a2)/as]g(n)rel/»—1
X sin [((n/2) — 189}

012n

(68)

where A, u are the Lamé constants; Cy and Cs, respectively, the dila-
tational and shear wave speeds Cq = [(A + 2u)/p]Y2, Cs = (u/p)M2 and
the various parameters in the foregoing are defined as

ap=[1-@/C)Y; ai=[1- /()Y (69)
R v

F(aa, o5) = 3(2:’)1/2 4013&((11—-}-(?[:)- a?)?
(70)

gn) = dagas)/(1+ a?) whenn isodd

=[1+a? when n iseven (71).
rieff = £+ jogxn (72)
reei®? = £ + joxg (73)

when v = 0, the aforementioned functions can be reduced to the usual
Williams’ [22] eigenfunctions.

It is interesting to note that the stress field o.4(x,) [, B8, 1 =1, 2],
should in general case, satisfy the equations

2 2 2

o Ua o) ua_I_UZa Ue
ot2 dtat o2
However, it can be seen that the special eigenfunctions given in
(66)~(68), corresponding to the solution of equation (60), satisfy only
the equations

Oupp = p (74)

d%U,
2 =
Oap,g — PV g2 0
for all values of v; thus, when v = 0, the correspondingly reduced ei-
genfunctions in equations (66)—(68), which coincide with the well-
known Williams’ eigenfunction, needless to say, satisfy the static
equations of equilibrium, a.s4 = 0.

(75)

APPENDIX B

Details of Finite-Element Equation Development for
Dynamically Propagating Cracks

Upon substitution of equations (22)—(44), into (21), we obtain

]
+
=3

R
+
-4
""'i

0=% {[af KT+ ¢imT - @ - a)]é4,)

Bfm, - ozz + B7k5
+ 7ol + BTmT — @186 (76)

where

(77,78)

Q= f NTFodu + f NTTyds 79)
VRn Son

a; = f NTFdo + f NTT,ds (80)
VEn San .

Koo = f §7Podv + pv} f U7 (U2) exdv (81)

Vs Vs

K= f stedot oot ufwn)ads

s Vs
- f ulRids (82)
A

mee =p f Uluodo; ma=p f vlud (83)
Dus = —2p05 fv Ul (Us) edv (84)
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Ds1 = —2p0 ‘R Ug'(l_._h),gdl) (85)

Qs2=f l_.lng?zdv+f U Tods
Vs =+

oi= [ uffido+ [ uffids
Vs s+

(86)

Now, the conditions of “least-squares” matching of displacements,
velocities, and accelerations between the singular element and the
surrounding regular elements, i.e., equations (11)-(13) are used to
express B, ﬁg, and Bg in terms of the respective values qg2, §s2, 852 at
nodes along the boundary of V. Thus

51‘= AiGs1; B1 = A14s1 + Bigyy;

B1 = Ats1 + 2B16s1 + C10:1 (87)
Bo = Azaen; B2 = Astisy + Batiso;

B = Agtier + 2B2asa + Coasr (88)

We note that (A;, By, and €1) and (A, B; and C3) are dependent on

velocities of crack propagation v and v, respectively. When equations

(87), (88) are used, equation (76) can be rewritten as

0=2 i k" + 4im” — of + afk” + 4 m” - Q) oy}
n

+ [afCT+ a5 0T + almiT - 0;716q,2  (89)

where
K: = (7282 + ATD:2Bs + ATmsaCy (90)
D; = [A7Ds2A2 + 2ATm,2B2] (91)
m; = Af ms2 Ay (92)
Q= A7(—K;181 — Daif — meBh + Qo + Qs1) (93)

From equations (89), equations (45), (46) were derived. It can now be

seen that both the singular-element matrices K; and D} are unsym-

metric. The “damping” matrix D} is a result of the fact that the total

accelerations of a material point in the singular element depend on
2.

It may be of interst to note that in the evaluation of K9 of equation
(81), the integrand will have a singularity of the type (1/r1) and (1/r9).
Special numerical integration schemes to evaluate this domain inte-
gral of equation (81) directly, can be developed. Alternatively, one
can use the observation that, by definition, from equations (21) and
(76)

. okl
ko= f (Ghoch+ o Sgroudds (00

Using the divergence theorem, equation (94) can be rewritten as

95,2
fiviouids

BIK 158, = f Lo

02 2
+ fV ( U;J;+P(U2) vy 5u2dl) 95)

o£2
the second integral on the right-hand side of equation (95) vanishes
due to the special property of the eigenfunctions embedded in the
singular element, as explained in equation (75). Thus one can write

alternatively,
k5= f RiU, ds
ps

wherein, the integrand is nonsingular along p;, and no special inte-
gration schemes are necessary.
Likewise, it is seen that

BIkT58. = f (d} 5611 + p(v1)2

(96)

6u2)du
—f ouujéuzds 97)
Az
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once again, using the property, as given in equation (75), of the ei-
genfunctions a,-lj in V1, and using the divergence theorem, we write

BTkLo8: = j‘av ok v}duids — J‘Az alvldulds (98)

It can easily be seen that the foregoing equation can be simplified
to

BIKT68: = f chvloulds (99)
: ps
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The aforementioned simplification is possible because 0V, = ps + 21
+ AZ + S, where p; is the interface of the singular element with
surrounding regular elements, and 2, is assumed, without loss of
generality, to be free of any applied tractions at all times, and S92 is
the ligament ahead of the crack-tip (along x1-axis) in the singular
element, where, for Mode-I problems, T} = 0, and u} = 0. The
boundary integration as indicated by equation (99) to evaluate Kg;
may be more convenient than to directly apply equations (97) or
(98).
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Using the moving-singularity finite-element method described in Part 1 of this paper, sev-
eral problems of dynamic crack propagation in finite bodies have been analyzed. Discus-
sions of the effects of wave interactions on the dynamic stress-intensity factors are pre-
sented. The obtained numerical results are compared with the corresponding infinite do-
main solutions and other available numerical solutions for finite domains.

Introduction

In Part 1 of the present paper {1], a “moving singular-element”
procedure has been presented for the dynamic analysis of problems
of fast crack propagation in arbitrarily shaped finite bodies with linear
elastic material behavior. In this procedure a singular-element, within
which a large number of analytical eigenfunctions corresponding to
a propagating crack are used as basis functions for displacements, may
be translated by an arbitrary amount AY in each time increment At
of the numerical time-integration procedure. The moving singular-
element, within which the crack-tip has always a fixed location, retains
its shape at all times, while the mesh of “regular” (isoparametric) fi-
nite elements, surrounding the moving singular element, deforms
accordingly. An energy-consistent variational statement was devel-
oped, as a basis for the foregoing moving singularity finite-element
method of dynamic crack propagation analysis, It has been shown [1]
that the present procedure leads to a direct evaluation of the dynamic
stress-intensity factors.

In the present Part 2 of the paper several numerical studies of

stationary as well as propagating cracks in finite bodies, are presented.
These studies, in general, fall into the category of linear elastic dy-
namic fracture mechanics. These studies, in addition to illustrating
. the efficiency and accuracy of the present procedure, also shed light

on the effects of stress-wave interactions on the stress-intensity factors
for dynamically propagating cracks in finite bodies.

The presently considered examples include:

1 Static extension of a central crack in a panel from a nonzero
initial length.
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2 Self-similar, constant-velocity, propagation from a finite initial
length of a central crack in a finite plane body subject to an uniform,
time-independent, tensile stresses (normal to crack-axis) at the edges
(which problem, is analogous to that treated by Broberg [2], and Rose
(3, 4D. ’

3 A stationary central crack in a finite plane body subject, at its
edges, to a Mode-1 type uniformly distributed stress with a Heaviside
step-function time-dependence (analogous to the problems of Baker
[5], Sih, Embley, and Ravera [6], and Thau and Lu [7]).

4 A problem similar to that in Example 3 except that the crack-
tips remain stationary until a time ¢y, where upon they start propa-
gating at a constant speed (analogous to the problems studied by
Freund [8]).

5 Constant-velocity propagation of an edge-crack in a panel, with
the direction of propagation being parallel to the panel-edges on which
uniform displacements, normal to the edges, are prescribed (analogous
to the problem treated by Nilsson [9]). All the references [2-8] deal
with unbounded bodies, except [9] which deals with a finite height,
but infinite width strip. Thus the presently obtained results for finite
bodies are compared with those in [2-9] and the effects of finiteness
of the domains are discussed. Comparisons of the present results with
the numerical results of other investigators, where available, are also
presented and discussed.

In the following we present results for each of the problems just
cited. )

1 Static Crack Extension. To test the accuracy of the present
method of “moving singular-elements,” first a static problem of a
central-cracked square panel [2L (length) = 2W (width)], subjected
to uniform tension at edges parallel to the crack axis, was solved to
obtain the static stress-intensity factor as a function of the current
crack length, 2. Thus, in the finite-element development given in Part
1 of this paper [1], velocity and acceleration effects were ignored. The
eigenfunctions embedded in the singular-element reduce, when v =
0, to the well-known Williams’ eigenfunctions as shown in Appendix
A of [1]. Starting from an initial crack length value of 2o = 0.2W, the
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STATIC CRACK EXTENSION (CENTRAL CRACK)
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Fig. 1 Calculation of static K| factors in a center-cracked tension specimen
by the present “moving-singularity” method: AZ = 0.005; (1) indicates the
current crack length when the regular element are readjusted as shown in
Fig. 2 of [1]
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Fig. 2 Normalized dynamic stress-intensity tacto§ for a crack starting from
a finite initial length and propagating with constant velocity, wC; = 0.2

\

singularity element was successively translated (in Mode-I growth
sense), statically (with v = 0) in increments of AZ = 0.005W until a
final value of crack length 2 = 0.56W is reached. During the previous
series of calculations, the externally applied uniform tension was held
constant. At each current crack-length level, the stress-intensity factor
is computed directly as an unknown from the finite-element equa-
tions, as described in [1]. From the normalized stress-intensity factor
solutions shown in Fig. 1, it is seen that the present results agree ex-
cellently with those reported by Isida [10]. The normalized results
shown in Fig. 1 may be viewed as correction factors for static stress-
intensities, due to the finite size of the panel.

We note that the symbols (1) in Fig. 1, as well as in all the subse-
quent figures, denote the current crack length (2/W) where the reg-
ular elements surrounding the moving crack-element were readjusted
as described in Fig. 2 of [1].

2 Self-Similar, Constant Velocity, Crack-Propagation From
a Finite Initial Length. The problem is that of a centrally cracked
square panel (L = W = 40mm) with properties: u (shear modulus) =
2.94 X 10'® N/m? v (Poisson’s ratio) = 0.286; p (mass density) = 2.45
X 103 Kg/m3. A time-independent tensile stress was assumed to be
acting at the edges of the specimen parralel to the crack-axis. The
crack is assumed to open from an initial length (Zo/W) = 0.2 and to
grow symmetrically with a constant velocity, v. This problem may be
considered to be similar to that treated by Broberg [2] except that
Broberg treated an infinite body with a crack which opens from a zero
initial length. The problem was analyzed for four different values of
v, namely, (v/Cs) = 0.2, 0.4, 0.6, and 0.8, respectively, where the shear
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Fig. 3 Normalized dynamic stress-intensity factor, (v/C;) = 0.4
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Fig. 4 Normalized dynamic stress-intensity factors for the cases (v C;) =
0.6 and 0.8

wave speed for the present problem is C; = 3.4641 X 108 mm/sec. The
dilatational and surface (Rayleigh) wave speeds, Cq and Cg, respec-
tively, are such that (C4/Cs) = 1.8266, and (Cr/C,) = 0.9238.

In all the four considered cases of (v/C;) ratio, the increment of
crack growth in each step, AZ, was kept the same, at the value:
(AZ/W) = 0.005. Thus, in each of the considered (v/C;) cases, the time
integration step, At, changes according as: [(v-At)/W] = 0.005. The
finite-element mesh used, at the initial crack length in each of the four
cases, is shown in the inset of Fig. 3. In this figure, as well as in Figs.
1, 4, and 9, the singular-element near the crack-tip is identified by
hatched markings.

As noted in the review article by Rose [3], the dynamic stress-in-
tensity factor K may be expressed as the product of a velocity factor
k(v) and a static factor K*; thus

K = k(v) K* (L

The “static factor” K* depends on the current length of the crack, the
applied load, the history of crack extension, but not on the instanta-
neous crack speed. As also discussed in [3], K* is, in general, not equal
to the static stress-intensity factor, K, for a stationary crack of the
same length as the moving crack. The analytical expression for K*=
(in an infinite body subjected to uniform stress normal to the crack
axis), as a function of the current crack length is given by Eshelby [11]
and in {3], as

{

K*= = (2/m)/2 J;,Z ayy (X)/(Z — x)Y2 dx (2

where

oy (x) = o [x|/2 = TV x| > Zo @
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In equations (2) and (3), o is the applied tensile stress at infinity, 2%
is the initial crack length, and x,y are Cartesian coordinates centered
such that x = &+ 3(¢) denote the current crack-tips and y is normal
to crack-axis. Thus gy, (x) in equation (2) is the initial distribution
of stress along the axis of the crack, prior to its propagation. Eshelby’s
results for the integral in equation (2) is

K*" = [o@Za (/m @+ H E~FI/L+ ED12 (@)

where £ = (2 — 2¢)/Z; and E and F are the complete elliptic integrals
of the 2nd and 1st kind, respectively, with the modulus {£/(2 + £)]V/2.
On the other hand, the static-stress-intensity factor K;= for a crack
of length 22 in an infinite domain is

s = o(rZ)/2 (5)

Thus, in general, K*= < K;>. It is also noted that the equation (4) for
K*= ig valid only until the time that disturbances from one crack-tip
reach the other (moving) crack-tip. However, for the case of a crack
growing self-similarly from a zero initial length (Z¢ = 0) with a con-
stant velocity v, as in the problem studied by Broberg [2], disturbances
from one crack-tip influence at all times the other moving.crack-tip
if 20 < ¢g4, and K*= = K, at all times.

The normalized dynamic stress-intensity factor solution for the
present problem of a crack, in a finite square panel, propagating
self-similarly at a constant velocity (v/C;) = 0.2, is shown in Fig. 2.
Note that the normalization is such that a value of unity represents
the normalized stress-intensity factor K, for a crack of length 22 (2
= 3o + vt) in an infinite solid with time-independent remote tension
0. Also shown in Fig. (2) are

1 The finite-size correction factor F = K, //o (7w Z)1/2 for the static
stress-intensity factor K,/ in the present finite domain.

2 'The normalized static factor K*=/a¢(w2)'/2, as calculated from
equation (4). .

3 The veldcity factor k(v) for (v/Cs) = 0.2, as given by Brober,
[2]. The effect of the finiteness of the domain on K* may be accounted
for, approximately, by including a finite-size correction factor in the

N
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initial stress-distribution at Zg, in equation (3).l Thus it appears that
one may write, approximately, that K*/ = F(Zy)K*>. For the present
case of (Zo/W) = 0.2, the finite correction factor F(Zg) =~ 1.055, as
seen from Fig. 1.

Also marked in Fig. 2 are several specific- instants of time (or
equivalently, the corresponding values of 2) with the notations:

(a) D¢, S., and R, are, respectively, the times taken by the dila-
tational, shear, and Rayleigh waves to traverse one crack-width.

(b) D.D, (or R.R.) denotes D, (or R.) plus the time for the first
rescattered dilatational (or Rayleigh) waves to travel one crack-
width.

(c) DDy (or 8;Sy) denotes the time taken for the dilatational (or

shear) waves emanated by one crack-tip to be reflected by the nearest
free-boundary and reinteract with the crack-tip in question.
The foregoing times are calculated from the continuum relations for
the respective wave speeds. However, it should be borne in mind that
a “consistent-mass” representation is used in the present finite-ele-
ment method.

For the case of (v/C;) = 0.2, it is seen from Fig. 2 that the computed
normalized dynamic stress-intensity factor correlates excellently with
the values given by F(Zo)K*~k(v)/ (7 Z)Y/2 until roughly the time
denoted by R.. At longer times, i.e., at the times greater than R, and
DDy, the computed normalized dynamic K1(t) appears to correlate
excellently with the values given by [BK,/k(v)/o (7w Z)1/2] where 8 is
a constant, It is interesting to observe that, for the present problem,
this constant § appears to be equal to G(Zg.)/F(Zg.) where F(Zg,)
is the finite correction factor in the static stress intensity for a crack
of length equal to the current length, Zg., in a dynamic problem, at
which the event R, (as defined earlier), occurs; whereas, G (Zg.) is
likewise, the ratio [F(Zo)K*~/o(w2)'/2] at = = Zg,. The event R,
is seen to occur at the time, { = (220)/(Cr — v), and thus Zp, = Zo +
vt. Both i and (Zg./W) decrease as 2, decreases, for given Cg and v.
Thus, for smaller values of Z¢ (and/or smaller values of v), the ratios
F(Zr.), G(Zg.), and hence 8 tend to a value of unity. Thus, for cracks
propagating from initial lengths such that (Zo/W) <« 1, it appears that
at the times greater than R, and D.D; and/or after the crack has
grown dynamically to a few times its initial length, the static factor
K*I approaches the static-stress-intensity factor for the current crack
length in the finite body, namely, K,/.

In connection with the presently computed results shown in Fig.
2, it should be noted that the crack velocity, v, was taken to be zero
at the initial crack length Zy. It is assumed that the crack-tip accel-
erates to a velocity, (v/C;) = 0.2, during the first time increment, At.
The convergence of the present numerical results to the analytically
predicted ones, at small times, ¢ << D, in the present case of (v/Cs)
= (.2, could have been studied by altering this time step At in which
the crack-tip accelerates from (v/C;) = 0 to {v/Cs) = 0.2. However,
this was not attempted.

The computed normalized dynamic stress-intensity factor solution
for the case (v/Cy) = 0.4 is shown in Fig. 3, wherein the times D,, S,
D.Dy, and R, as defined earlier, are also marked. Once again, it is seen
that until significant interaction of the waves from the other crack-tip
and the free surface takes place (i.e., for time ¢ < R, or D.Dy), the
computed dynamic K-factor for the finite body correlates excellently
with the value predicted by the approximate function: [K*/k(v)].

Finally, the results for the cases (v/C,) = 0.6 and 0.8, respectively,
are shown in Fig. 4, wherein only the times D,, and D Dy are also
marked. The values of R, and S, are greater than the time for which
the solution is obtained. Once again, it is seen that the computed
dynamic K-factor correlates well with the approximate prediction,
K*/k(v). Moreover, the convergence of the computed solution, to that
analytically predicted, is slow, at these higher crack-speeds. A possible
reason for this may be the initial conditions at 2 used in the present
study, as explained earlier.

The crack-mouth opening displacements at various instants of time
(or equivalently, at corresponding crack-lengths), for the case of (v/Cs)
= ().4, are shown in Fig. 5. Also shown in Fig. 5 are the corresponding
analytical results by Broberg [2], who considers constant velocity
crack-propagation starting from a zero initial crack-length. An ex-
cellent correlation between the present results and those of [2] is
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Fig. 6 Time-dependence of dynamic stress-intensity factor for a center-
cracked rectangular plate subjected to Heaviside step-function normal
stress

noted. A similar correlation was also noted for the other considered"

cases of (v/Cs) ratio, but are not shown here.

(3) Stress-Wave Loading of a Stationary Crack in a Finite
Body. The problem is that of a rectangular panel [(W/L) = 2.6] with
a centrally located crack of length (Zo/W) = (3/13). The material
properties are taken to be: i (shear modulus) = 2.94 X 10 N/m?2; »
= 0.286; and p = 2.45 X 10% kg/m3. Uniformly distributed uniaxial
tensile stresses, with a Heaviside step-function time-dependence, were
assumed to act at the edges of the panel parallel to the crack-axis. The
crack is assumed to be stationary under the action of this time-de-
pendent loading.

Due to symmetry, only a quadrant of the panel is modeled by finite
elements, as shown in Fig. 6. Also marked in Fig. 6 are specific instants
of time, calculated.by using continuum wave speeds, with the nota-
tions:

(a) Dy, is the time taken by the dilatational waves to travel the
distance from the boundary, where time-dependent tractions are
applied, to the crack-tip.

(b) DmD., DS, and D, R, are, respectively, equal to D,, plus
the time taken by the first scattered dilational, shear, and Raleigh
waves to reach from one crack-tip to the other.

(¢} DpnD.D, is equal to D,,D. plus the time taken by the first
rescattered dilatational wave to travel one crack-width.

(d) DpD.Dyisequal to Dy, plus the time taken by the scattered
longitudinal waves to travel from the crack-tip to the nearest free
boundary surface and back to the same crack-tip.

(e) DpnDy, is the time taken by the dilational waves to travel the
length of the bar, reflect from the boundary surface on the opposite
and return back to the crack-tip.

() DwDwD., DyDmS, and D,,D, R, are, respectively, equal to
Dp.Dy, plus the time for the rescattered dilatational, shear, and sur-
face waves to travel one crack-width.

The presently computed normalized dynamic stress-intensity factor
solution is shown in Fig. 6. Also shown in Fig. 6 are the analytical so-
lutions by Baker [5], Sih, Embley, and Ravera [6], for infinite domains,
and the numerical solution by Aoki, et al. {12], for a finite domain
identical to the one considered here. During the time interval D, to
DD,, when no wave interaction takes place, the results for the
present problem must agree with the results of Baker [5] and this can
be seen to be the case with the present results. The solution at longer
times is found to be in good agreement with that of Sih, et al. [6]. It
is noted that the overshoot in the k-factor at the time instant D,,R,.
in the present solution, as compared to the solution by Sih, et al. [6],
is analogous to that in a recent solution by Kim [13]. It is also seen
from Fig. 6, that the present solution is higher than that of Aoki, et

al. [12], at all times. However, the solution of Aoki, et al., appears to

be lower than that by Baker [5] even for times less than D,;,D,.
Finally, it is of interest to note that even though the time for the
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Fig. 7 Time-dependence of dynamic slress-lnleﬁsity factor for a center-
cracked rectangular plate subject to a step-function normal stress; crack
remains stationary until {, and then propagates with a constant velocity

longitudinal wave to arrive from the loaded boundary to the crack,
as computed from continuum wave speeds, is D,, as marked in Fig.
6, a nonzero stress intensity is observed at the crack-tip even at times
lower than D,, in the finite-element solution. This is due to the in-
ertia-coupling that exists between the finite-element nodes (especially
those of the singular-element) when a consistent mass-matrix, as in
the present, is used.

(4) Crack-Propagation at Constant Speed: Stress-Wave
Loading. We consider the problem wherein the geometry, material
properties and the time-dependent loading are all identical to those
described under Case (iii) in the foregoing. In this problem, the crack
with an initial length of (Zo/W) = 3/13 remains stationary until a time
to = 4.4 us and then propagates with a constant velocity v = 1000
m/sec. The finite-element breakdown at the initial crack length, 2,
is identical to that in Fig. 6. In modeling the crack propagation, the
regular elements are periodically readjusted as indicated in Fig. 2 of
[1]. The instants of time (or equivalently the value of Z) at which these
readjustments are done, are marked, by (1) in Fig. 7.

Also marked in Fig. 7 are several specific instants of time, calculated
by using continuum wave speeds, with the notations:

(a) D, is the time for the dilatational waves to travel from the
boundary, where a Heaviside step function tension is applied, to the
stationary crack-tip.

(b) DmD., D, S. and DR, are, respectively, equal to D, plus
the time taken by the dilatational, shear, and surface waves first
scattered by the stationary crack-tip to reach the other crack-tip.

(¢) D, S;, R. are, respectively, equal to to (when the crack-tips
begin to propagate) plus the time taken by the dilatational, shear, and
surface waves emanated by crack-tip at tg to reach the other crack-
tip.

(d) DpDy, is the time taken by the longitudinal waves to travel
the length of the panel to the opposite side and return to a (moving)
crack-tip.

(e) DDy, is the time taken for the dllatatlonal waves emanating
from a crack-tip at ¢o travel to the nearest boundary (which in this
case is the one where tractions are applied) and back to the same
crack-tip.

(A DpD.Dyis equal to Dm plus the time taken by the dilatational
waves first scattered by the stationary crack-tip to travel to the nearest
free-boundary and back to the same crack-tip, which is now propa-
gating.

(g) DDy is equal to to plus the time taken by the dilatational
waves emanating from the crack-tip at ¢ to travel to the nearest free
boundary and back to the same crack-tip.

The presently computed results for the dependence of the dynamic
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Fig. 8 Crack-face profiles for a stationary as well as propagating crack at
various times

stress-intensity factor on time are indicated in Fig. 7, along with the
comparison (analytical) results by Freund [8] and Baker [5], and the
(numerical) results by Aoki, et al. [12]. As noted earlier, the correlation
of the present stationary crack results with those of Baker [5], until
wave interaction takes place, is excellent. In the case when the crack
propagates suddenly at the time to (= 4.4 us in Fig. 7), the infinite
domain results by Freund [8] are seen to correlate excellently with
the present results, until significant interaction of waves emanating
from one crack-tip with the other crack-tip takes place. It is noted that
in [8] the crack-tip velocity is assumed to change from zero to “v” in
zero time, whereas, in the present numerical study, this transition is
assumed to take place over a finite time-step At. For a closer com-
parison with the results of [8], it would be interesting to vary the size
of At over which the aforementioned transition occurs; but this is not
pursued in the present study. It is seen that the comparison results
by Aoki, et al. [12], are somewhat lower than those in [8] even until
the time that the solution in [8] may be considered valid. Further, the
results in [12] are higher than the present, after this time.

The crack-face opening displacements at various time intervals for
the propagating crack, as well as similar results at corresponding times
for a stationary crack are shown in Fig. 8. It is interesting to note that
at sufficient distances away from the propagating crack-tip, the
crack-mouth opening displacements are nearly the same for the sta-
tionary as well as propagating cracks.

(5) Constant Velocity Crack-Propagation in a Strip With
Prescribed Boundary Displacements. The problem considered
is that of the constant velocity propagation of an edge crack in a square
sheet whose edges parrallel to the direction of crack-propagation are
subject to uniform displacements g in the direction normal to that
of crack-propagation. This problem is analogous to that treated by
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Nilsson [9] who obtained an analytical solution for the steady-state
stress-intensity factor for the constant velocity propagation of
semi-infinite crack in a finite-height (normal to crack-axis), infi-
nite-width, strip.

In the present problem the following geometry and material pa-
rameters are used: (2h/W) = 1.0 (see inset of Fig. 9), » = 0.286; u =
2.94 X 101° N/m2, and p = 2.45 X 103 Kg/m3. The crack is assumed
to start to propagate from an initial length of (Zo/h) = 0.4.

Three different cases of constant velocity propagation, (v/Cs) =
0.2; 0.40, and 0.60, respectively, are considered.

The results for the dynamic stress-intensity factor for the case.
(v/Cs) = 0.2 are shown in Fig. 9 along with the analytical solutions by
Nilsson [9]. The results in Fig. 9 are normalized with respect to the
plane-strain, static (v = 0) stress-intensity factor for the semi-infinite
crack in a finite-height, infinite-width strip, namely, K, = = ii2E/h12(1
— v2). Also shown in Fig. 9 are certain specific instants of time, with
the notations:

(a) D.Dys1, ScSp, are, respectively, the times taken by the dila-
tional, and shear waves, emanated by the moving crack-tip to be re-
flected from the nearest free-boundary and travel back to the crack-
tip. .

(6)  D.Dys is the time taken by the dilatational waves emanated
from the crack-tip to be reflected by the second free-boundary (x =
W) and travel back to the crack-tip.

It is seen from Fig. 9 that, the correlation between the present and
Nilsson’s [9] results is excellent. It may be of interest to note that in
an analysis using the “node-release” technique, Malluck and King
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[14] found, for the case of (v/C;) = 0.325, that their computed results
for the energy-release rate for a similar problem were about 20% lower
than that predicted by Nilsson [9], as steady-state conditions are
reached. This may indicate the relative efficiency of the present nu-
merical method as compared to the familiar “node-release” tech-
niques.

Finally the computed results for the cases (v/Cs) = 0.4 and 0.6 are
shown in Figs. 10 and 11, respectively. The times noted in Figs. 10 and
11 have the same meanings on those indicated in Fig. 9. From Figs.
10 and 11 it is once again seen that the present results agree excellently
with those in [9].

Closure

The procedure of a moving singular element, within which a large
number of eigenfunctions for a propagating crack are embedded, has
been applied to study several problems of dynamic crack propagation
in finite bodies. The numerical results have been found to correlate
well with the available analytical solutions, for corresponding prob-
lems in infinite domains, during the time for which these analytical
solutions may be considered as valid. The computed solutions beyond
these times, and the knowledge of the times involved for wave-in-
teraction in finite bodies, indicate both qualitatively and quantita-
tively the effects of stress-wave interactions on dynamic stress-in-
tensity factors for cracks propagating in finite bodies.

The use of the presented numerical procedure in the simulation of

experimental data from dynamic fracture test specimens, as well as.

582 / VOL. 47, SEPTEMBER 1980

in predicting crack-propagation history in dynamically loaded cracked
bodies, are the subjects of a forthcoming paper.
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Asymptotic Evaluation of a
Combined Stress-Intensity Factor
for a Pressurized Cylindrical Shell
Containing a Longitudinal Crack

Sanders’ path-independent energy-release-rate integral I for a cracked shallow shell is
used to compute the asymptotic form of the combined stress-intensity factor for a pressur-
1zed elastically isotropic cylindrical shell containing a longitudinal crack. The combined
stress-intensity factor is expressible in terms of the conventional stretching and bending
stress-intensity factors and is a function of Poisson’s ratio v and a dimensionless crack

length . When X is small the shell is nearly flat and when ) is large the shell is very thin.
Asymptotic formulas for I when X is small or large are obtained. A numerical solution for
A=0(1)is also obtained.’

Introduction

Nicholson and Simmonds [1] have specialized Sanders’ path-in-
dependent, energy-release-rate integral I [2] to an arbitrarily loaded
elastically isotropic shallow shell containing a stress-free void. I can
be interpreted physically as the flow of potential energy from the shell
to the void (to create new surface area if the void expands). When the
void is a crack one form of [ is expressible in terms of the conventional
bending and stretching stress-intensity factors, B and S, respectively.
Another form reduces to an integral along the crack. Both forms of
I are nondimensional and depend on Poisson’s ratio » and the di-
mensionless crack length

c

VER'
where c is the crack half length, h is the shell thickness, and R is the
minimum radius of curvature,

To interpret A we hold ¢ fixed. Thus A « 1 implies the shell is nearly
flat and A > 1 implies the shell is very thin.

In [1] a bent cylindrical shell with a longitudinal crack was analyzed
and a combined stress-intensity factor C(\, ») calculated for 0 < A
< =, In this paper we will use the path-independent integral I to de-
termine C (A, ») for a pressurized cylindrical shell containing a finite

X = E (1- ,,2)]1/4
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length crack. The ratio ¢/R is assumed small so that shallow shell
theory applies. For symmetrical stress and displacement fields the
combined stress-intensity factor is related to I and S and B by

B2\, v)

= (2 = G2 I —
1O n)f2m = G20, 9) = S*0, ) + =0

(1)
Thus the determination of I yields C(A, »).

Our analysis is split into three parts. First, for A « 1, a perturbation
expansion in X is obtained for C. For moderate values of A, 0 < A
< 40, we must turn to numerical methods. Finally, for A > 1, an as-
ymptotic solution is given.

Sanders’ Energy-Release-Rate Integral

The derivation and nondimensionalization of I for linear shallow
shells is contained in [1] and will not be repeated here. For a cylindrical
shell of radius R under internal pressure p and containing a crack of
length 2¢, the nondimensional governing equations are

Nagg=0 (2a)
Magap + 4N 2,0sNog + P) = 0, (2b)
Mung + upa) — AN22,05w = (1 4+ V)N g — v8,8N 4, (2¢)
Mag = —(1 = 2)w,up — V00, yy, 2d)
where
2,11=0, 2,12=0, z,9=1 3)°

Since the governing equations are linear, the analysis of the cracked
shell reduces to the analysis of the uncracked shell and the analysis
of a shell with a crack subject to stresses that are equal and opposite
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to those in the uncracked shell, the so-cailed residual problem. The
nonzero stresses and displacements for the uncracked shell subject
to internal pressure are

Np® =1, u®°=-», w°=—(4N)7L 4)

Thus, noting equations (45,) (46), (76)-(81) of {1}, we obtain
1
I=27C20\ ) =} f [2us + ] (x)dx, ®)
-1
where a dot denotes differentiation with respect to A and the brackets

denote the jump across the crack of the enclosed quantity, i.e.,

[f1x) = lim {f(x, €} — f(x, —€)} as

e 0.

The Residual Problem
The residual boundary-value problem is given by equations (2)-(3)
with boundary conditions

Noa(xy, £0) = ~1, Jx1] <1 (6a)

No(xy, £0) =0, |z =1 (6b)

w,2a(x1, % 0) + v, 11(x1, £ 0) = 0, [xi] <1 (6¢)

(2 = Vw,ra(xy, £0) + wye(x, £0) =0, |z <1. (6d)

Furthermore all stresses must vanish as r2 = x3% + x92 — ©. We have

expressed the moment boundary conditions in terms of the midsur-
face normal displacement w.

Equations (2), (3), and (6) can be reduced to singular integral
equations using the results of [3]. Thus we obtain

1
jC- Hy(Ax — NF1(6:N, v)de
-1
1
+ f HysOx — M3 0)Folts\, 0)dt = ~1, (7)
-1
1
f HisOx — A6 0)Fu(E; N, v)dt
-1

: .
+ f Hos(Ax = A 0)Fa(t; N, v)dt =0, (8)
-1
where |x| <1, f denotes the Cauchy principle value,
X1
Fi= j; [N1oldt, Fo= —[w,12] 9

and the H;; are given by equations (63)-(65) of [1].
As pointed out in [1] the solutions of (5) and (6) have the form

Fa(t; >\y V) = (1 - tz)l/ZGa(t; }\y V)y

el <1, A=0, a=1,2, (10)
where the G, are continuous for te{—1, 1]. |
I'in Terms of the Unknown F,
For a cylindrical shell one can show that
uy12 = Nig + vNigy, (11)
YHu12 + ug1) = 1+ »)Nys. (12)

Evaluating the jump across the crack and using the boundary con-
ditions (6) yields

[w1,12] = [N112l, (13)
[yl + fuza] = 0. (14)
Differentiating (14) we obtain
[wio1] + [ua11] = 0. (15)
Thus
[ug,11] = =[N11,2]- (16)

Integrating (16) with respect to x1, we obtain
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CiAn,.3)

30

2.0 1+

CiX,.3)

10
A —
[e] 1 1 1 1 1 1 1 11 [ P
1 2 3 5 1 2 3 5 10 20 40
Fig. 1 Combined stress-intensity factor versus A
. ¥
fuad == ™ Wusgldt = =FiGei ). )
Hence

1
j: lu e = - j: 1t[u2,1]dt= f_ 1 tF(t e (18)

and (5) becomes

1 o ;
== ‘L HRF (6 X, v) + APy (E; A, »)lde.

5 19)

Approximate Solutions of the Integral Equations

The integral equations (7) and (8) need to be solved to determine
I. We obtain approximate solutions for the ranges A < 1,0 < \ <40,
and A > 1.

For A «< 1 a perturbation solution may be obtained. Following the
same procedure spelled out in detail in [3 or 4], we find that

4x C b
Fl(x;)\,l/)':m[1+1€)\2+...]. (20)
Hence
5
COMp)=14—N2+4.... 21
A\, ») 16 21)

For A = 0(1) we have obtained numerical solutions for (7) and (8)
by noting (10) and using the Lobatto-Chebyshev integration method
of Theocaris and Ioakimidis [5]. The results for A up to 40 (a signifi-
cant improvement in the range of \ over Copley and Sanders’ nu-
merical solutions [6]) are shown in Fig. 1. There » = 0.3.

For A > 1 Bradley has obtained an asymptotic solution to (7) and
(8). The details may be found in [4]. The method used there is due to
Latta and was also used in the analysis of a bent cylindrical shell [7].
From [4]

Fi(x; N, v) ~ BA32(1 = x2)V4[4x cos O(x)
- 2D sin 8(x)] as

>\-—>oo’

(22)
where

_8/2(1+V?)

B )
3vr

4. J1+4/1++/2
D=;‘“{T’
1 [L/1+V3) [i-x
H(x)—ﬂ_lnl ~21/4 Jlnll-l-x].

To obtain the asymptotic form of I as A — «~ we replace F'y in (19)
by the right-hand side of (22) and integrate. We find

I ~20.7590\%/2, (23)
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Thus, from (1),
C(\, v) ~ 18177 X\3/4  ag (24)

Fig. 1is a graph of C(\, 0.3) and A~3/4C(), 0.3) as determined from
a numerical solution of the exact integral equations (7) and (8) and
as determined from the small and large A asymptotic solutions (21)
and (24).

A —> o,

Conclusion

We have used Sanders’ path-independent energy-release rate in-
tegral, as derived for a cracked shallow shell by Nicholson and Sim-
monds (1], to compute the asymptotic behavior of a combined
stress-intensity factor for a pressurized cylindrical shell containing
a longitudinal crack. This result along with that of [1] extends (and
completes) the work of Copley and Sanders|6].
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E. Reissner

On the Influence of a Rigid Circular
Inclusion on the Twisting and
Shearing of a Shallow Spherical
Shell

Known results for plates with rigid inclusions are complemented by explicit asymptotic
solutions of the corresponding problems for sufficiently thin spherical shells. An impor-
tant element of the analysis is recognition of the fact that in addition to the distinction
between interior.and edge zone solution contributions there is a significant distinction
between near-field and far-field behavior of the interior solution, with the nature of this
distinction depending on the nature of the boundary conditions which are prescribed. In
the event that near-field behavior is of the membrane type and far-field behavior of the
inextensional bending type, or vice versa, much higher stress concentrations occur than
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without such change in interior solution behavior.

Introduction

In what follows we complement a recent analysis of the effect of a
small circular hole in a shallow spherical shell on the states of stress
which without the hole would be states of uniform transverse twisting
[3] or of uniform membrane shear [4], by a consideration of the related
problems which are given upon assuming a rigid inclusion in place of
the circular hole. We find, as before, that the solution of the problems
as stated depends on the value of Possion’s ratio and on the value of
the dimensionless parameter a2/Rh, where a is the radius of the in-
clusion, R the radius of the shell, and 2 the wall thickness of the shell.
When a?/Rh = 0 the results for the two problems are well-known
classical results of the theory of elastic plates. While our formulation
shows the possibility of an explicit closed-form solution for all values
of a2/Rh, as previously observed for the problem of the circular hole,
we are limiting ourselves here to determine the solution for values of
a?/Rh which are large enough to permit the application of an as-
ymptotic procedure. The essence of this procedure, for a class of
thin-shell problems which include the present two problems, consists
of the successive determination of interior and edge zone solution
contributions (1, 2].

Our earlier work for the problem of the shell with circular hole led
to results which it was easy to consider as reasonable for the problem

1 Supported by the Office of Naval Research.
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of transverse twisting, but which seemed somewhat paradoxical for
the problem of the effect of the hole on the state of uniform membrane
shear. It is one of the remarkable conclusions of the present analysis
that an exactly opposite state of affairs prevails for the case of the shell
with rigid circular inclusion. To wit, we now obtain a “reasonable”
result for the membrane shear problem and a “paradoxical” result
for the transverse twisting problem.

A rationalization of the occurrence of paradoxical results as indi-
cated, which emerged in the course of the present analysis, is as fol-
lows. Our reasonable results are associated with interior solution
contributions which are of the inextensional-bending type or of the
membrane-theory type throughout the “interior” domain. Qur par-
adoxical results are associated with interior solution contributions
which change character, from inextensional-bending behavior in a
far-field domain, to membrane-theory behavior in a near-field do-
main, or vice versa, because of a conflict between the effects of the
boundary conditions at infinity and the effects of the boundary con-
ditions at the edge of the circular hole or inclusion.

Differential Equations and Boundary Conditions

The middle surface equation of the shallow spherical shell, with
reference to base plane polar coordinates r and 8, is givenby 2 = H
— r2/2R. The basic differential equations, for a uniform isotropic shell,
are of the form

RBV?V2K — V2w =0, RDV?*V?w+ V2K = 0. 1)

In this, V2= ( )+ r=1( ), +r~2( ) g4, D and 1/B are bending and
stretching stiffness factors, and w and K are transverse displacement
and Airy’s stress function, respectively.

In what follows, use is made of the relations

N, =‘r_1K,r + r_2K,66; Ngg = K,rr: (2)

Transactions of the ASME
E

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subjectctco)%érl\l/lg_nitcgslegosrocg;}/yﬁg%{\;ﬂsee http://www.asme.org/terms/Terms_Use.cfm



and

M= ~Dwr + v(r~'w, + r=2w )], @
3

Mg = —D[r~Tw, + r=2w g + vw,],

for normal stress resultants and couples, and of the fact that the so-
lutions of (1) may be written in the form

w=¢+x, K=y-RDV, 4)

where ¢ and Y are harmonic functions and x is subject to the equation
V4x + My = 0 with A4 = 1/R2BD.

We furthermore need to make use of expressions for tangential
displacement components u, and ug which have earlier been shown
[2] to be expressible, except for terms which do not arise for the
problems considered in what follows, in the form

ur=—(1+v)BK,— R~ [ ¢dr,
up=—(1+ v)Br-K s+ rR=" f (f ¢ 4dr)r=2dr,
It is important to observe that equations (5) are derived subject to the
restriction R < « and that the transition to the corresponding ex-
pressions for the limiting case B = « is of a subtle nature.

The boundary conditions at infinity are for the problem of
transverse twisting due to concentrated corner forces + P

Pr2sin 20

6))

— oo —_— K— 0’ 6
’ T ©

and for the problem of membrane shear
r— oo w— 0, —1%8r2 sin 20. )]

The boundary conditions corresponding to a rigid,insert of radius
a are the four conditions

r=a; W=wy=U =uy=0. (8)

Closed-Form Solutions
We have, as for the corresponding two problems of the shell with
a circular hole, as expressions for w and K,
Pa? sin 20(1 r? Po?sin20  a?

e T

2(1 - v)D\2 a2

for transverse twisting, and

B 2 2 2!
¢=Sa2\/:c = sin 26, Y = —Sa? (——+c2“)sm20 (10)
D r2 2a2 r2

9

for the problem of membrane shear, with the function x for these two
cases being of the form

Pa?sin 26
= — —————(cg kera A\r + ¢4 keip A 11
X 20 — D (c3 kera Ar + ¢4 keip Ar) (11)
and
B . .
x = Sa? l_) (cs kerg Ar + ¢4 keip Ar) sin 20, (12)
respectively.

Equations (9)-(12) are such that the boundary conditions at infinity
are automatically satisfied, with the four remaining conditions for
r = a serving to determine the values of the four constants of inte-
gration cp. " v

Associated with these solutions we have as reference values for
stress couples and stress resultants

Myp(w, 4m) =3P, Nyl dm) =S (13)

and we are interested, in particular, in the values of stress-concen-
tration factors which are, for the problem of the rigid insert

M,.(a, i) hN.(a, {r)
Ry =—""—*" g, =—T
T " 3P 9
and '
N,,(a, %W) 6Mrr(a: i"r)
Ry = ——= | kp = —————, 15
n S b S (15)
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respectively. For the present problems, just as for the corresponding
problems of the shell with a circular hole, these stress-concentration
factors depend on Poisson’s ratio and on a shell parameter ¢ = Aa
which, for the case of a homogeneous shell, with D = ER3/12(1 - »%)
and B = 1/Eh, is of the form u = v/12(1 — v2) a//Eh .

Known classical results for the values of k,, and kp concern the case
1 = 0 of a flat plate. The results for u = 0 are

ky=2(1=v)"Y  kn=0, (16)
for the problem of transverse (plate) twisting, and
n=8B8=»"1, k=0 (17

for the problem of membrane (plane stress) shearing.

In what follows we complement these results for u = 0 by asymp-
totic results, which apply when the parameter u is sufficiently large
compared to unity, say larger than about ten, with the determination
of results in the intermediate range depending on the evaluation of
the exact solution, in accordance with equations (8)-(12).

Asymptotic Solution
The boundary conditions (8) are now written in the form

d+x=0, ¢,+xr=0, (18)
— (1 +»)BRY, — A"4V),, +  ¢pdr =0 (19)

—(1 +v)BRr~W, ~ A\~ ~1(V%x) 4
+r f (feedr)r=2dr=10, (20)

forr =a.
In order to derive an asymptotic solution for sufficiently large values
of p = Aa we take account of the order-of-magnitude relations

¢, =0(a"1¢), S ¢dr = 0(ag), xr=0Qx), (21)
and we consider that the first of the two relations in (18) implies that,
necessarily,

x = 0(¢). (22)

A use of (21) and (22) in (19) and (20) indicates that the terms with
x in these equations are of relative order ! and u~2, respectively,
compared to the terms with ¢. Accordingly, we may, for sufficiently
large values of y, omit these terms and have then that the interior
solution contributions ¢ and Y may be determined from the abbre-
viated tangential displacement boundary conditions

Sodr _ fd)odr _
R f =0
forr =a.

Having ¢ we subsequently determine x by means of two boundary
conditions which follow from the transverse displacement conditions
(18), upon consideration of (22) and (21), in the form

1+ By, - =0, 1+ )B (23)

X=-—¢, X, =0, (24)
forr = a.
Having ¢, ¥, and x we find stress resultants and couples from (2)

and (8), in conjunction with (4) in the asymptotic form

v2
Nep= 22 0 pp 0 oy, = kD@0, (25)
M., =-D [¢rr+"¢r g;ﬁ'q"')(,rr]»
(26)
Mgy = —D[ ¢r”” + v+ uxrr}
r

In this it is consistent to use as expression for x,

x=keXD( \/_)(c;wos}\ 7

where k = —Pa?/2(1 — »)D for the problem of twisting, and k& =
Sa?4/B/D for the problem of shearing.
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Results for the Problem of Transverse Twisting
An introduction of ¢ and  as given in (9) into the inferior solution
boundary conditions (23) reduces these to the form

1+ 1 1+p 1
2 P C2+"_‘Cl=0, 2 2 +—+Cl=0, (28)
I 6 u 6
so that
0 L (29)
c1 =0, cg = —— .
! 2T 214

Therewith, the two edge zone solution boundary conditions (24)
give

cg=Cq= % (30)
and then
Pa?sin 26 r? Pa?u?sin 20 a2
= = 31
P T H 0D a? [y Vz)\/DB r2 (81)
Pa sin 26 r—a —a
= e [~ AN foos A e + sin A ——
T - P ( NG ) (ms V3 PN )
(32)

With (31) we obtain from equations (25) and (26) for the distribu-
tion of stress outside the edge zone, that is in the interior domain

M,i = ~Mgyi = 3 P sin 26, (33)

Pu?sin20 a*
4(1 — v2)y/DB r*
Inside the edge zone these expressions are complemented by the
contribution of the x-function, as given by (32). We limit ourselves
here to the calculation of the edge values of resultants and couples at

the most highly stressed location, that is for r = @ and 8 = w/4.
We find from (25) that except for terms of relative order 1/u,

Npi= ~Nggi = (34)

rri(a;iﬂ'): (35)

Nrr(a;i'ﬂ') =N,
Nygla,im) = vNpi(a,dm).

(36)

Kquation (26) gives for the edge values of M,, and Mgy, except for
terms of relative order 1/u?,
P u2
M 80 (a 7T) =yV— K

7r) P p?
4 41+’ 4 41+v

M, (a (37)

We conclude from equations (33) and (34) that it is appropriate to
distinguish two subdomains of the interior domain, which may be
designated as the “far field” and the “near field.” The far-field solu-
tion, which is valid when u << r?/a?, is an inextensional bending so-
lution, while the near-field solution, which holds when r?/a? <« p, is
a membrane solution, with the bending stresses in this near-field being
small of relative order 1/u compared with the membrane stresses.

Next, equations (35)-(37) indicate that in the edge zone membrane
stresses and bending stresses are of one and the same order or mag-
nitude, with the membrane stresses retaining their order of magnitude
in the passage across the edge zone and with the bending stresses
decaying from their value for r = a to practically zero in the course
of this passage.

Equations (35) and (37), in conjunction with (14), give as asymptotic
expressions for stress-concentration factors

1 pu? w2

kb == k] k = =
21+ " V120 =)
Equation (38) indicates the remarkable fact that for large values of
1 the concentration of stress due to the rigid inset in the transversely
twisted shell comes out to be much larger than the corresponding
concentration for the analogous problem of the flat plate.

(38)
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Results for the Problem of Tangential Shearing
We introduce ¢ and y as given in (10) into the boundary conditions
(23) s0 as to obtain the relations

1+ 2)(1—2co) +cu2=0, (L-+p)(1+ 229 +cip2=0. (39)
It follows from this that now
ey = —(1+v)u2, co=0. (40)

The two boundary conditions (24) for x then give for the constants
c3 and ¢4 in equation (27)

cg=cg=(1+)p? (41)
and therewith, altogether,
B1+va? 1 2
= —Sa? »\/7 Va—sm 20 =—=-Sa? - sin 26, (42)
D u? r? 2 a?
B1l+vy r—a r—a r—a
= Sq? \/: ex (— )(cos A +sin A sin 26.
x D u? P V2 V2 V2
(43)

We now find from equations (42), (25), and (26) as expressions for
interior resultant and couple distributions

Ny i= =Nyt = S sin 20, (44)
) , 1—v a“
M, P = —Myst = 6S+/BD (45)

Again, these expressions are complemented inside the edge zone
by a x-contribution which is now given by (43). We limit ourselves
again to a determination of resultants and couples for r = ¢ and 8 =
/4 and find now, except for terms which are small of higher order in
K,

Nyr(a4m) = Ny'(a,im) (46)
Noo(adr) = Npri(a ) (47
M,(adm) = (L + »)SvED (48)
Myola,km) = v(1 + 1)SV/BD (49)

It may be concluded from (44) and (45) that now there is no dis-
tinction between near-field and far-field behavior in the interior do-
main, with the entire interior solution contribution representing a
membrane state, effectively.

As concerns the edge zone state, membrane and bending stresses
again come out to be of one and the same order of magnitude. Mem-
brane stresses retain their order of magnitude in the passage across
the edge zone and bending stresses decay from their edge value to
practically zero.

Equations (46) and (48), in conjunction with (15), give as asymptotic
expressions for stress-concentration factors

3+ 3y
1—»’

km = 1, kb = (50)

with k;n and k; now both being of the same order of magnitude as the
value of kp, for the corresponding problem of the flat plate.
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Perturbation Analysis of Buckling of
Circular Rings Under Nonuniform
Normal Pressures

Perturbation solutions are found for buckling of thin elastic circular rings under nonuni-

form pressures. The solution leads to the same results obtained before by numerical meth-
ods. Two cases of pressure distribution of the form p = po(l + € cos 2mf) and p = pol! +
elcos 20 + v cos 48)] are considered. The analysis yields equations to determine the ring
curvature at any angle and pressure.

Introduction )

A problem of interest, as well as of practical application, is the
" nonlinear behavior of an elastic circular ring under nonuniform
pressure. The loads are taken to be doubly symmetric and always
remain normal to the ring. The applied pressure is assumed to be of
the form

p = poll + ¢f(9)], 1)

where € is a nonuniformity parameter, and f(6) is periodic and doubly
symmetric. The ring is considered to be an inextensible elastica of
constant stiffness EI, for which the curvature change is proportional
to the applied bending moment. The governing equations for this
problem are given by {1]

d2U 1
Z—4ZUs+CU=F 2
0213 D (2)
and
1 2m
C=po—— f U3de, 3)
47w Jo

where U = R/p is the ratio of the ring radius R before deformation and
the radius of curvature p at the same arc length after deformation,
P = pR3/EI is the nondimensional pressure parameter, and Py is the
average pressure parameter for the ring circumference.

Seide and Jamjoom [1] carried out a numerical investigation of this
nonlinear integro-differential equation for the particular case where
f(8) = cos 26. Their numerical results are given by a set of curves which
show the curvature ratio U at 6 = 0 and 8 = 7/2 versus pg for various
cases of the parameter ¢. They obtained also the deflected ring shapes
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when ¢ = 0.0001 and ¢ = 1.0 for different values of the applied pressure
Do .

In the present paper, a perturbation analysis of this problem is
worked out. An asymptotic solution is obtained for the buckling shape
as function of g and e. The perturbation method used here repro-
duces exactly the same results as the numerical solution given by Seide
and Jamjoom [1}. The analysis and results will be presented for two
cases of the nonuniformity distribution function f(f). In one case we
take f(0) = cos 2m#, and the other f(#) = cos 20 + v cos 46.

Analysis When f(f) = cos 2mf
To seek a perturbation solution for equations (2) and (3), we assume
the following expansions:

U=1+4nqui+n2ve+ nivs+... (4)
Do = A1+ n2As+ Az + . .. (5)

where the A’s are constants and the v’s are functions of # which are
periodic and doubly symmetric. Inserting these expansions (4) and
(5) into equations (2) and (3) and equating different powers of 1 to
zero, one gets

v1+ (Po+ 1)vy = A; cos 2mb (6)

” 3

v+ (Do + 1vg =§(a —v}) + Az cos 2mb %)
. 1 3
Ua+(P0+1)Ua=§ﬁ+37+§av1

1
- 50% — 3u10g + Ag cos 2mé  (8)

where
B 1 21.7’ 9 _-];f?nr 3d0 =-1_f27rv Uzdﬂ (9)
@ _.; 0 Ulda’ B 9 JO 1 ’ R 21 Jo ! .

Equation (6) gives

A;=—-4m2+4+po+ 1 (10)
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vi = cos 2mf (11)

In equation (7), we require vg to be orthogonal to vy, hence we must
set

Ag =0, (12)

and vq will thus be

3 cos 4mi
vy = — BT (13)
4(16m? —po— 1)

From equation (8), the orthogonality condition of v to vy and vg then
leads to
3(16m2—py — 4)
8(16m2 — pg — 1)
Here, it should be mentioned that further calculations indicate that
there is no need to find vs. To account for the nonlinear term in
equation (2), Py is calculated up to third order in 7 and U is deter-
mined up to second order. Hence the solution is given by
3(16m% — po—4)
8(16m2 — Py — 1)

3 cos 4mb
4(16m2 — o — 1)
From these equations, one can find U at any angle 6 by setting first
a value for B then solving the cubic equation (15) for %. For the special
case treated by Seide and Jamjoom [1], one has m = 1; and our results
from equations (15) and (16) are

(14)

3= —

€po = (—4m?%+Po+ 1)y — (15)

U=1+ncos2mb + 5 (16)

— - 3(12 — po)
= (Po—B)p -~ 3 7
Do = (Fo — 3)7 8(15 < po) 7 )
3 4
U=1+ncos?28+ 72 cos 46 (18)

4(15 — Bo)
Here, it is worth mentioning that equations (17) and (18) reproduce
exactly the curves given by Seide and Jamjoom [1] for U against po.
For later discussion and comparison, we consider also the special case

“with m = 2, the results are

_ 3(60 ~ po)
Bo = (Bo — 15)y — —— L0 13 19)
Bo = (Po = 16)n — g oo (
3 cos 86
Us=1+ncosdf +n2——2 (20)
K " 463 = o)

Analysis When £(0) = cos 20 + v cos 40

 The analysis of the present case is quite similar to the preceding
one. In equations (6)—(8), cos 2m# is now replaced by cos 26 + v cos
46 and this leads to the following results:

3 3 3 642
Ar=x, Ag=" Ag= ——[1+—(1+ "x)] (1)
2 8 y yz
v1 = cos 26 + 2 cos 46 (22)
y
p2x2
Vg = —-——[( ——) cos40+~—c0360+—c0580] (23)
2 vt
where
x=po—3, y=po—15 z=po—35 t=Po—63 (24)
The solution is therefore given by
3 3 3 6412
e;_)o=xn+ﬁn2——[1+—(1+ yx)]rﬁ (25)
2y 8 y yz
U=1+4n1+n%, (26)

Results and Discussion

The main results of this paper are equations (15) and (16) for f(8)
= cos 2m# and equations (25) and (26) for f(#) = cos 20 + v cos 40. We
consider first the particular case when f(f) = cos 26 which was solved
numerically be Seide and Jamjoom [1]. From equations (17) and (18),
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Fig. 2 Variation of ring curvature with applied pressure

we have plotted U at § =0 versus Py in Fig. 1 for different values of
€. By comparing this figure and Fig. 4(b) in reference [1], one finds that
corresponding curves are identical even when ¢ = 1. This is encour-
aging in favor of the perturbation method used here to deal with the
type of problems as the present one. From Fig. 1, it is clear that uni-
form loading (e = 0) on the ring causes no deformation until 5y reaches
the value Py = 3. On the other hand when ¢ > 0, the ring deformation
starts from the moment the load is applied and increases rapidly when
Do is in the vicinity of the value py = 3.

Now we consider another particular case when f(§) = cos 40. From
equations (19) and (20), we plotted the curves of U versus By in Fig.
2, and it is interesting to notice that these curves behave almost the
same way as in the previous case with f(6) = cos 26, But, we should
remark that uniform loading in this case causes no deformation until
Do reaches the value pg = 15.

Finally, when f() = cos 20 + v cos 48, curves of U versus Pp can be
plotted from equations (25) and (26). One may expect to find these
curves somewhere between those in Figs. 1 and 2 of the foregoing two
cases. The results however show that the term » cos 46 does not affect
much the situation have we had v = 0. In Fig. 1, we plotted dashed
curves of ¥ = 1 and solid ones for v = 0. We notice that curves for f(6) .
= cos 20 + cos 46 are slightly away from those for f(6) = cos 20 and only
when € is not very-small.
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The elastic instability of a thin clamped annular plate which has suffered a finite axisym-
metric deformation due to simultaneous loading of uniform compression and lateral pres-
sure is studied by examining the asymmetric small free vibration in the neighborhood of
the nonlinear axisymmetric equilibrium state. The problem is solved by applying a finite-
difference method to the dynamic version of the nonlinear von Karman plate theory. The
numerical results indicate that there are the ranges of the magnitude of combined loads
under which the axisymmetric deformation of the plate becomes unstable.

Introduction

The nonlinear axisymmetric bending and postbuckling of thin
circular plates have been studied by numerous researchers [1-7]. In
addition, the secondary buckling or wrinkling, i.e., the branching of
asymmetric equilibrium states from nonlinear axisymmetric ones of
the circular plate has been investigated by Morozov [8], Yanowitch
|91, and Cheo and Reiss [10, 11]. On the other hand, the axisymmetric
postbuckling behavior of thin annular plates has been studied by Pal
[7], Huang [12, 13], and Uthgenannt and Brand [14]. The present
author referred to the secondary buckling of the heated annular plate
[15].

In the present paper, the elastic instability of thin clamped annular
plates subjected to simultaneous loading of uniform compression and N~
lateral pressure is studied theoretically. The dynamic version of the
nonlinear von Karman plate theory is employed. Equations describing 24
the asymmetric small free vibration of the plate which has suffered
a finite axisymmetric deformation are solved by means of a finite-
difference method. By examining a continuous variation of the
asymmetric frequency as a function of the load parameters, one may -
detect the unstable axisymmetric equilibrium state. The ranges of
the combined loads under which the axisymmetric deformation of the
plate becomes unstable are clarified through a numerical example.

2b

Fig. 1 Dimensions and coordinate system of the annular plate

Basic Equations and Method of Solution

Let us consider that a uniform, radial, compressive, edge thrust T and a uniform lateral pressure p are applied simultaneously to a thin,

[isotropic, clamped annular plate with thickness &, inner radius a,
outer radius b, Young’s modulus E, Poisson’s ratio v, and the mass
density p. Taking the coordinate system as shown in Fig. 1, the

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until December 1, 1980. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division,
November, 1979; final revision, April, 1980.

Journal of Applied Mechanics

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subjectctco)%érl\l/%nitcg

transverse displacement of the midplane and the stress function for
stress resultants are denoted by W and F, respectively. As a basis for
the analysis of the asymmetric small vibration of the plate in the
neighborhood of an nonlinear axisymmetric equilibrium state, we use
the dynamic version of von Karman’s equations. These equations and
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the boundary conditions are given in nondimensional form as fol-
lows:

" 12 1 12 1 2
v f =T W + - W,09|W xx + '_2' Wyxp ——Wp 1)
X X . X X

1 1 1 1
Viw = - (f,x + —f,aﬂ)w,xx + _f,xx(w,x +- w,rm)
x x x x

- 2(1 f) (l w) +P-w., (@
LX0\x ,x8

X

w=w,=f=0, fy,=—Ax at x=4+,1 (3)
where subscripts following a comma stand for partial differentiation
and

1 92

02 10
Vi=—— o
dx% xox x200?

In these equations, the nondimensional quantities are related to the
corresponding physical ones through the following relations:

r 5 a 1"'1/2 F
==, ==, =———————-W’ =—
T YTy ¥ 3 =5
t /D Th? pb
=— —, A= — p2 s =+/1—p2~— (4
A " ompn’ F T

in which 7 is a ratio of inner to outer radii, D = ER3/12(1 — v2) is the
flexural rigidity of the plate and ¢ is time.

Denoting the time-independent, nonlinear axisymmetric defor-
mation state by wo(x) and fo(x), the relevant equations are obtained
from equations (1)—(3).

1
x" (xn),x] = —6{2 5)
X =4
1 1
o (xs“),x] o ®
X »X 2
=0, n=-Xx at x=4%,1 @)
where
n= fO,xx §‘= wo,x

In order to analyze the asymmetric small free vibration of the plate
in the vicinity of an axisymmetric equilibriurn state, we express w and
f in the form

w = wo(x) + wi(x) cos Nfeior

f= fO(x)‘+ f1(x) cos Npeiwr 8)

where N and w are the number of circumferential waves and a circular
frequency, while w and f; are infinitesimal quantities.

The equations governing the asymmetric small free vibration of
the plate in the neighborhood of the axisymmetric equilibrium state
are obtained by substituting equations (8) into (1)—(3), subtracting
the equations of axisymmetric deformation from resulting equations
and retaining only the linear terms in the infinitesimal quantities. This
leads to

12 N2
Vitfr=—— [fwl,,, + (wl,x - ‘_wl)g‘,x] 9
X X
1 N2
Vitwr == [ffl,xx + (fl,x - —fl)g-,x + w1,
X X .

N2 .
+ (w1,x —— wl)n,x] + w2w; (10)
x

wi=w,=fi=f,=0 at x=1,1 (11)
where
V2—d_2+_1,_d__..ly_2
VT dx? xdx x2

We solve the foregoing nonlinear axisymmetric and eigenvalue
problems by means of the numerical method employed in reference
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Fig. 3 Relations between thrust and the maximum value of axisymmetric
deflection

[16]. An outline of our application of this procedure is presented
here. ‘

The system of nonlinear differential equations (5)—(7) governing
the axisymmetric.deformation is solved by Newton’s method, which
replaces these equations with a system of linear correctional equa-
tions. This latter system of equations is in turn approximated by a
system of finite-difference equations using central difference formulas
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Fig. 4 Relations between thrust and the maximum value of axisymmetric
deflection

for the derivatives and solved by the application of Potters’ algorithm
[17]. The solution with sufficient accuracy can be obtained by re-
peating the foregoing procedure until the condition |5y ®)/y®| =<
104 is satisfied, where 8y and y () correspond to the values of
correction term and solution of n iteration at each point, respectively.
The eigenvalue problem posed by equations (9)—(11) is replaced by
the finite-difference analog and solved by Potters’ algorithm in the
same way as the foregoing statement. A mesh of 100 points on the
interval of (1 — ) was considered in the finite-difference method.

When the values of the ratio v, Poisson’s ratio », and the load pa-
rameters A and J are given, we can determine the eigenvalues, i.e., the
natural frequencies w for each value of the circumferential mode N.
If the square of a particular frequency of the asymmetric vibration
in the neighborhood of the axisymmetric deformation is negative, the
axisymmetric deformation is unstable. The branching of the asym-
metric equilibrium states from the axisymmetric one may occur at
the point which the particular frequency vanishes.

Numerical Results and Discussion
_ As anumerical example, we take an annular plate with v = 0.5 and
v =0.3.

The variation of the square of the first order of natural frequencies
corresponding to N = 1, 2, 3, 4, and 5 for = 102 as a function of the
compressive thrust A is shown in Fig. 2. From this figure, it can be seen
that there are the ranges in which the square of the natural frequencies
corresponding to N = 1, 2, 3, and 4 becomes negative. Hence, the
axisymmetric deformation is unstable between A = 149.2 and 168.3,
and between A = 171.1 and 187.5. The branching of the asymmetric
equilibrium states with N = 1, 2, and 3 from the axisymmetric one
may occur at these four points Ae; = 149.2, etc.

Fig. 3 shows the relations between the thrust and the maximum
value of the axisymmetric deflection for various values of pressure.
Fig. 4 shows a part of Fig. 3 after magnification. In these figures, cir-
cles, triangles, squares, etc., denote the branching points, while broken
lines correspond to the unstable axisymmetric equilibrium states in
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which the square of the natural frequency of the asymmetric small
vibration is negative. The bifurcation buckling with the indicated
wave number N may occur practically at the branching points of the
ends of the broken lines. The following may be observed from these
figures. The asymmetric bifurcation buckling of the annular plate
without pressure occurs at the point with A%, = 147.7 and N = 4. For
the case with p < 164.8, the axisymmetric deformation is unstable
near \°;. When the thrust is approximately 2.6 times the asymmetric
buckling one A%, of the annular plate without pressure, the bifurca-
tion buckling with N = 17 occurs and the axisymmetric deformation
is always unstable.

According to Figs. 3 and 4, the relation between thrust and pressure
is shown in Figs. 5. Fig. 5(a) shows a part of Fig. 5(b) after magnifi-
cation. In these figures, the shaded ranges show the values of the
combined loads destabilizing the axisymmetric deformation. It can
be seen that the lateral pressure reduces the bifurcation buckling
thrust A¢; with the large value. The small stability region exists in the
instability region near A%;.

Figs. 6 and 7 show (a) the axisymmetric deflection, (b) the axi-
symmetric radial and circumferential stress resultants, Nyo and Ny,
just before bifurcation buckling, and (c) the buckling deflection in
the cases with p = 102, 104, and 0. In these figures, 0.5 and 1 in the
abscissa correspond to the inner and outer edges of the annular plate,
while N9 stands for the axisymmetric compressive radial stress re-
sultant just before buckling with N = 4 of the annular plate under only
uniform compression. From these figures, it can be seen that the bi-
furcation buckling at the large thrust is caused by the large circum-
ferential stress and that the corresponding buckling deflection has
many waves in the circumferential direction, three half waves in the
radial direction and the maximum value near the outer edge.

Conclusions

On the basis of the dynamic version of the nonlinear von Karman
theory, a theoretical analysis is performed on the elastic instability
of a thin annular plate subjected to simultaneous loading of uniform
edge thrust and lateral pressure. The problem is solved by applying
a finite-difference method to the equations describing the asymmetric
small free vibrations of the plate in the neighborhood of the finite
axisymmetric equilibrium state. The present study has led to the
following conclusions:

The combination of uniform radial compression and lateral pres-
sure destabilizing the axisymmetric deformation of the annular plate
exists always for the large thrust. The annular plate under small
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Fig. 6 Distributions of (a) axisymmetric deflection, (b) axisymmetric radial
and hoop stress resultants just before buckling, and (¢) buckling deflection:
P =100. ==z A, = 1875, N= 1,7 A, = 149.2, N = 3

pressure becomes unstable due to the small thrust which gives rise
to the buckling of the annular plate without pressure. The bifurcation
buckling, i.e., the branching of the asymmetric equilibrium state from
the axisymmetric one occurs at the boundary between the stability
and instability regions in the space of combined loads. The bifurcation
buckling at the large thrust is caused by the large hoop stress and this
buckling load is about 2.6 times that of the annular plate without
pressure.
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Dynamic Stability of Annular Plates
Under Pulsating Torsion

The dynamic stability of annular plates under periodic torsion is analyzed by means of
the Galerkin method in conjunction with Hsu’s procedure. The instability regions associ-
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ated with both principal and combination parametric resonances are clarified for rela-
tively low frequency ranges. It is found that under the purely periodic torsion only the

combination instability region exists, while under the simultaneous action of the static
torsion the principal instability region exists also. The circumferential phase difference
of two vibration modes excited simultaneously at the resonance is also found to change
remarkably the relative width of the instability region.

Introduction

The dynamic stability of flat plates subjected to periodic in-plane
forces is a problem of technical importance which has received a great
deal of attention in the last decade. For example, Bolotin 1], Hutt
and Salan [2], Duffield and Willems [3], Merritt and Willems [4],
Reckling [5], and Popescu [6] investigated the principal and secondary
regions of instability for various plates by means of Bolotin’s method.
The instability regions for both principal and combination resonances
of square and rectangular plates were examined by Jagadish [7], and
Yamaki and Nagai [8], respectively. Recently, the principal and
combination instability regions of annular plates under periodic radial
loads were studied by Tani and Nakamura [9, 10]. However, to the
best of our knowledge, the dynamic stability of annular plates under
pulsating torsion has not been investigated yet.

This paper examines theoretically the dynamic stability of clamped
thin annular plates subjected to both static and periodic torsion-The
Galerkin method is used to reduce the problem to that for a finite
degree-of-freedom system, the instability regions of which are de-
termined by utilizing Hsu’s result [11] for coupled Hill’s equations.
Through detailed calculations, the instability regions of practical
importance, associated with both principal and combination reso-
nances, are clarified for relatively low frequency ranges. It is found
that the circumferential phase difference of two modes, having the
same circumferential wave number, of vibration excited simulta-
neously at the resonance has an important role in the principal and
combination resonance. The principal resonance is also found to de-
pend sensitively on the simultaneous action of the static torsion.

Problem Formulation
Consider that a periodic torsion @ = g¢ + g1 cos {2t acts‘on the cir-
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Fig. 1 Geometry of an annular plate

cumferential edges of a thin, isotropic, annular plate with thickness
h, inner radius a and outer radius b. The coordinate system is taken
as shown in Fig. 1. When the problem is restricted to relatively low
frequency ranges where flexural vibrations of the plate are dominant,
effects of transverse shear deformation and in-plane as well as rotatory
inertia forces can be neglected. The effect of damping is assumed to
be negligible. Hence, in the unperturbed motion, the plate executes
a simple in-plane vibration with the stress resultants as given by

Nyog=Nyg=0, Nygo = {go + g1 cos Qt)/27r? (1)

where g is a static load, while ¢; and  are an amplitude and an ex-
citing frequency of dynamic load, respectively.
Next, with W denoting the small incremental deflection just after
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the plate loses its stability, the equation governing the perturbed
motion of plate is

1
phW,zz+DV4W"2Nroo(— W’g) =O (2)
. r B
where
Do ER_ o @ 12 12
12(1 — »2) or2  ror r2of?

In the foregoing, D is the flexural rigidity of the plate, E, v, p, and ¢
are Young’s modulus, Poisson’s ratio, mass density of the plate, and
time, respectively, while subscripts following a comma stand for
partial differentiation.

As for the boundary conditions, we will consider the case of both
edges clamped as follows:

W=W,=0 at r=a,b (3)
Here we introduce the following notations for convenience:
1 r t D w
t=log=, 7T=—A/—, w=—
€5 52’V on 3
1 \
(o, 71} = — (g0, 1), Ger = 27Dk;
qcl‘
ph a
w= Qb24/—, =- 4
0’ Y% 4)

In the notations, <y is the ratio of inner to outer radii and g, is the
buckling load with the relevant parameter k. Further, §o and §; are
the static and periodic load intensities normalized by q.., respectively,
while w is nondimensional parameter relating to exciting frequency.
With these notations, equations (2) and (8) can be rewritten as fol-
lows:

Lw)=w,, + e~ T4y

— 2ky(Go + G1 cos wr)e ¥ W —wp) =0 (5)

w=w,=0 at x=0,logy ’ (68)
where
"ﬁ4—a4 4a_3+4_?2_+£ _6_2__424_44_52
ox4 ox3 T ox? op%\ ox2 ox 002

Under given boundary conditions, equation (5) has, in general, only
bounded solutions for w and the unperturbed motion is stable.
However, under specific combinations of o, 1, and w; the governing
equation has the solution increasing indefinitely with time, leading
to the dynamic instability of the plate. The problem consists in de-
termining the boundaries dividing the stability and instability regions
in the space of §; and w, when the values of the static load §o and the
ratio vy are prescribed.

Method of Solution
Considering the boundary condition (6), we put a solution of
equation (5) as

w=Y (em-1= Cm+1)[am(7) cos N6 + b, (1) sin N]

cm = cos (mPx), B=x/logy, (m=1,23,...) (7)

where a,,(7) and b,,(7) are unknown time functions and N is the
number of circumferential waves. With this expression, we apply the
Galerkin method to (5), which leads to the following conditions:

2r  plo N@
{7 f “L(wxcn_l—cnﬂ)(“f’s )e%dxd0=o,
0 0 sin N

n=1,23..) 8

Performing the foregoing integration, we obtain the following set of
equations for a,, (1) and by, (7):

596 / VOL. 47, SEPTEMBER 1980

Y [Mun@m,or + Ram@m + ks(@o + G1 cos w7)Prpmbrp] = 0
m

> [Mnmbm,n + Rombm — ks (60 + g1 cos wT)anam] =0
m

(mn=123...) (9
where
Mpm = [1 = (=) ™y 2@y 1 — Brms1)
Rom = —[1 = (=1 "y~ [En_1®nm—1 — Ems1Prme1
=262(Hm1Vpm-1— Hpt1¥nm+1)]
Pom = =2N[1 — (=1)"my ~2{®,, 11— Bpmr1

1
+ 562[(7"‘ - 1)‘I/n,m——1 - (m+ 1)‘I'n,m+1”

Dy =

Yo = Imtn=1+ Innt1 = Imtnt1 = Im-n-1,
En = B*m*+ 232m2(N2 - 2) + N3(N2 - 4)
D, =p3?°m2+ N2 H, =mD,

I;=1/(4 + p22)
Jy=1

Im+n-—1 + Im—n+1 T Im+n+l T Im-—n—-l;

(10

In the foregoing, the coefficients Mpm, Rum, and Py, depend on the
ratio v as well as the wave number N and are symmetric with respect
to'indices n and m. Equations (9) represent a set of coupled Mathieu
equations.

Upon omitting the inertia terms as well as those with periodic
coefficients, and putting am (1) =@m, b (7) = b, and §o = 1, equations
(9) become

> (R + kspnml;m) =0
m

Z (anEm - ksanam) =0 (m, n=123,.. J

m

(11

In order that these homogeneous equations have nontrivial solutions
in @, and b,,, the determinant of the coefficients should vanish, from
which the value of ks can be obtained for the assigned value of N. The
minimum value of ks will be determined by successively changing the
value of N, which gives the value of ks corresponding to the buckling
load g, together with the buckling wave number Nj.

Next, upon omitting the terms with periodic coefficients and put-
ting am (1) = @ cos wr and b (1) = b, cos wr, equations (9) be-
come

Z [(an = 0*Mpm)anm + kquangm] =0
m

Z {(an - wZMnm)Em - ksqopnmdm] =0 (m, n = 1, 2, 3, - )

m

(12)

Equating to zero the determinant of the coefficients of these equa-
tions, we obtain, for each prescribed value of N, the nondimensional
natural frequencies and the corresponding modes of vibration, under
the effect of the static torsion go. The natural frequencies thus ob-
tained may be denoted by w; (i = 1,2, 3, .. .) in order of smallness and
the corresponding eigenvectors by ¢;;(i, j = 1,2, 3, .. .). The subscript
¢ defines the order of radial modes of vibration, which represents the
number of half waves in the radial direction.

Here, one should note that in addition to d; = 1, the other condition
is required to determine the eigenvectors ¢;;, because of the as-
sumption of the solution (7). Hence, the following condition is
added:

we=0 at x =4, 0= g (13)
This condition corresponds to that a nodal line of vibration mode in
the radial direction develops from the position (v, o) on the inner

edge of the plate. Further this condition makes it possible to designate
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Fig. 2 Effect of static torque g, on the natural frequencies w; in the case
with y = 0.5

the circumferential phase difference of two modes, having the same
circumferential wave number, of vibration excited simultaneously
at the resonance. |

Now, it is well known that under certain combinations of gg, 71, and
w, equations (9) have the solution a,, () and b,, () growing with time
indefinitely, leading to the parametric instability of the system. To
clarify the stability boundaries, it is convenient to rewrite (9) in the
standard form. For this purpose, one transforms the generalized
coordinates a,, and b,, to the normal coordinates d; by making use
of the eigenvectors ¢;;, which leads to the following set of coupled
Mathieu equations in the standard form:

di,‘r‘r + w;2d; + g1 COS wT > Si}'dj =0
i

Sij=8ji=ks % ; YriPriyi

Y= (/’ij(%: ; dirMudn)™% (7, k1=1,2,3,...) (14

For the stability of these equations, detailed studies have been made
by Hsu [11]. According to his results, equations (14) have instability
regions of combination resonance type when w is in the neighborhood
of-w; + w;, and the first approximations for the stability boundaries
are given by

L1207, Gi=1,23..)
1Si1

2w;jv/ Wi wj
In the foregoing, w;; and §;; stand for the central frequency and the
relative width parameter of the instability region, respectively. The
numerous instability regions closely distributed can be represented
easily by using of w;; and ;;. At the combination resonance, it is to
be noted that two modes of vibration, having different radial modes
{ and j but having the same circumferential wave number N, are ex-
cited simultaneously, and that these modes may have a phase dif-
ference in the circumferential direction. Equations (14) have also
principal instability regions when w is almost twice the natural fre-
quency w;, the boundaries of which are given by putting i = j in (15).
In this case, only the mode corresponding to w; is excited.

By means of the higher approximations {12}, we may obtain many
secondary instability regions with small relative openness. Under

wj=wtw, 0;= (15)

Journal of Applied Mechanics

Table 1 Torsion buckling load parameter k; and the
corresponding wave number N, in each case

Present Dean [13]

v ke N, ke N,
0.2 36.00 3 35.99 3
0.5 186.1 6 186.1 6
0.8 1780 17 1780 17

small exciting forces, however, the occurrence of the secondary in-
stability will be prevented by inevitable small damping. Hence, the
consideration of the secondary instability will be omitted in the fol-
lowing.

Buckling Load and Natural Frequencies ;

On the basis of (11) with 20 terms for each unknown parameter @,
and by, the buckling parameter k; and the corresponding wave
number N, in the cases with ¥ = 0.2, 0.5, and 0.8 are determined with
the results listed in Table 1. Accurate results obtained by Dean [13]
are also shown. Excellent agreement will be noticed.

Next, on the basis of (12) with 20 terms for each unknown param-
eter @, and b,,, and ks as given in Table 1, the natural frequencies
w;i(i =1, 2, 3) in the case with v = 0.5 are determined for each wave
number N, with the effect of the static torsion g taken into consid-
eration. The results are illustrated in Fig. 2. The following will be
observed from this figure. The first order of natural frequencies de-
creases with an increase in the static torsion. This tendency is most
pronounced when N is in the vicinity of buckling wave number Nj.
The effect of the static torsion on the second and third orders of
natural frequencies is very small.

The effect of the static torsion on the first and second natural modes
of vibration can be also examined. The typical results for the case with
v = 0.5, N = 6(= N;), and 0y = #/2N are shown in Fig. 3, with the
contour lines with the maximum amplitude of the deflection w taken
as unity. It will be seen that, with the application of static torque, the
radial nodal lines are obliquely rotated in the loading direction and
that the first natural mode of vibration almost agrees with that of the
static buckling.

Instability Regions

First, the variation of the relative openness §;; of instability regions
with the circumferential phase difference « of two vibration modes
is examined for the case with v = 0.5 and g = 0.5 by using the eigen-
vectors ¢;; obtained along with the calculation of natural frequencies
w;. This is because two vibration modes, having the same circumfer-
ential wave number but having the different phase in the circumfer-
ential direction, may be excited simultaneously at the resonance. The
results with 8;; = 10~2 are shown in Fig. 4, from which the following
is observed. The relative openness of the combination instability re-
gion is widest when the value of the circumferential phase difference
« is in the vicinity of 7/2N. On the other hand, that of the principal
instability region is widest when the value of « is equal to 0 and 7/N.
The valu€ of the relative width parameter 0;; depends on the cir-
cumferential wave number N which two vibration modes simulta-
neously excited have equally.

Next, to examine the effect of the static torsion, the instability re-
gions for the cases with o = 0, 0.25, 0.5, 0.75 and v = 0.5 are deter-
mined with the results shown in Fig. 5. In this figure and the following,
the relative width parameter 0;; represents the maximum value with
respect to the circumferential phase difference. Only the instability
regions with 6;; = 1072 have been considered for natural frequencies
up to third order of radial modes. From Fig. 5, one can easily find the
location and the openness of the instability regions, together with the
wave number as well as the modes of the excited vibration. The fol-
lowing observations can be made. Under purely periodic torque
without the static one, one has only the instability regions of combi-
nation resonance type. T'o judge from the magnitudes of the relative
widths 0;;, the instability regions associated with (i, j) as (1, 2) are of
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Fig. 3 Waveforms of the natural modes of vibration: 7y = 0.5, N = 6; (a) G, = 0; (b) Go = 0.5
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Fig. 4 Relation between relative opénness 8 and circumferential phase difference ¢ in the case with y = 0.5 and g, = 0.5

most importance. The relative width Hig has a maximum when N is
near the buckling wave number N;. Under the simultaneous action
of the static torque, one has the principal instability regions, besides
the combination instability regions. With an increase in the static
.torque, the relative widths 0;; of the principal instability regions,
especially 011, grow rapidly, while those for the combination type 8;;(i
# J) remain almost unchanged. When the static torque exceeds one
half of the buckling load, the principal instability region of the lowest

598 / VOL. 47, SEPTEMBER 1980

order, associated with the wave number around N, is of most im-
portance. The central frequency of each instability region is shifted
toward the lower frequency with the static torque.

To check the effect of the radial ratio v, the instability regions for
the cases with v = 0.2 and 0.8 are also determined with the results
shown in Figs. 6 and 7. It can be seen from these figures that the in-
crease of the radial ratio raises the central frequency and reduces the
variations of the central frequency and the relative width with the
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Fig. 5 Effect of static torque g, on the central frequency wy and the relative openness 0,, of the instability regions: y = 0.5

wave number. The large change of the central frequency with the
radial ratio is obviously due to the variation in the natural fre-
quency. ‘

Conclusions

The dynamic stability of annular plates subjected to both static and
periodic torsion has been theoretically studied within relatively low
frequency ranges. The main results obtained may be summarized as
follows: -

1 Under the purely periodic torque only the instability regions
of combination resonance type exist, while the simultaneous action
of the static torque gives rise to the principal instability regions.

2 With the increase in the static torque, the relative widths of the
principal instability regions, especially 011, grow rapidly, while those
for the combination type remain almost unchanged. When the static
torque exceeds one half of the buckling load, the principal instability
region of the lowest order, associated with the wave number around
the buckling one becomes most significant.

3 The relative openness of the instability regions depends sensi-
tively on the circumferential phase difference of two vibration modes

Journal of Applied Mechanics

excited simultaneously at the resonance with the same circumferential
wave number. ) .

4 With the increase in the static torque and/or the decrease in the
radial ratio, the central frequency of each instability region is shifted
toward the lower frequency, due to the variation in the natural fre-
quency.
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The Effect of Damping on Dynamic
Snap-Through

Dynamic snap-through criteria are compared for an impulsively loaded shallow circular

arch modeled as a Kelvin-Voigt material. The Budinasky-Roth criterion is used in con-
junction with direct numerical integration of an approximate set of motion equations to
obtain critical magnitudes of the load as a function of small viscous damping and the spa-
tial distribution of the load. These critical magnitudes are compared to a lower bound es-
" timate which is independent of the load distribution and damping. This lower bound is
a stability-sufficiency condition formulated by Hsu. The presence of small damping sig-
nificantly increases the critical magnitudes with respect to the undamped results for non-
symmetric loading, and thus indicaies the conservative nature of the lower bound.

Introduction
In a recent paper [1] the effect of the spatial distribution of an im-
.pulsive load on dynamic snap-through of a shallow circular arch was
discussed. A spatially independent lower bound on the critical mag-
nitude of the impulsive load required for snap-through was compared
to a criterion based on direct integration of the equations of motion.
This latter criterion, then, accounted for the spatial distribution. The
lower bound is a sufficient condition for dynamic stability formulated
by Hsu [2], and the criterion used to determine critical magnitudes
by direct integration is due to Budinasky and Roth [3]. The Budian-
sky-Roth criterion was used to obtain critical magnitudes for snap-
through occurring on the initial oscillation of the response, termed
immediate snap-through, and for snap-through occurring at any time
of the finite integration period, termed finite time snap-through. For
most spatial distributions considered, the lower bound was a con-
siderably less conservative estimate of finite time snap-through than
for immediate snap-through. The present paper considers the effect
of small material damping on this conclusion, since it is anticipated
that finite time snap-through will be significantly affected by small
damping whereas immediate snap-through will not.
The influence of damping on dynamic snapping of a simply sup-
ported sinusoidal arch subject to a timewise step pressure with si-

nusoidal spatial distribution was addressed by Lock [4], Hegemier

and Tzung [5], and Huang and Nachbar [6]. Both Lock and Hegemier
and Tzung consider energy dissipation by external damping (simu-
lating an arch on a viscous foundation), whereas Huang and Nachbar
use material viscous damping for energy dissipation. Lock found that
damping had an appreciable effect on the critical pressures required
for “indirect” snap-through (analogous to finite time snap-through
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in the present work). Further, Lock found no significant numerical
difference between dynamic and static critical pressures for large arch
rises and for a value of the viscous damping coefficient y equal to 1
percent of critical damping of the fundamental symmetric mode.
Huang and Nachbar also observed that dynamic buckling loads
equaled static buckling loads for damped arches with large rises.
However, Hegemier and Tzung state this is true as v — 0+, and
moreover that there is a discontinuity between the critical pressure
as vy — 0+ and the critical pressure determined from a purely elastic
response (y = 0). In their concluding remarks, Hegemier and Tzung
go on to state that for the arch subject to impulsive loading and suf-
ficiently small disturbances, only symmetric snapping is possible
because small asymmetric disturbances will be damped out. Con-
sidering step pressure loading and axisymmetric deformations of a
spherical cap, Mescall and Tsui [7] do not obtain dynamic response
characteristics suggested by Hegemier and Tzung. Instead they find
dynamic critical pressures to be about one-half the static values and
a smooth increase in the dynamic critical pressures with increasing
damping.

Basic Equations

In dimensionless form the equations governing the nonlinear planar
vibrations of the shallow circular shell (or arch) modeled as a Kel-
vin-Voigt material (see Fig. 1) are

("b + )\—‘4(¢HH + ,Y('/)m/) -1+ </)II)(7I + ,Yn) =0 1)
+1 '
== (6= Ch@)AdT (2)

where (27 is the spatially uniform circumferential strain of the mid-
surface and?! '

b =wlaf?, \2=+/12(8%/h) ~ \/48(Ho/h) )

1Tt is noted that equation (3) in [1] is missing a square root sign.
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Fig. 1 Shallow circular arch

in which w is the radial displacement, a is the midsurface radius, Ho
is the maximum arch rise, & is the arch thickness, and (3 is the semi-
opening angle of the arch. The dot and prime indicate partial deriv-
atives with respect to dimensionless time 7 and scaled polar angle T',
respectively, where

T= ct/g, e2=E/p(1-%), T =0/8 (4)

in which ¢ is real time, E and » are the usual elastic constants, p is mass
density, and 8 is the polar angle. The dimensionless damping coeffi-
cient v is given by

v = ({/a)[(1 — v2)/Ep]V/2 ®)

In (5), { is the actual damping coefficient in the Kelvin-Voigt con-
stitutive equation

Oe
7 1—v2e+§at’ ©
where ¢ and e refer to the normal stress and strain, respectively, in
the circumferential direction for a surface parallel to the midsur-
face.

The shallow circular shell equations (1) and (2) for a Kelvin-Voigt
material model may be obtained from the shallow arch equations
derived in [6]. In [6], one must specialize the initial shape to be circular
(equivalent to a parabolic shape for a shallow arch), and substitute
E/(1 — v?) for Eg to obtain (1) and (2).

The boundary conditions associated with (1) and (2) for a
pinned-end arch are

H(21,7) =0, ¢"(£1,7) =0,
The initial conditions are taken as
#(T,0) =0, ¢(I0)=eau(l), |T|<1 (8)

These initial conditions are equivalent to imparting a very short-
duration impulsive load to the arch at the initial instant having a
spatial distribution u(T"). It is convenient to normalize this spatial
distribution by requiring

(wu) =1, 9
where the scalar product of two functions is defined as

(up) = f_ jl w(Do(T)dT (10)

-In this manner the dimensionless magnitude ¢ of the initial velocity
in (8) can be related to the dimensionless initial kinetic energy T'(0)
imparted to the arch by the impulsive load. The dimensionless kinetic
energy of the arch is

T = (N (p,$) a1

602 / VOL. 47, SEPTEMBER 1980

>0 , @)

where

T = 12a(1 - v2)(BER®) 1T (12)

in which T is the actual kinetic energy per unit arch width. It follows
from (8), (9), and (11) that

T(0) = ()% (13)
Approximate Solution

An exact solution to (1) and (2) subject to conditions (7) and (8) is
not available, so an approximate solution is sought. Here we use
Galerkin’s method and expand ¢(I',7) as

o(I,7) = Zl [0 (1) Za(T) + (1) Zn(T)] (14)
ne

The functions Z,, (I"') and Z,, (") are the symmetric and antisymmetric
mode shapes, respectively, of the free, undamped, infinitesimal vi-
brations of the arch about its undeformed configuration. These mode
shapes are orthonormal and are given in the appendix of [1]. Coeffi-
cients {,,(7) and £,(7), then, represent the symmetric and antisym-
metric generalized displacements. Substituting (14) into (1) and (2),
and using Galerkin’s method, results in the following ordinary dif-
ferential equations for the generalized coordinates:

Gt Y26+ 26+ Qe ) + Qia(§u b) + 72Qin(§) % k26?

+ 297 Qu(§)] X k2 = 0

k

B+ vk + 2 + Gm2S() + vS()E:

+ (2rt/4) [T 2% + 2y £ %k & =0 (15)
J J
The parameters ji; and u; represent the symmetric and antisymmetric

eigenfrequencies, respectively, and the polynomials in the symmetric
displacements are

Qi = ni/2+ (Yg) T Py §;
J
Qi = L X [iPje/2 + mePi)in + v (P + muPip) 53]
J

Qo = () = X X (PP §u + 2y (PyPa) &l
J

S=§.77j§}'+ (1/4)§§ij§'j§k (16)
The coefficients 5; and P;; are
mi=—CR)Z:u1), Py=(Z/Z) (17)
Iynitiél conditions on the generalized displacements are
§i(0) = &) =0
G0) = e(wZi), E(0) = e(uZ) (18)

For numerical integration of (15), the series representation (14) was
truncated to the first two symmetric modes and the first antisym-
metric mode. Constraining the motion to a three-dimensional con-
figuration subspace sacrifices quantitative accuracy but, as discussed
in [1], this simplified model exhibits the qualitative features inherent
to snap-through. The reduced set of equations (15) were integrated
numerically using a Hamming Predictor-Corrector method for a
specific arch rise of A equal to five.

To specify various spatial distributions of the initial velocity con-
sistent with (9), one may select

w(l) = [Z1 + 5Zy + 5(1 + #2)/2Z,]/D (19)
where

D =[(1+3)(1 +y?)|2 (20)
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such that initial conditions (18) become
£100) = ¢/D,  §(0) =5¢/D, £1(0) =5(1 + 72)1/2/D

The parameters ¥ and ¥ represent initial direction parameters of the
motion trajectory in the three-dimensional configuration space. If 7
vanishes, the spatial distribution (18) is symmetric and equations of
motion (15) admit a purely symmetric response (£; = 0, 7 > 0). Thus
7 is interpreted both as a symmetric initial direction parameter and
a symmetric spatial distribution parameter. Consequently the pa-
rameter ¥ represents an asymmetric initial direction (distribution)
parameter.

For specific values of v, 7, and v the equations of motion (15) were
integrated for many values of ¢. Each integration was carried out for
48 nondimensional time units. This corresponds to three periods of
the lowest frequency mode which, for A equal to five, is the antisym-
metric mode. As discussed in [1], an extended integration time of five
periods (80 nondimensional time units) did not significantly alter the
critical magnitudes determined for finite time snap-through. Thus
the three periods of the lowest frequency mode appeared an adequate
length of time for numerical integration.

For each value of ¢ the displacement norm was obtained over the
finite time integration period. This norm is defined as

R(r) = (512 + {2+ 6912

The peak value of R on its initial oscillation and its maximum value
during the entire period were recorded for each ¢ so the dependence
of Rmayx on € for both immediate and finite time snap-through could
be determined and subsequently plotted. These plots are called re-
sponse curves. According to the Budiansky-Roth criterion, critical
magnitudes for both immediate and finite time snap-through corre-
spond to “jumps” in these response curves.

To facilitate an understanding of the dynamic results and establish
the lower bound estimate of ¢, the results of the static analysis of
equations (15) given in [1} are summarized here. The static equilib-
rium solutions of (15) are the critical points in the three-dimensional
configuration space. The origin of this space represents the unde-
formed symmetric arch. For A equal to five there are four additional
symmetric equilibrium configurations and a pair of asymmetric
configurations. The asymmetric pair have identical symmetric dis-
placements and equal in magnitude, but opposite in sign, antisym-
metric displacements. Of the seven critical points in the configuration
space, only two are stable with respect to infinitesimal disturbances.
These are the origin and a symmetric critical point whose norm R is
near unity. The latter critical point corresponds to the static snap-
through configuration. The asymmetric pair of critical points have
the same potential energy, and it is the smallest potential energy of
all the unstable critical points. Either of this pair, then, represents
the “nearest” critical point to the origin in the sense of Hsu [2]. Here
the one with a positive antisymmetric displacement is selected as
nearest. Equating the potential energy of this nearest critical point
to the initial kinetic energy (13) imparted to the arch gives the lower
bound on the critical magnitude necessary for dynamic snap-through,
For A equal to five this value of ¢ is 0.1276. Hence the dynamic motion
is stable against snap-through for any spatial distribution of the initial
velocity if e < 0.1276.

(21)

(22)

Discussion of Numerical Results

In addition to a fixed arch rise with A equal to five, the present re-
sults are limited to a specific value of 0.848404 for the symmetric
component 7 of the initial velocity distribution. This particular value
of ¥ is the symmetric direction component of the nearest critical point
to the origin of the configuration space. Values chosen for the asym-
metric distribution parameter 7 range from zero to 0.40. This includes
the particular value of ¥ = 0,183666 which is the asymmetric direction
component of the nearest critical point. Thus increasing values of ¥
imply increasing amounts of asymmetry in the initial velocity dis-
tribution, and the particular distribution with ¥ = 0.183666 starts the
motion trajectory in the configuration space toward the nearest critical
point.
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Values selected for the damping parameter +y are 0, 0.005, 0.01, and
0.05. Undamped results are also given in [1] and are represented here
with some refinements. The largest value of the damping parameter
considered is approximately 1 percent of critical damping for the
linear vibrations of the antisymmetric mode (lowest frequency mode
for A equal to five). Also, these values of 7y seem physically reasonable.
For example, damping coefficients determined from vibration tests
of double cantilevered aluminum beams [8], as reported in [9], result
in values of y within the range used, for realistic arch radii in (5).

Some of the response curves obtained are shown in Figs. 2(a)-(h).
Only the purely symmetric response (v = 0) and nearly symmetric
response (7 = 0.025) are shown for each value of +. The jump criterion
for the purely symmetric response is very distinct for both immediate
and finite time snap-through. The critical magnitudes ¢, for imme-
diate snap-through are slightly larger than for finite time snap-
through. This difference decreases with increased damping and for
~ = 0.05 it vanishes (i.e., snap-through occurs on the initial oscilla-
tion). For finite time snap-through and v = 0, the critical magnitude
increases from 0.189 at y = 0 t0 0.198 at v = 0.05 (a 4.8 percent in-
crease).

A small amount of asymmetry (v = 0.025) in the initial velocity’s
spatial distribution causes dramatic changes in the response curves
with respect to those of the purely symmetric response, as shown in
Figs. 2(b), (d), and (f). The finite time snap-through curves exhibit
alternating jumps to snap-through and back with increasing ¢. The
initial jump in Ruyay to snap-through (R max near unity) occurs at a
substantially lower magnitude of ¢ than for the purely symmetric
results. This alternating pattern in the finite time response curves for
7 = 0.025 persists for y = 0.005 and 0.01, but is damped out for v =
0.05. Contrary to the assertion of Hegemier and Tzung [5] that only
symmetric snapping is possible if ¢ > 0, the present results show a
strong influence of small asymmetric perturbations on dynamic
snapping, even in the presence of small damping, as evidenced by
comparing Figs. 2(c) and (d). Apparently the qualitative character
of the finite time snapping phenomenon for small damping is the same -
as in the undamped case.

Although not presented here, the time histories of the individual
displacements imply that the symmetric response is unstable with
respect to asymmetric perturbations. For small asymmetric pertur-
bations, the symmetric motion parametrically excites the growth of
the asymmetric displacement, which in turn reacts with the symmetric
motion. This instability may or may not lead to dynamic snap-
through, as the alternating pattern of the response curves show.
Parametrically induced snap-through was used as an explanation by
Lock [4] for dynamic critical step pressure loads exceeding the static
critical pressure loads for sufficiently large arch rises. A recent paper
[10] reviews other current literature on snap-through by parametric
excitation.

The immediate snap-through response curves in Figs. 2(b), (d), and
(f) do not exhibit a large jump as they do for the purely symmetric
results shown in Figs. 2(a), {c), and (e). Consequently, the Budian-
sky-Roth criterion is quite subjective. This gradual rise in the response
curves was also noted for centrally distributed step pressure loads
applied to spherical caps [11].

The critical magnitudes ¢, determined from the response diagrams
are plotted versus the distribution (direction) parameter v in Figs.
3(a)-(d). Also shown in each of these figures is the lower bound esti-
mate of ¢, determined by Hsu’s criterion. The critical magnitudes for
undamped finite time snap-through in Fig. 3(a) decrease very rapidly
for small increases in 7 from 7 = 0, and remain relatively close to the
lower bound.? The “jump-in-response” criterion is very distinct for
most finite time results and hence critical magnitudes were easily
determined for Figs. 3(a)—-(d). An exception is shown in Fig. 3(d) for

2 Fig. 3(a) is a refinement of Fig. 5 in [1]. In the present work many values
of ¢ for each distribution in the undamped case were used to generate more
precise response curves like Fig. 2(b). Thus the determination of the critical
magnitudes for finite time snap-through is more precise.

SEPTEMBER 1980, VOL. 47 / 603

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



7T T T T 1T T T 1 12—
L —o= ﬁ L _
1.0 - | — 1.0 -
i
[ ] 4 . —
|
08 |- 5 ~ 08 -
x ! b |
L. ! | % L
3 | =
o 06 |- oé) _ @ os | _
04 4 04 —
O--O IMMEDIATE SNAP-THROUGH _| L OO IMMEDIATE SNAP-THROUGH _|
oz L OO FINITE TIME SNAP-THROUGH 0z k- O—OFINITE TIME SNAP-THROUGH|
J
O‘Drl AR R R NN TN NN TN N SR S S S j? o7 R T ST N NS NOU VY Y I il g
ol2 14 16 18 20 22 24 26 0.2 14 16 18 20 22 24 .26
. €
(e} y=0I, 7=0
T T T
4 10 | -
| 08 - a
] x| ]
k3
i ® 06 |- .
- | 04 - _
jod
d - } o O--O IMMEDIATE SNAP-THROUGH_|
L O_o'o’od O--O IMMEDIATE ‘SNAP-THROUGH _| OUOOOO-
02 Lo O—OFINITE TIME SNAP-THROUGH| 02); O—OFINITE TIME SNAP-THROUGH
/A T S O Y T Y T M 00’1'; : |[4 L "6 ' Ils = 2'0 : 2'2 . 2'4 = Z_’
0.2 14 16 18 20 22 24 26 ’ ) ’ '
€

L N B s s B S B A S S 1
1.0 1
08 |- .
x — -
<
Z
@ 06 - —~
04 | -
L O--O IMMEDIATE SNAP-THROUGH _| | O--O IMMEDIATE SNAP-THROUGH _|
02 O—OFINITE TIME SNAP-THROUGH) oz | O—OFINITE TIME SNAP-THROUGH,
3/ I S WY T T TN N R W o‘a};|.||1.|1..|,.j
0.2 14 16 8 20 22 24 26 0.2 14 16 18 .20 22 .24 26
€ R €
{c} y=.005,v:=0 {(g) y=.05 7=0
22— T T T T T T B R IR A S e o B e e B M
O
- - L i
1.0 b~ . 1O o
08 - — 08 |- —
z - J ;< - 4
= =
@ 06 - @x 06 |- —
04 - . 04 =
L ¥ o O--O IMMEDIATE SNAP-THROUGH | F O--O IMMEDIATE SNAP-THROUGH._|
02 I o0 @ O—OFINITE TIME SNAP-THROUGH| o.zi C O—OFINITE TIME SNAP-THROUGH|
O‘%,L1|||||||||:||’? Q¢Llllllllllllllj
0.2 14 16 -8 .20 22 24 .26 ol 14 16 18 .20 22 24 .26
€
(d) y =.005, 7 =025 . {h) y=.05, v=.025
Fig. 2 (a-h) Dynamic response curves
604 / VOL. 47, SEPTEMBER 1980 Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



26 . T

T T
~—— IMMEDIATE SNAP-THROUGH
24 - ————FINITE TIME SNAP-THROUGH |

7 \N ;

2 L LOWER BOUND
'oi( | 1 ] ] j?

0 10 .20 .30 40

/

<

26 T I T I
——=IMMEDIATE SNAP-THROUGH

24 - — FINITE TIME SNAP-THROUGH

s

LOWER BOUND -

.lZ{

0 ] 1 | 1 ?
(0] 10 .20 .30 40

{b) y=.005

<

.26

T T I
===—|MMEDIATE SNAP-THROUGH

24 ——FINITE TIME SNAP-THROUGH |

.22

14 _
.tzi LOWER BOUND
0 | ! 1 | l
o} 10 20_ . 30 40
v
{c) y=0l
26 | n | |
———IMMEDIATE SNAP-THROUGH /
‘2,4 B ~——FINITE TIME SNAP-THROUGH |
22 |- B
-20 <& .
o I8 |- -
w
16 .
14 - -
LOWER BOUND |

.IZJ;
0 | V 1 | | ?

o] .10 .20 .30 40
(d) y =.05

AN

Fig. 3 (a-d) Critical magnitude versus distribution

v = 0.09 and v = 0.05 where no distinct jump in the finite time re-
sponse existed so the critical magnitude was not defined. Figs. 3(b)-
—(d) show that small amounts of damping significantly affect the finite
time critical magnitudes for all distributions considered. As the
damping increases, these critical magnitudes approach those of im-
mediate snap-through. As the damping decreases, there appears to
be a smooth decrease in critical magnitudes to their undamped (y =
0) values.

In most cases where 7 # 0, the immediate snap-through critical
magnitudes could not be determined, since no distinct jumps in the
response curves occurred. Instead, a range of critical magnitudes is
shown, based on R, varying from 0.6 to 0.862. The latter value is
the norm of the nearest critical point. The larger this range is for a
given v, the more gradual is the ipcrease in Ry, on the initial oscil-
lation with increasing e. If a distinct jump in Rpa greater than 0.2
occurred for immediate snap-through results, this value of ¢ is circled
in Figs. 3(a)-(d).

Concluding Remarks

Critical magnitudes of the initial velocity, determined by direct time
integration and the Budiansky-Roth criterion, are a function of the
initial velocity’s spatial distribution and material viscous damping.
For the elastic response (see Fig. 3(a)) the critical magnitudes for fi-
nite time snap-through are appreciably reduced for nonsymmetric
distributions (v = 0) of the load. For these same distributions, the
undamped critical magnitudes for immediate snap-through are not

Journal of Applied Mechanics

precisely defined by the Budiansky-Roth criterion. This subjectivity
is reflected in a range of € determined for each distribution which
results in a Rmay value varying from 0.60 to 0.862 on the initial oscil-
lation of the response. The critical magnitudes are compared to a lower
bound estimate formulated by Hsu [2] which is independent of the
spatial distribution and damping. This lower bound is a good estimate
of the undamped finite time critical magnitudes for nonsymmetric
distributions, but is a very conservative estimate of the range of un-
damped critical magnitudes for immediate snap-through.

Small viscous damping significantly increases the finite time critical
magnitudes (see Figs. 3(b)-(d)). Immediate snap-through critical
magnitudes remain subjective and their range is essentially unaffected
for damping coefficients vy of 0.005 and 0.01. For vy = 0.05 finite time
and immediate snap-through critical magnitudes approximately
coincide, and the range of subjectivity for immediate snap-through
is appreciably decreased. It is apparent, then, that the lower bound
estimate becomes quite conservative when small dissipation is in-
cluded. However, it remains precise. For y = 0.05 the critical magni-
tude is approximately 69 percent higher than the lower bound for a
distribution with small asymmetry (7 = 0.045), and is 33 percent high
for a distribution with larger asymmetry (v = 0.40).
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Classical buckling and initial postbuckling of a geometrically imperfect infinite plate on

a nonlinear elastic foundation under two independent applied compressive loads are ana-

lyzed. The plate is assumed to have imperfections of the same form as the buckling modes.

It is found that single mode behavior occurs when the two independent loads N, and N,

are unequal. A two-mode case occurs when the two applied loads are equal and the form

of the instability falls into the category of the parabolic umbilic type one or type two, de-

pending on the quadratic and cubic spring constants. The importance of the contribution

of the quartic term and imperfection-sensitivity is examined. The analysis is studied

within the context of Koiter’s general theory of multimode postbuckling behavior.

Introduction

Catastrophe theory [1] and the theory of elastic stability [2-5] are
two independently developed theories which deal with the stability
analysis of physical systems which evolve as a function of certain
prescribed parameters. As such, these theories are closely related to
one another and have resulted in a number of papers [6-8] which
provide comparative studies. It is evident from the foregoing that
catastrophe theory is effective in the classification of the forms of
instability which may occur while the task of actually providing a
method of analysis of physical systems has been taken up in the theory
of elastic stability.

Thompson and Hunt [6] were among the first to investigate the
similarity between the theory of elastic stability and catastrophe
theory and they provided a comparative study of the various types
of instability mechanisms. Sewell [7] provided a series of examples
which demonstrated various forms of the elementary catastrophes
while Huseyin [8] considered the comparison between the theory of
multiple-parameter systems and catastrophe theory. Further, a
general analysis of two-mode buckling problems and their relation
to the hyperbolic and elliptic catastrophes were presented in [9]. In
addition, the parabolic umbilic catastrophe was first analyzed in depth
in terms of the theory of elastic stability in [10] and was then applied
to the two-mode buckling problem of an imperfection-sensitive ex-
ternally pressurized spherical shell. Further applications to various
simple structures can also be found in [11, 12].
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The present paper deals with the two-mode initial postbuckling .
analysis of an infinite plate resting on a nonlinear elastic foundation.
It is found that the resulting form of the potential energy falls into
the category of the parabolic umbilic model of catastrophe theory.
This represents an extension of a paper by Reissner [13] in which he
showed that this problem is qualitatively similar to the two-mode
buckling problem of an externally pressurized spherical shell [14] in
that the expanded potential energy takes a similar form. A Koiter style
analysis is used and the problem is attacked using a UVW displace-
ment formulation.

The analysis considers the case of two independent compressive
in-plane loads N, and N, and it is shown that in general there exists
a unique eigenvalue for the buckling problem. However, in the par-
ticular situation that N, = N,, an infinite number of buckling modes
are involved. In the present case, the analysis is focused on a two-mode
interaction problem and it is shown that this leads to a stability
problem which takes the form of the parabolic umbilic catastrophe.
Critical load-imperfection results are obtained and it is demonstrated
that the inclusion of two independent load parameters, as specified
by catastrophe theory, can significantly alter the results. In addition,
the results show that higher-order terms of the potential energy for
the present two-mode plate buckling problem cannot always be ne-
glected in this type of asymptotic analysis.

Potential Energy
The potential energy of a plate resting on a nonlinear elastic
foundation can be expressed as

PE =U,+Up+Upr—Uw 1

where U, is the membrane strain energy, Up is the bending strain -
energy, Uy is the strain energy of the elastic foundation, and Uw is
the work done (positive for compessive loads) by the applied load. The
aforementioned quantities are given by
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and

Uw = § §f N U.dxdy + f f N,V ,dxdy 5)
Tn the foregoing, £ is Young’s modulus, t is the thickness of the plate,
v is Poisson’s ratio, (U, V, W) is the displacement vector of the middle
plane of the plate, ko, ks, k3 are related to the linear, quadratic, and
the cubic spring constants of the elastic foundation, respectively, and
N, N, are the in-plane, applied loads in the x,y-directions respec-
tively.

The prebuckling state of a plate is composed of end shortening in
the two in-plane directions with no out-of-plane displacement.
Therefore, the total displacement takes the form

U=cix+u, W=w (6)

where ¢ and ¢5 are functions of the applied loads and u, v, w are in-
cremental displacements which are zero prior to buckling.

Substituting the total displacement into the potential energy ex-
pression and then grouping the terms according to the powers of the
incremental displacements, the potential energy may be expressed
as

V=coy+u,

PMul = P [u] + P ul + P lu] + POl + . .. ™

where P;Mu] is a function of the ith degree in the perturbed dis-
placements and u represents the vector of displacements [u, v, w]T.
The superscript A indicates that the functional contains terms which
depend on the applied loads and the superscript 0 implies that the
functional is independent of the applied loads.
Explicit values for ¢1 and ¢4 are obtained from the requirement that
P Mu] must vanish in order that the prebuckling state be an equi-
librium state. Using this condition yields
1 1
== WNe = oyl o=

N, —
L vy

vN.] (8)
The remaining quantities Po°[u], Py'[u], Po*[u], and P40[u] are
Et 1
oyl = e 2 2 421~ 2
POu] 51— ff{u vyt 5 1-m(uy+uvy)

+ 2(uxvy) + (1—2-) [W2ee + w2y + 20w wyy

1
+2(1 - vyw?,, | + -2—k1w2 dxdy (9)

Pylul =~ ff% w? (dxdy
‘Pz*[u] = - ff%w%y dxdy

Et
P3olu] = m ffu_xwz,x +ow2y + vuw?,)

(10)

(11)

) ,
—(yw2,) + (1 = ) uy +o ) wawy) + §h2w3dxdy (12)
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Et 1 1 :
0] = ——— = 2 =
Pl = g [ @t w2 + S havtdzdy (13)
where
Pylul =~ Pplu] and Pylu] = —— Ppu]
N, oN,

In the foregoing, it may be noted that Ps[u] has replaced Ps*u)]. This
results because of the linearity of the prebuckling problem.

Classical Buckling Load

The classical critical load is determined from the condition that the
first and second variations of the quadratic terms in the potential
energy must vanish. These calculations take the form of an eigenvalue
problem in terms of N, and N,, with the set of minimum values cor-
responding to the locus of classical critical loads.

The eigenfunctions are easily found as

Ukyhy = 0; Ukeky =0
_sin x\ sin y
wklky - (kx —) (ky —)
cos qj cos q

with the corresponding eigenvalues defined by

Aeke? 4 Nky2 = = [(Be® + By2)2 + 1] (14)

1
2
In obtaining these results the nondimensional quantities A, A, have
been introduced as

1—»?)q>

6(
(As, )\y) = e (N, Ny)

where g = [£2/6k1]V/4, In addition, k., k, are the wave numbers in the
x, y-directions, respectively. ’

The classical critical load is obtained as the least value of this ex-
pression when it is minimized with respect to the wave numbers k.2
and k2. Also, since A, and A, are assumed to be independent, there
is a locus of values of A, and A, which defines the classical critical load.
This locus of values may be determined in a number of ways; however,
in the present case it is determined by assuming a prescribed rela-
tionship between A, and A, and another parameter A, and then de-
termining the least value of A, Doing so yields

A= ak; Ay =0A
where « and 3 (not both zero) take the values 0 < («, 8) < 1. Thus the’
eigenvalue equation can be rewritten as
(k24 R+
2(aky® + Bky?)
For the case 0 < 8 < « it may be shown that the minimum eigenvalues
are

(15)

Aeg=1; 0 A, <1 (16)
where
B
>\)’cl = (J
o
corresponding to the wave numbers
ki2=1; k)2=0 amn

A second possibility 0 < a < (3 follows in a parallel manner and yields
identical results with the interchange of A, and A, as well as k, and
ky in the aforementioned. The third possibility which arises is that
due to the uniform compression case o = . For this situation the least
eigenvalue is )

Aa=1 Ay =1 (18)
corresponding to the critical wave numbers
k24 ky2=1 (19)
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Fig. 1 Interaction of the critical loads )\,‘, and )\yc,

The previous eigenvalue will be designated as A, or in dimensional
form

_ Et®

6(1 — v2)q2
These results, which yield the buckling load interaction for the in-
dependent applied loads N, and Ny, are presented in Fig. 1. The in-

N

teraction curves are obtained as the straight lines O1A and 094, re-

spectively. Excluding the point A, any point which lies on the line 0,4
implies a state of single mode buckling. Similarly, any point on the
line 024 leads to a state of single mode buckling. The point A repre-
sents the case when the applied loads are of equal magnitude and for
which multimode buckling occurs as there exist more than one set of
wave numbers k, and k, which satisfy the condition for a minimum
eigenvalue. .

From this point on, the analysis will concentrate on the two-mode
buckling problem which results when the critical wave numbers are
given by

ky=1, ky=0 First mode

1
ky = 5, ky = Second mode (20)

2
or by the identical situation when k. and k, are interchanged. The
specification of this particular combination of &, and &, may seem
rather arbitrary and quite restricitve; however, it represents an im-
portant stepping stone to the multiple mode buckling situations. That
is, for the possibilities involving Ay, # Ay, single mode buckling
occurs which has been adequately treated elsewhere. In addition, for
the situation Ay, = A,,, the foregoing combinations of &, and &, lead
to the only two-mode problem which has nontrivial cubic terms in the
potential energy. Thus, since higher-order instabilities contain the
lower-order ones as special cases, it is appropriate to obtain a complete
understanding of the lower-order problem. This has not been con-
sidered previously.

Initial Postbuckling of a Two-Mode System

Following Koiter’s method of analysis [2], the potential energy of
‘a two-mode gystem can be expanded in a Taylor’s series about the
classical critical load of the perfect system. Upon expansion, the ap-
proximation to the potential energy becomes

PE = (N = Nep)Po'fu.] + (Ny — Nop)Po*luc] + PsOlu.) + ...

+ NxPn’[uc, I—L'] + NyPu*[uc, 17] +... (21)

where Iz are initial imperfections which are taken in the same form
as the buckling modes. The two sets of wave numbers given in the last
section yields the critical modes

ucl = [uc 1, U¢ 1, We I]T = tgl[oy 0’ cos (x/q)]T
ue? = [ue? vo2 w27 = t£50, 0,
cos (x/2q) cos (v/3y/2q)]T  (22)

Upon substitution of the eigenvectors into the potential energy and

Journal of Applied Mechanics

carrying out the appropriate integration, the quadratic terms be-
come

Py =——|&2+ | So |-
el = = ¢ [0+ ] s, :
1(3 t\2
Po*[uc] = = = |= £2] So |- 23
o*[ue] 2 (8 & ) 0 (q) (23)
The terms involving the initial imperfections are
1{, = 1, - t\2
Pu'lug, ] = — = (Elfl + "5252) So (—)
2 .8 q
1(3 - t\2
Py*ue, ] = ~ = (' Ez‘fz)' So (‘) (24)
218 q

where £1£5 are the imperfection amplitudes. The cubic contribution
is given by

Et 1
Plu.] = m ffg ko(w,! + w.2)3dx dy,

which can be expressed as
PiPluc] = Pue] + Paruch, ue?] + P1ofuet, ue?] + Pgdlu,?]

Upon evaluation, the various terms become

P1oOfu,t, ue? = '_I%ty—g) (41822 (t3R2/8)So

2(1

PoPluct] = PorOuct, ue?] = PsPlu.s = 0 (25)

The fact that the last three terms vanish leads to the requirement [10]
that higher-order quantities must be retained.in the first approxi-
mation to the potential energy. The appropriate quantity for the
present problem is a quartic and with the inclusion of this term the
problem falls into the classification of the parabolic umbilic catas-
trophe. The additional term which is required is P4%fu. 1] — PoMuol
where

3
- (26)
32
and where ug = [ug, vg, wo]7 is the solution of the second-order per-

turbation problem. Following Koiter [2], us is given by the solution
of

Polucl] = Q_Q—E.f_,ﬂS[ ] {1+ gk4 [5]451430

Py1Mug, dus] = — Por®lu,t, dus) 2"

subject to the appropriate orthogonality conditions for u9. The set
of differential equations for us, vs, we is then obtained as

t2 | [%x
Quaxx + (1 + 1vgyy + (1 = plugy, = — 512;53111 ;-
20gyy + (14 Vugey + (L = w)vge =0 (28)
t2
E [w2,xxxx + 2w2,xxyy + w2,yyyy] + kiws
2(1 — »?)
+— [wa2,xx + Nyw2,yy]
Et
1 2x
= — = £ 2%, (1 + cos —)
2 q
and where it is noted that the influence of the boundary conditions
has been omitted and are replaced by a periodicity requirement.
The solution of the aforementioned differential equations is of the
form

ug = (s1)(&2) (sin g{)
q
Vg = 89
(29)

2x
wy = s3k1% + 5412 cos —
q

Since only derivatives of v appear in PoMus] then sg need not be
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evaluated. Thus, substituting the expressions for ug and w3 into the
differential equations, the constants sy, s, and s4 can be evaluated.
Doing so yields

and therefore the desired modification to the quartic term is
Et (t\*[ 1 19¢* (kz)"’}
— PMug)l = ——— || {——————=} £128 (30)
e T (q) [ B2 144y )0

Now, assembling the results from equations (23)—(26) and (30), the
approximation to the potential energy becomes

SN L2 2 e R P zlz)
B 20»—#)&)S°L2b' AJ(&'+852

1 3 1
+ o (L~-Xy) P &2+ §K2£1£22 + Caob1?
1 - 1-
—_—— x + —_
5 Acibr 85252)

1 3-
" Ay (g 5252)} (31)
where

C40 = i (32)

16
and where Ko = (g/t) ko, K3 = q*ks are nondimensional spring
constants. The equilibrium equations and stability determinant for
the foregoing may now be obtained directly as

3 38
1+5Ks~ = (K 2]
5 Ks 3( 2)

3 _
A=A + ZKZ&Z + 24C4081% = M1

3 3
%u—xg+gu—xﬂ b+ Kol

=§M+%ﬁzwm

and
3
(1= A2} + 72040612 5K222
1 3
—(I—=A)+=(1—X (34)
3 ( ) 3 ( y)
3 3
-K +-K
> 22 5 2f1
respectively.

Transformation to Standard Form

The previously obtained potential energy expression can be
transformed to the standard form of the parabolic umbilic by intro-
ducing the nondimensional quantities x, y, L1, L, €1, and € (x and
y not to be confused with coordinates of plate). The appropriate ex-
pressions are

x = C*Ey, y = [Kof8C*]V2,

1 1
In= E(l = A)/C*2 La= 12 [(1 = As) + 3(1 — A)]{C*/Ks]

€ = % (A/C*E1 ea= '2:(7\:: +3)) VOB &2

where .
C* = vV |C4()| .
Thus, after division by a constant, the potential energy is transformed
to the form
PE = £x*+xy2+ L1x%+ Lay? — e1x — €3y

where the “+” or “~ signs correspond to C4g being positive or neg-
ative, respectively. The stability problem is therefore characterized
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TYPE

e ONE ¥ Tvee

TWO

Fig. 2 Range of spring constants K, and K, which leads to the parabolic
umbilic type one and type two models

by four control parameters (L1, L, €1, €2) which are defined by the
loads A, and A, and the initial geometric imperfections ¢; and £». The
two cases defined by a positive or negative coefficiént C 4 result in
distinctive stability problems and these are termed the parabolic

. umbilic types one and two, respectively. Fig. 2 shows the range of

parameters K 2, K3 which lead to either of these possibilities. Here,
the hatched region corresponds to the type one case, the line repre-
sents a singular case when C 4o vanishes (which is not treated in the
context of the present analysis) and the remainder is the type two
case.

Results

In order to show the influence of the quartic term as well as that of
independent loads a series of representative curves demonstrating
these parameters has been evaluated. The results are for the particular
two-mode case corresponding to the modes of equation (22) and in
the form of selected critical load-initial imperfection curves resulting
from the stability problem described by equations (33) and (34). For
the purposes of illustration K3 and K3 have been chosen as K5 = 0.133,
K3 = —0.4375 and —0.5955 which yield %; K5 = 0.1 and 24Cyo =
4+ 0.177 and where the type one and type two cases occur for positive
and negative values of Cyp, respectively. Further, for comparison _
purposes, in Fig. 3 the results for C4o = 0 are also presented. It is felt
that the foregoing choice of coefficients yields the possibility of ob-
taining an unbiased parameter study for the present problem.

Fig. 3 demonstrates the differences in imperfection sensitivity for
the type one and type two cases and a further comparison curve when
the quartic term is omitted is also evaluated. It is noted that the ap-
plied loads are constrained to be equal (A; = A,). Of importance in
this figure are the changes in imperfection sensitivity even for small
imperfections and perhaps more importantly the existence of a critical
Toad curve only in the type two case for positive values of the imper-
fection. Thus, if the quartic term is omitted in the analysis, there are
fundamental changes in the critical load behavior of the type two case,
even in an agsymptotic sense.

Figs. 4 and 5 are denoted to an evaluation of the applied loads, A,

. and Ny, being independent. This feature manifests itself in the factor

e. For the situation presented in Fig. 4 it may be appreciated that there
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Fig. 3 Critical load-imperfection curves for equal applied loads (A, = )\y)
andé, = 0 .

are indeed changes in the critical loads as a function of ¢, this change
being quite uniform. The most interesting aspect is that for € positive
the critical load curve intersects the vertical axis. This implies a de-
crease in Ay, even for £; = 0 and in addition that the type one situation
becomes imperfection sensitive to positive £; which was not the case
for equal applied loads (A, = A,). Thus, although it is true for only
very small positive £;, there has been a fundamental asymptotic
change in the critical load-initial imperfection result. It is further
noted in Fig. 4 that the type one and type two cases yield asymptoti-
cally similar results for negative £; although the results do show dif-
ferent trends even for small imperfections. Fig. 5 considers the case
when £1 = 0 and £ varies. The features which are predominant are
that the type one and type two problems yield essentially similar
trends and that the parameter € causes a quite uniform shift in the
critical load-imperfection curve.

Summary and Conclusions ‘

This paper has presented the initial postbuckling analysis of a plate
loaded under the action of two independent in-plane loads. It has been
noted that in general terms single mode buckling occurs if the applied
loads are of unequal magnitude and multiple mode buckling occurs
for equal magnitude loads. One particular aspect of the multiple mode
case has been investigated. That is, a two mode case which results from
the lowest order coupling in the problem. It has been further noted
that for this situation the problem takes the form of the parabolic
umbilic catastrophe and thus for a complete representation of the
initial postbuckling behavior, a higher-order quartic term in the po-
tential energy as well as independence of the applied loads must be
permitted. The influence of these factors are then investigated and
it is fair to say that the inclusion or exclusion of the quartic term can
alter the postbuckling behavior completely while the variability of
the applied loads results in some not unimportant changes in the
overall as well as asymptotic character of the critical load-initial im-
perfection results.

Two additional factors related to this presentation should be
mentioned. First, the two mode analysis considered is only part of a
more complex multimode situation; however, the coupling terms for
the more general case are of fourth order or higher. In addition, the
present problem will always exist as a reduction of the more general
case. Second, the form of the cubic terms in the potential energy af,£92
obtained in the present analysis leads directly to a consideration of
the parabolic umbilic. This is not the most general situation as the
same results will occur if the cubic terms are of a more complete form
A£3 + BE2Ey + CErE9® + DEs® where the coefficients A, B, C, D are
related such that this cubic form has two equal roots. Thus higher-
order terms in the potentlal energy as well as independence of applied
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Fig. 4 Critical load-imperfection curves for unequal applied loads (A, = A,
+€)andf, =0

§_| =0, )‘y = AN+ e
-------- TYPE ONE
TYPE 'I:WO

&

Fig.5 Critical load-imperfection curves for unequal applied loads (A, = Ax
+e)andf =0

loads may play a role even wheén the cubic terms in the potential en-
ergy are apparently quite complete.
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The possibility of localization of @ buckling pattern is investigated for a class of structures
in which the initial buckling mode is periodic. A simple model indicates that the basic
mechanism of localization involves a bifurcation at the maximum load point. This model
also illustrates a clear analogy between localization of a buckling pattern in a structure
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the maximum load point and the bifurcation point. A finite-element analysis of an elas-
tic-plastic plate strip under axial compression shows the development of localization for
a low hardening material, whereas localization does not occur in a-plate made of a high
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hardening materiol for which no maximum load is reached.

Introduction

A frequent observation in structural buckling is that the final
buckled configuration of the structure involves a localized deforma-
tion pattern, in contrast with the periodic deformation pattern as-
sociated with the critical buckling mode. The structures prone to this
type of localization have the common property that the applied
load-deflection curve achieves a maximum. For example, Moxham
[1] has observed the behavior illustrated in Fig. 1 in over 100 tests
carried out on steel plates and has used a model based on an assembly
of single plates hinged together to argue that continued growth of all
buckles is not stable beyond the maximum load [2].

In the present paper such localization of buckling patterns is dis-
cussed in a broad perspective. First, for a simple model we show that
the basic mechanism of localization is a bifurcation at the maximum
load point. This type of model reveals that localization of a buckling
pattern is in various ways analogous to necking in tensile bars.

Next, for an elastic column on a softening foundation, the bifur-
cation, at which the initial periodic buckling pattern loses uniqueness,
is analyzed in detail. In particular, we'show, again analogous to the
situation prevailing in tensile necking, that in a realistic structural
model there is a delay between the maximum load point and the point
of bifurcation that leads to localization. For this structure, the effect
of geometric and material parameters on this delay is explored.
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Finally, we carry out a finite-element analysis of a long simply
supported rectangular plate made of a strain-hardening elastic-plastic
material. For a particular plate geometry the bifurcation point, at
which the initial periodic buckling pattern loses uniqueness, is de-
termined. However, here, primary emphasis is given to analyzing the
development of localization.

Simplified Models .

The basic mechanism involved in the localization of a buckling
pattern is revealed by a simple bar model (Fig. 2) which can be re-
garded as a one-dimensional model of a long periodically buckled
structure under compressive loading.

Consider a homogeneous axially compressed bar constrained to
remain straight, but free to slide in the axial direction (Fig. 2a). The
axial stress-strain curve is taken to be a nonlinear function of the
strain. This constitutive law models the axial force versus average axial
strain dependence in a structure, such as a long simply supported plate
strip, including the effects of any periodic buckling pattern which has
developed. Thus we take the effects of both geometric and material
nonlinearities to be incorporated into the nonlinear stiffness of the
bar.

For a bar of length L, the end displacements are taken to be pre-
scribed at x = 0, L. The incremental relation between the axial force
N and strain e is

N=C¢ E=ly (1)
where C is the instantaneous modulus and w is the axial displacement.
We have used a small strain formulation since in the buckling prob-
lems of interest here the strains do remain small.

Bifurcation away from a uniformly strained state is governed by
the variational equation

L
SI=0 1=f Cez dx ©
0
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Fig. 1 Final collapse mode of an axially compressed steel plate strip, from
Moxham [1]

where () denotes the difference between two solutions corresponding
to the same prescribed end displacements. Bifurcation modes of the
form

7 = sin ——

=123... 3
L n (3)

are all critical simultaneously for C = 0, i.e., at the maximum load. If
no maximum is reached, bifurcation does not occur. Note that in this
very simple model the classical bifurcation of a geometrically perfect
structure into a periodic buckling pattern effects the stiffness C, but
within the context of this model is not a bifurcation, since the average
axial strain € remains uniform.

The same conclusion can be reached by a different analysis. Con-
sider incremental deformations from the homogeneous state. We
investigate whether a localized region (B in Fig. 2(b)) can undergo
incremental straining different from that in the surrounding material
(A in Fig. 2(b)).

Incremental equilibrium requires

Ga= 0B (4)

where (') denotes an increment and subscripts A and B denote
quantities associated with the corresponding regions in Fig. 2(b).
Since Con

o4 =Cey op = Cép (5)
Incremental equilibrium implies °
Clep = ea) =0 )
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Fig. 2 Axially compressed bar model; (a) a homogeneous bar with its
stress-strain curve; (b) a bar undergoing localization. In (b), the stress-strain
curve in the localized mode (- - -) is contrasted with that for a homogeneous
bar (—-)-

Hence, such an alternative deformation state is possible only when
C =0, i.e., at the maximum load point.

These analyses are quite analogous to the similar one-dimensional
analyses of necking in a tensile bar. As for the tensile bar [3, 4], the
extent of the region of localized deformation is determined by factors"
not incorporated into the one-dimensional model. For example, in
an axially compressed plate strip with a periodic buckling pattern,
o can be associated with the axial load and e with the node-to-node
shortening divided by the distance between nodes. The localized
deformation pattern then covers at least one buckle in the funda-
mental periodic pattern.

The postlocalization behavior can readily be determined within the
context of this simple bar model. We let L denote the total length of
the bar and ¢ denote the total strain increment. Hence, as shown in
Fig. 2(b)

L=2Ls+Lp (N
and
E=(l—p)éatpeg 8
where p = Lg/L.

Incremental equilibrium (4) then gives

Cp
C )

i- O _
f—CB[le )

At bifurcation Cg = 0 (implying a smooth stress-strain curve at bi-

furcation for this model), while Cg is negative after the maximum

load. As long as C, is algebraically larger than Cg, the stress-strain

curve corresponding to localization will lie below the one corre-

sponding to homogeneous deformation, as shown in Fig. 2(b). Note

that for a given Cp/C4, the smaller p is, the more rapidly the load

drops. If the bar in Fig. 2 is considered as a model of an axially com- .
pressed plate strip, then (9) gives the load-end shortening curve that

emerges from Moxham’s model [2].

In addition to the axially compressed plate strip this simple bar
model also has a bearing on other buckling problems. Among these
are a column supported by an elastic or elastic-plastic foundation, a -
column continuous over several constantly spaced supports, which
are free to move in the axial direction, and a stiffened panel contin-
uous over several bays. In these cases a maximum load may be reached
due to elastic-plastic material behavior or, in the panel, due to geo-
metric nonlinearities [5, 6].

A similar simple model can also be used for the problem of tube
bending that has attracted some interest in recent years [7-9]. In tube

"bending a maximum moment is reached due to the ovalization of the

cross section (the Brazier effect), and possible buckling into a short-
wave pattern on the compressed side of the tube will further decrease

- the bending stiffness. If the tube yields plastically, much less ovali-

zation is needed before the maximum moment is reached.
Consider the tube as a uniform bar of length L bent into a circular

.shape with current radius R (Fig. 3). The current angle # between the -
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n=2 BIFURCATION MODE

Fig.3 Tube bentinto a circular shape with current radius R, by prescribing
the angle 0

end cross sections at x = 0, L is taken to be prescribed, but otherwise
the ends can slide freely. Referred to the current neutral axis of the
bar the incremental relations between the bending moment M, the

-axial force N, the bending strain k, and the axial strain e are
M =Dk

k= w,xx

(10)

. L. w

N=C¢ é=u,x+E

where D and C are instantaneous moduli and shallow arch expressions
are used for the strains in terms of the tangential and radial dis-
placements u and w. Bifurcation is governed by the variational
equation

L
sI=0 I= J; (CZ2 + DRR + Nboth,) dx (1)
and with N = 0, C > 0 bifurcation into modes of the form
nwx
w=alcosT7r- d=a2sin% n=123.... (12)

is critical for D = 0, i.e., at the point of maximum bending moment.
This means that even for prescribed edge rotations the circular shape
is unstable beyond the point of maximum moment. The symmetric
n = 2 mode, sketched in Fig. 3, leads to the well-known final collapse
mode, in which the tube forms a sharp kink. Higher-order modes
would lead to more kinks.

We note that equations paralleling (4)—(9) can also be written down
for this tube bending problem.

Elastic Column on a Softening Foundation

The structure considered is a linear elastic column of length L,
having bending stiffness EI and subjected to an axial load P as shown
in Fig. 4. The column rests on a foundation that provides a restoring
force per unit length F. )

In the presence of an initial imperfection W(X), the governing
differential equation takes the form

(13)

Here W(X) is the lateral displacement of the column in addition to
the initial deviation from the straight configuration measured by
W(X).

The restoring force provided by the foundation is a piecewise linear
function of the additional displacement W(X), as sketched in Fig.
4, so that

_ KW IWl < Wy
+K1Wo+ Ko W = W) ‘Wl > Wo

with the upper sign taken for W > 0 and the lower for W < 0 and
K, > K, for a softening foundation.

Here, the displacement Wy is termed the yield point of the foun-
dation. We introduce the nondimensional quantities

x = (Kl/EI)1/4X w= W/WQ E=W/W0

(14)

(15)

8 = Ko/Ks - %P/(KlEI)I/Z

Journal of Applied Mechanics

Fig. 4 Column on a softening foundation; the insert shows the piecewise
linear force-deflection curve of the foundation

where, since K; > K3, 8 < 1. Substituting (14) and (15) into (13)
gives
W + 2\’ + w = —2ND”
w” + 2 \w” + Bw = =2\w” ¥ (1 — )
where () denotesd( )/dx.
The column is taken to be simply supported at its ends so that
w0 =wl)=0 w’O)=w’{)=0 (17
with [ = (Ky/EI)1/4 L. -
For a perfect column, @ = 0, the initial bifurcation mode & and the
corresponding bifurcation load are
&L nkul
W=sin—— A =—fj—1 +|—
! 21\ 1 l

where n is the integer that minimizes Xc. For convenience, we focus
attention on columns with length | = n, for which

Ac=1

wj<1

|w]>1 (16)

1
nwx (18)

W =sinx 19)

Now, consider a column with an imperfection, of amplitude 9, in the
shape of the critical bifurcation mode (19). The solution to (16) is
simply

w(x) 1_}\smx (20)
so long as A6 < 1 — X, For larger deflections, the softening branch of
(14) will be activated. One solution has, as does (20), n half waves over
the length of the column. The locations of the yield point, i.e., the
positions at which |w| = 1, are given by (k — 1/2) «# — v and (k — 1/2)
X 7 + 7y for each half wave, k = 1,2...n. The parameter v is deter-
mined by the analysis.

Due to symmetry, we can focus on the quarter wave for which
0 < x < w/2. In this interval the solution to (16) is

wix) 0<x<w/2—7

wx) = /2=y <x < /2

(21)
wa(x)

Here,

w1(x) = 2 Re {cy sinh sx} + sin x 22)

1—-XA
wa(x) = rycos p(x - 7/2) + rocos q(x. — w/2)

A6 . ( 1)
+— +{1-=| (23)
sin x 5

Bri_,
2
where .
PP=A=VAT=F q2=A+ VM= st=-A+iVI— N
N (24)
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Fig. 5 - Load versus lateral deflection amplitude for a column on a softening
foundation with § = 0.1

withi = 1/—1 and Re{ "} denoting the real part of a complex quantity.
The form of wa(x) displayed in (23) presumes A% > 3, which holds for
the range of parameters of interest here.
The complex constant ¢y and the two real constants ry and rg are
determined from the requirement that the deflection, the rotation,
‘the bending moment, and the shear force are continuous at x = 7/2
— 7. In terms of the functions w1(x) and wa(x), these conditions be-
come

" = "=

wi=wy wy=wy wi”’=ws" w=wy” (25)

for x = w/2 — . In addition, for consistency, there is the requirement
that

w(r/2—v)=1 (26)

The relaticns (25) give four equations for the four coefficients; the real
part of ¢1, the imaginary part of ¢1, r1, and ro. The subsidiary condition
(26) fixes A for a given +y.

These equations are solved by a straightforward numerical proce-
dure. Figs. 5 and 6 display the results in terms of curves of load A
versus the lateral deflection amplitude wy, where

A3

In Fig. 5, 8 is taken as 0.1 while in Fig. 6 results for a somewhat
stiffer foundation 8 = 0.25, are illustrated. In each figure, the dotted
lines denote the limiting value of the load for large wn, namely,
(B + 1)/2, and results are displayed for a perfect column § = 0, and for
imperfection amplitudes 8, of 0.1 and 0.5. Of course, in this periodic
maode, the load-lateral deflection curves are independent of the length
of the column.

Bifurcation from this state is possible when there exists a solution
to the homogeneous version of (16), which satisfies the boundary
conditions (17) and the continuity conditions (25) at each

k-1/2Dmxv,k=12...n

E=1,2,...n (@7)

Wm =

Since each of (16) is a constant coefficient fourth-order ordinary
differential equation, the homogeneous solution can be expressed as
the sum of four complex exponentials, there being two pairs of com-
plex conjugate exponentials. For a column of length nw, the homo-
geneous solution to (16) contains 2(2n + 1) arbitrary constants. At
each of the 2n locations (k — 1/2) m £ v,k =1, 2. .. n, the four con-
tinuity conditions (25) must be satisfied. Additionally, the homoge-
neous boundary conditions (17) at each end of the column give four
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Fig. 8 Load versus lateral deflection amplitude for a column on a softening
foundation with 8 = 0.25
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Fig. 7 (a) The periodic lateral deflection pattern for 8 = 0.1 and § = 0 at
the bifurcation point for / = 5. (b) The bifurcation mode. (¢) An arbitrary
linear combination of the periodic mode and the bifurcation mode, illustrating
the tendency to localization

equations. Thus there are 8n + 4 homogeneous equations to be sat-
isfied by 4n + 2 complex constants, When the determinant of the
coefficients of the equivalent system of (81 + 4) X (8n + 4) real
equations vanishes, a nontrivial solution exists to the bifurcation
equations.

Since the load A is taken as the prescribed quantity, this determi-
nant necessarily vanishes at the maximum load point. However, the
corresponding eigenmode is not a bifurcation mode, but is some ar-
bitrary multiple of the solution (21)-(23). The agreement between .
this trivial mode and (21)—(23) served as a check on the numerical
procedures.
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Fig. 8 Load versus average axial strain for a rectangular plate with n = 10,
oy/E = 0,00337, /b= 0.035, v = 0.3

A straightforward numerical search procedure was employed to
determine the value of the lateral deflection amplitude at bifurcation
from the configuration described by (21)-(23) for various column
lengths nw. For a perfect column this is a secondary bifurcation
point. ’

As will be discussed in conjunction with Fig. 7 subsequently, the
bifurcation mode has a number of half waves different from n, so that
a linear combination of the primary periodic mode and the bifurcation
mode can result in preferential growth of one of the buckles. However,
to distinguish between mode snapping to the wavenumber of the bi-
furcation mode and localization involves postbifurcation consider-
ations. If the springs are elastic-plastic, in the sense that unloading
occurs with stiffness K in (14) (the dash-dot line in Fig. 4), then lo-
calization rather than mode snapping is anticipated. In this case un-
loading initiates at bifurcation and the relative amplitudes of the
periodic mode and the localized mode, at bifurcation, are set by the
Shanley condition 10, 11, 13].

Bifurcation points for various values of n are shown in Figs. 5 and
6. The bifurcation modes are constrained to be symmetrical about the
center of the column x = n7/2. For the boundary conditions employed
here, bifurcation modes antisymmetrical about x = nw/2 occur
somewhat before the ones shown.

In Fig. 5, where 3 = 0.1, the bifurcation points for column lengths
of 97 (n = 9) and 57 (n = 5) are shown. As the length of the column
increases, the bifurcation point approaches the maximum load point
which is the bifurcation point according to the simple model discussed
in the previous section. This is analogous to necking in a tensile bar
[3, 4] where for a finite length bar the onset of necking is somewhat
delayed beyond the maximum load point. In Fig. 6 where the foun-
dation is somewhat stiffer, 8 = 0.25, bifurcation occurs at larger de-
flections, wy,, than in Fig. 5 where § = 0.1. For a fixed column length,
it can be seen that the bifurcation point occurs further beyond the

maximum load point as the harmonic imperfection amplitude 6 in-

creases.

Fig. 7 shows, for 8 = 0.1 and | = 5, the periodic deflection pattern,
the bifurcation mode and an arbitrary linear combination of these
indicating the tendency to localization. For the antisymmetric bi-
furcation mode, which occurs somewhat earlier, localization would
occur at one end of the column. In the analysis of the onset of necking
in tensile bars [4] an analogous situation is encountered in that under
the idealized boundary conditions employed in that analysis, the neck
is predicted to form at one end of the bar, unless symmetry about the
midplane of the bar is imposed.

Elastic-Plastic Plates
The rectangular plates considered in this section have length ¢ and

Journal of Applied Mechanics

width b in the x1 and xg-directions, respectively, and the thickness
is k. Using von Karman plate theory the in-plane components of the
Lagrangian strain tensor are approximated by

Nap = €ap + X3 Kag (28)

1
€ag = 5 (Uap+ Uga T Waltp), Kap™ —Wap

where u, are the in-plane displacements and w is the lateral dis-
placement of the plate middle surface. The coordinate normal to the
middle surface is x3 and () . denotes partial differentiation with
respect to the in-plane coordinates.

The theory of plasticity employed is small strain J2-flow theory with
isotropic hardening, using a uniaxial stress-strain behavior repre-
sented by the following piecewise power law

Z for o<
-, or o<a
E ¥
= . . ‘ (29)
n
&[—(i) ——+1|, for o=o,
E in\o, n

Here o and € are the uniaxial stress and strain, E is Young’s modulus,
gy is the initial yield stress, and n is the strain-hardening exponent.
At each stage of the computation the membrane stress tensor Nagand
the moment tensor Mg are determined from the stresses by inte-
grating through the thickness, and the incremental principle of virtual
work is used as the basis for a numerical solution. The details of the
equations are given in [12] and shall not be repeated here.
The plates are taken to be simply supported at all four edges

w=0,M;;=0 at x;=0,a
w=0,My=0 at x22=0,b

The loaded edges are constrained to remain straight, whereas the
other two edges are free to pull in

(30)

u1 (0, xe) = —uyla, x2) = U
N22=0 at x2=0,b

N12=0 at x1=0,a and x2=0,b (31)

Here, U is the prescribed edge displacement and in the following the
parameter A is taken to be proportional with the resultant axial force.
Furthermore, only deflections symmetric about the lines x; = a/2 and
xg = b/2 are considered here, so that symmetry conditions are pre-
scribed along these two lines and only one quarter of the plate needs
be considered in the numerical solution.

Imperfections in the initial stress-free state of the plate are specified
in the form of an initial deflection :

UL sin Zrzx_z (32)

w = h(gl + 526_[(2“_”)/]’]2) sin m

where £; is the amplitude of an imperfection in the shape of the bi-
furcation mode and &; represents the amplitude of a localized im-
perfection. Thus the total lateral deflection w is the sum of the initial
deflection it and the further deflection due to the loading.

The thickness to width ratio h/b = 0.035 and material parameters
ay/E =0.00337, v = 0.3, and n = 10 used in [12] are also chosen here,
Furthermore, a/b = 3 is chosen with m = 3 in (32), corresponding to
square buckles; even though the minimum bifurcation load in this case
is obtained for buckles 0.814 times as long as the plate width. A reason
for this choice is that the bifurcation load for square buckles is only
2.5 percent above that for the critical wavelength, and square buckles
grow faster prior to plastic yielding.

Numerieal solutions of the incremental equilibrium equation are
obtained by dividing one quarter of the plate into 6 X 2 rectangular
conforming finite elements. Within an element each displacement
component is approximated by products of Hermitian cubics in the
x1 and x-directions, and integrals over the middle surface are eval-
uated by 4 X 4 point Gaussian quadrature, with 7 point Simpson in-
tegration through the thickness.

Tig. 8 shows a plot of the load parameter A normalized by the critical
value ), for square buckles versus the average axial strain e = 2U/a.
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Fig. 9 Load versus maximum lateral deflection amplitude for a rectangular
plate with n = 10, o,/E = 0.00337, /b = 0.035,» = 0.3

Fig. 9 shows A versus the maximum displacement w,, = w(a/2, b/2).
For{, = 0.01 and &, = 0 three equal buckles grow'in a stable manner
until a bifurcation point is reached a little after the point of maximum
axial force. The bifurcation point is characterized by a nonzero solu-
tion of the variational equation )

sI=0 I= f (Nagug + MagRap + Nagil oib gl dA = 0 (33)
A

for fixed edge displacements. Thus, at this point, the uniqueness of
the periodic solution is lost in agreement with the prediction of the
simplified bar model and with the behavior of the elastically sup-
ported column.

Now in order to follow the process of localization _a slightly
nonuniform imperfection is considered with &, = 0.01 and &2 = 0.001.
In Figs. 8 and 9, the result is compared with the prebifurcation solu-
tion obtained by considering a square plate with just one buckle
(a/b = 1, &1 = 0.01). Near the bifurcation point the deformations

-suddenly concentrate in the central buckle with rather little defor-
mation of the other two buckles. At the same time the A — € — curve
(Fig. 8) starfs to decay more rapidly, and, as for the simple bar model,
it is evident that a longer plate localizing into a single buckle will give
a stronger decay of this curve. The load-deflection curve in Fig. 9
would not at all be affected by localization, if the plate had straight
frictionless hinges built in between buckles at the initial nodal lines
as in the model problem considered by Moxham [2]. However, in the
real plate a clamping effect from the neighboring plate material will
oppose localization into a single buckle, resulting in the slower decay
after the bifurcation point shown in Fig. 9.

The behavior of an initially perfect plate, v = 0, has not been ana-
lyzed here. However, prior to any localization it is well known [12, 13]
that the plate will remain flat up to the critical bifurcation point, at

which sinusoidal deflections start to grow. On the postbifurcation path’

a maximum load is reached at small but finite deflections [12, 13], so
according to the simple model this point offers the earliest possibility
of a secondary bifurcation and subsequent localization. As for the
model of a column on a softening foundation, it is expected that the
delay between the maximum load point and the bifurcation point is
somewhat greater for an imperfect plate (Figs. 8 and 9) than for a
perfect plate.

As shown in [12], a maximum load point and the corresponding
imperfection-sensitivity for rectangular plates occur only for low
strain hardening. Therefore, the previous computation with imper-
fections &1 = 0.01 and £; = 0.001 is repeated for a high hardening
material, n = 2.5. The load versus axial compression curve is shown
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in Fig. 10. Here no localization occurs, which is expected, as no max-
imum load point is reached. The difference is most clearly illustrated
by the plots in Fig. 11 of the ratio between the maximum deflection
wm = w(a/2, b/2) and the deflection w1 = w (a/6, b/2) at the center
of the first buckle. Initially this ratio is close to 1.1, due to the im-
perfections chosen, but as the buckles grow with increasing load the
ratio approaches unity. For n = 2.5, where no maximum is reached,
this tendency of stable uniform growth continues, whereas for n = 10
the ratio starts to increase rapidly at the bifurcation point a little
beyond the maximum.

The stable uniform growth of all buckles found for n = 2.5 agrees
with the behavior of elastic plates. It is of interest to note here though
that long elastic plates can experience a secondary bifurcation in the
advanced posthuckling region [14, 15]. However, this bifurcation leads
to snapping into a periodic mode with a higher axial wave number,
which then grows for increasing load.

The elastic-plastic plates considered here have the particular aspect
ratio a/b = 3 and only symmetric modes are accounted for. It is ex-
pected that, as for the column on a softening foundation, considering
longer plates and including nonsymmetric bifurcation modes would
result in bifurcation more closely following the maximum load
point.

The occurrence of a bifurcation just after the maximum load does
not, of course, effect the load-carrying capacity of a perfect plate or
of a plate with a periodic imperfection. However, for a plate with a
localized as well as a periodic imperfection, there is a possibility that
some imperfection-sensitivity associated with the localization bi-
furcation might accelerate the growth of the nonuniformity of the -
buckling pattern and result in a reduced maximum load. It is therefore
of interest to notice in Fig. 11 that, on the contrary, up to the maxi-
mum load the tendency is to smooth out the initial nonuniformity in
the deflection pattern.

Concluding Remarks .

A wide variety of structures, for which the applied-load deflection
curve achieves a maximum, are susceptible to the type of localization
discussed here. The basic mechanism of localization involves a hi-
furcation, subsequent to the maximum load point, at which the initial
deformation pattern loses uniqueness. Thus, as illustrated in Fig. 1,
the final collapse mode in a structure prone to localization bears no
resemblance to the deformation pattern prevailing at the maximum
load point. However, it is the prelocalization deformation pattern
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which determines the maximum load point. Furthermore, at least for
the plate strip analyzed here, small localized imperfections do not
significantly effect the structure’s load-carrying capacity. Hence, the
fact that localization occurs does not invalidate an analysis directed
toward determining the maximum support load which restricts at-
tention to periodic modes and imperfections. On the other hand, there
are applications, such as shock-absorbing devices, in which the final
collapse mode is a significant concern.
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Dynamic Response of a Plate With
Arbitrary Shape

This paper is concerned with a method for solving dynamic response problems of a thin
plate with arbitrary shape based on the classical plate theory. The result for an arbitrarily
shaped plate subjected to general transient loads is obtained by utilizing the Fourier ex-
pansion collocation method. As an example, the dynamic response of a truncated ellipti-
cal plate subjected to a uniformly distributed exponentially decaying impact load is in-
vestigated. To verify the present method, numerical calculations are also carried out for
a circular plate, and the results obtained are compared with the exact ones.

1 Introduction

A variety of structures used in land, sea, air, and space vehicles is
subjected to dynamic loads. Various plates are used as elements of
structures, and many researches on the dynamic problem of circular,
rectangular, and elliptical plates have been reported based on the
exact analysis. For the plates with arbitrary shape, general approxi-
mate methods such as the finite-element, finite-difference and
point-matching methods have been used [1-3]. These methods have
many advantages for solving eigenvalue problems of a plate with ir-
regular boundaries. However, in such methods, a large-size digital
computer is required, and in general, there exist many computational
difficulties to obtain good results in cases of higher mode vibration
and dynamic response problems [4]. Recently the more rigorous
methods have been given by Laura, et al. [5, 6], and the author [7, 8].
In those studies there are some restrictions to the shape of the
boundaries, and in general, the analysis must be developed on each
problem. Therefore it seems to be important to give a more direct
method from which the results with reasonable accuracy being ob-
tained easily using a minicomputer. This paper is concerned with a
direct method for dealing with dynamic response problems of a plate
with arbitrary shape. The method developed in the author’s previous
report [9] concerning dynamic response problems of a membrane of
arbitrary shape is expanded into this problem. In the analysis, the
curved boundaries are divided into small segments, and the boundary
conditions are satisfied directly using the Fourier expansion collo-
cation method. To verify the present method, the results obtained
are compared with exact ones for a circular plate. Numerical calcu-
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lations are carried out for a truncated elliptical plate subjected to a
uniformly distributed exponentially decaying impact load.

2 General Formulation of a Plate With Arbitrary
Shape

When the origin of polar coordinates  and § is taken at an arbitrary
point in a plate, the equation of motion of the thin plate, in the coor-
dinates r, 8, is

DV2V2w + phd2w/ot? =q (1

where w is the transverse displacement, V2 is the two-dimensional
Laplacian operator, p is the mass density, & is the thickness, D =
Eh3/12(1 — v?) is the flexural rigidity, E is Young’s modulus, » is
Poisson’s ratio, ¢ is the time, and ¢ is the applied dynamic load. By
applying Laplace transformation f(r, 8, s} = [§ f(r, 8, t)e™stdt to
equation (1), the solution for a solid plate, under the assumption of
all initial conditions being zero, is obtained as [7]

w = (1/D) ZZJ }E €n [Aszn(ar) + BinIn (ar)

i=1n=0

+ (x/1a?) j; "a {anr)Yn(as) — Yolar)n(ab)
+ (2/m)[In(ar)K, (k) — Kn(ar)ln(aE)];EdE} ®;,  (2)
where

27
T = (1/7) j; G0, 6, ) B1nd, at = —s2ph/D

P4, = cos nb,
&y, =sinnf (3)

e.=1/2 for n=0 e =1 for n=z1,

The coefficients Aj, and By, are constants of integration to be de-
termined from the boundary conditions, J,(ar) and Y, {(«r) are the
complex Bessel functions of first and second kinds of order n, and
I,{ar) and K, {ar) are the modified Bessel functions. '

The boundary conditions for the plate with arbitrary shape are
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(W)r = (dw/dz)r =0 for the clamped edge
(@)r = Mz)r =0 for the simply supported edge (4)
(Mz)r = (Vz)r =0 for the free edge

where 2 is the coordinate normal to the boundary. We consider the
case of the most complex plate of which boundary is consisted of both
curved and straight lines. It is difficult to find the transformed ex-
pressions of the bending slope 9i/9z, Kirchhoff’s shear V, and the
bending moment M, in the direction normal to the boundary curve
in the case of arbitrarily shaped plates. In this paper, to obtain the
general transformed expressions, the curved boundary is divided into
small segments as shown in Fig. 1. For treating the curved boundaries
of arbitrary shape, the variation of the directions of the bending slope,
the bending moment and the shearing force along the small segment
of the boundary curve is neglected. Then each direction of these is
assumed to be a constant although each magnitude of these varies
along the segment. The following relations can be obtained from Fig.
1 for the ith segment: dr = dx; cos (0 — v;), df = — (dx;/r) sin (0 — ;).
By making use of the assumption as just mentioned, the general
transformed expressions of di5/dx; and M,; in the direction x; normal
to the segment are obtained as l

Ow/dx; = (dw/dr) cos (8 — v;) — (dW/rdd) sin (8 — v;)

M.; = — D{(02w/0r?)[cos? (§ — ;) + v sin? (8 — ;)]
— 2(3%w/rd8ar) (1 — v) sin (8 — 7y;) cos (0 — ;) (5)
+ (Qw/ror) [sin®(8 ~ v;} + v cos® (6 — ¥;)]
+ 2(2w/r206)(1 — v) sin (f — v;) cos (8 — +;)
+ (0%w/r208%)[sin? (6 — v;) + v cos?(f — v;)]}

where v; is the angle between the normal and the x-axis which has a
constant value in a small segment under the assumption as just
mentioned (see Fig. 1). Substituting equation (2) into equations (5),
one obtains i
2 /
w= (1/D) [Z Z €n [A[an(Olr)(I)[n + Blnln(ar)q)ln + Flnl]
=1n=0

2 @
ow/ox; = (a/D) 3 ¥ en(AnXi' + BinXin2+ Fi,?) 2 (6)
=1 n=0

2 =
My = — a? P I (Ainmint + Biamy, 2 + Fp®)

i=1n=0
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where X1,! = Xin(r, 8), X1n2 = Xn2(r, §), . . . are given by

XinHr, 0) = [Ju—1(ar) = (nfar)d,(ar)] cos (6 = v;) cos nd
+ (n/ar)d,(ar) sin (# — ;) sin nf

X1n2r, 0) = [In_1(ar) — (n/ar)I, (ar)] cos (6 — ¥;) cos nf
+ (n/ar),(ar) sin (8 ~ ;) sin nf

minHr, 8) = {(n?+ n)(1 — v)[cos 2(f — ;) cos nd
— sin 2(8 — v;) sin n8)/a2r2 — [cos2(0 — v;)
+ v sin?(f — v;)] cos n8}J, (ar)
—{(1 ~ v)[cos 2(f — i) cos nf — n sin 2(0 — v;)
X sin nd]/ar}dn—1(ar)

m12(r, 8) = {(n? + n)(1 = v)[cos 2(8 — +;) cos né
— sin 2(f — ;) sin n#]/a?r?
+ [cos? (8 — ~;) + v sin? (§ — ;)] cos nbil,(ar)
—{(1 = v)[cos 2(8 — ~y;) cos nd M
~— n sin 2(0 — ;) sin nb]/ari,-1(ar)

FiyX(r, 0) = (w/4a?) J;rc_hn{Jn(ar) Yolaf) — Yn(ar)d,(af)

+ 2/m) [ (ar)Kn (k) ~ Ky (ar)L,(aE)}EdE cos nb

F1,2(r, 0) = (1/a)[cos (6 — v;)oFy,1/or — sin (6 — v;)
aFl,.l/rab?]

Fi1,3(r, 0) = (1/a®){(d%F 1,1/ 0r%)[cos? (0 — vi)
+ vsin? (¢ — v;)]
— (202F 1,1 /rordf) (1 — v) sin (6 — ;) cos (0 — ;)
+ (3F1,1/ror) [sin2 (8 — ;) + v cos? (8 — ;)]
+ (20F1,1/r206)(1 — v) sin (6 — ;) cos (0 — v:)
+ (02F 1, 1/r2062) [sin? (6 — ;) + v cos? (6 — v1)]

“The expressions for [ = 2 have the same forms as equations (7), but

cos nf is replaced by sin n# and also sin nf is replaced by —cos nf. The
transformed expressions for the straight line boundary are also the
same as equations (6), but the angle v; has a constant value.

The boundary conditions along the whole range of the boundary
cannot be satisfied directly. To satisfy the boundary conditions, the
Fourier expansion is performed to the equations of the boundary
conditions along the boundary line. For the present case, one straight
line is considered to be one segment, while one curved line must be
divided into many segments according to the convergence of the so-
Iution. The Fourier coefficients are therefore obtained by the addition
of those for the separately considered boundaries. When the plate is
symmetric about an axis, the analysis can be separated into symmetric
and antisymmetric cases. Hence when the coordinate 6 is taken from
the axis of symmetry and the series are truncated to N + 1, the si-
multaneous equations for finding the unknown constants A;, and By,
can be obtained, as

- -1 - - - -
- N
Aqp 2 Paol?
1 n’=0 |}
| i
1 N I
AlN Z Pn’N11
n'=0
A(N) = N (8a).
Blo Z Pn’OZ1
I fn=01
: I
I
! N |
Bin 3. Puyt
n'=0 .
L. - L - .
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Agy > Ppn'?
] n'=11
I I
i 1
] N |}
Asn > Pyn'?
n’'=1
As(N) = (8b)
N
B21 Z Pn’122
I n'=1§
1 |
1 t
I N 1
Ban > Pyn%
n’=1
where
ShmmeSly  SHmmmmee S
1 I 1 I
] I 1 1
I 1 1 I
S-Sy e SR
AL (V)] = (9a)
S(sxl) ————— S?\}g S?Xl) ------ S}VIO
i [ 1 1
1 i 1 i
1 1 1 1
S-S Sthmmmes St
Sfmmm- S Sfemman S
1 ! I 1
1 { ] I
ST SKy Sy =m=——— SHw
|As(N)| = (9b)
?%"" *?:13\%1 Sff mmmemm "3“1‘\%1
1 i 1 1
1 1 1 1
SBmmmSHe Sthmmmms St
I [/
Sth=Cetm) £ f " Zitindd for k=1,2,3,4
) i=1 0j—1 (10)
Yim = cos mf, Yo = sin mé
and where
Zin' = J(aR) By, Zin'? = In(aR;) P,
Zint¥ = Xin YRy, 0), Zin't = Xin¥(R,, 0)
I 0; (11 )
Poptt=— Qe/m) ¥ Fi, MR, 0)Wimdd a
’ i=1 i-1
I 0;
Pnnz2l = (2571/7") 2. o Flnz(Ri, 0)\//lmd0
i=1 i—1
for the clamped edge, and
Zlni1 = Jp(aR;)) Py, Zlni2 =1, (OLRi)‘I)ln,
Zn® = mpp Ry, 0),  Zin't = mp ARy, 0)
: 1 0; -
Py U= —(2¢./m) p o Fi,\(R;, 0)\[/lmd0; (11b)
i=1 i—1

I 0;
Pan® == @ea/m) X | " Fin®(Ri, Ot

i=1 J0;-
for the simply supported edge. I is the number of the segments in-
cluding the straight line boundaries in the range § = 0 to § = w and
R; is the coordinate r at ith boundary which is expressed as a function

of 0. ‘ )

The frequency equation is obtained by putting the determinant

of the coefficients of the simultaneous equation to zero
[AN)] =0 (12)

The displacement of the plate is found from the Laplace transform
inversion integral f(r, 6, t) = (1/277) fB.f(r, B, s)estds, where j =
v/ =1 . The Laplace transform inversion integral is evaluated by the

622 / VOL. 47>, SEPTEMBER 1980

residue theroem. It is difficult to obtain the analytical values for the
residues because, in general, the integration in equations (10) and (11)
cannot be found analytically for arbitrarily shaped plates. Therefore
the integration for finding the Fourier coefficients and the differen-
tiation of the determinant of the coefficients of the simultaneous
equations for finding the residues are performed numerically. The
displacement w as a function of time is then shown to be '

w(r, 6, t) = Y. Res (iwe®t) (13)

where ZRes shows the sum of the residues.

3 Dynamic Response of Arbitrarily Shaped Plates to
Exponentially Decaying Impact Loads

As an example, we consider a plate subjected to a uniformly dis-
tributed exponentially decaying impact load g = g¢ exp (— t), where
qo is the intensity of the load and (3 is the time decay parameter. By
applying the Laplace transform. one has § = go/(s + ). Hence Fy,1
through F,,3 in equations (7) become

Fiot = (1/2a3)[qor/(s + B)iJo(ar) Yi(ar) = Yolar)Ji(ar)

= @/m)Toler)Ki{ar) + Kolar)i(ar)]} > (14)
Fi,1=0 for n=z=1, F2=F,3=0

Substituting equations (14) into equation (11a) yield
Pom'! = wb*qoPom*/2)\2(s + B),  Pom® =0 (15)
where | ‘

I o

Pon* = = (/1) 2 J; - AR o Ri*) Ya(a*Ri*)

(16)

~ Yola*Ri*)J1(a*Ri*) — (2/m)[Lo(e*Ri*) K1 (e*R;*)
+ Ko(a*Ri*) 1 (a*R;*)]} cos mBd8, o* = ab,
A= (a*)? = — js(phb*/D)V2 R* = R;/b, r*=r/b
and where b is the reference length which is introduced to make the

expressions to nondimensional forms. The constants Ay, and By, are
obtained from equation (8a) as

A1n = whigoA1,*/20%(s + 8), By, = wbiqoB1,*/2\%(s + B3)

(17)
where
A1n* = Hpr 1(N/]A1N)),  Bin* = Hpanr2(N)/1 A1(N)]

Hy,11(N) or Hppn+o(A) is the determinant shown in equation (9a), but
in which the elements of (n + 1)th or (n + N + 2)th column is replaced
by (Poo*, Po1*, . . . Pon*, 0, . .. 0), respectively. Substituting equation
(17) into (6), iv is obtained as

(18)

B, 0, ) = [biq/2\2s + BID] | 3. enllFnss(WTn(actr)
: enizo
+ Huv vt 2N (0¥r#)]/| A1(M) |} cos nb
+ 0.5a*r*[Jo(a*r*) Yi(akr*)
= Yolatr#*)J1(a*r*)] — (a*r*/m)[Io(a*r*) K (a*r*)

+ Ko(a*r*)ll(a*r*)ﬂ (19)

The displacement as a function of time is found from equation (13).

2 In reference (7), Hp+n+1(A*) should read H, +n+2(A*), and equation (26)
also should read

N o
Wy = % go {len/(A* = iB*)][Hps 1(A*)d (o)

+ Hpi Nt sV (0 )]/ (A /dN*)hua,» €xp (iXp*T) cos b’

Numerical calculations in reference (7) have been carried out, of course, using
the corrected expressions.
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Fig. 2 Geometry of truncated elliptical plates

For the present case, one of the poles of the integrand is given by s =
— Bor A =jB(phb4/D)¥2 and the other poles by the roots of the fre-
quency equation. One has the conjugate poles from the frequency
equation (12), hence the displacement w(r, 8, ¢) can be evaluated by
the residue theorem, in a nondimensional form?

wE = Dw/b4qo = W1 + Wg (20)

where
Wi = (=n/28%%) | 3 enl[Hner (N (a¥r®)
n=0

+‘Hn+N+2(>\)In(a*r*)]/
[AT(N)|} cos nb + 0.5a%r*[Jo(a*r*) Yi(akr*)
— Yola*r#)J(a*r*)] — (a¥r*/m)[Io(a*r*)K(a*r*)

+ Ko(a*r*)Il(a*r*)il exp (—8*T)
A=jp*
N
Wa e [ ZHr A0 i8] 3 ol O0(aore)
4 HueneoNn (@) 08 n8/(d] Ay0| /AN )xonp X0 uxpTa

B* = B(phb*/D)2, T = t(D/phb*)1/2 @1)

and where R. denotes the real part of the expression and Ap is the
coordinate of the pth pole in a right half A-plane which is obtained
from the frequency equation.

3.1 Examplel: Circular Plates. First, we consider a circular
plate of radius a subjected to a uniformly distributed exponentially
decaying load. For the present case, the reference length b is taken
as the radius of the plate, i.e., b = a, in the previous equations. Hence
one has the following relations:

Ri* =Rifa=1,

where 0;* = (0;,_1 + 6;)/2.

3.2 Example 2: Truncated Elliptical Plates. As an example
of arbitrarily shaped plates, we consider a truncated elliptical plate
as shown in Fig. 2. For this case, the boundary curve is separated into
two straight lines (boundary 1, 3) and one elliptical curve (boundary
2). The equation of the elliptical curve of major axis 2a and minor axis
2b is

v = O;* (22)

x2/a? + y2/b2 =1, x =R; cos B, y=R;sinf  (23)
From which one obtains dy/dx = — (b/a)?(x/y). Hence R;* and +; are

denoted by

Ri* = R;/b = (a/b)/[cos? 8 + (a?/b2) sin? §]1/2

vi = w/2 — tan~1 [(b/a)?/tan 6;*] for O;* < w/2, o4
vi=w/2 for ©;*=x/2 (24)
vi = w/2 + tan[(b/a)?/|tan ©,%|] for O > n/2

Journal of Applied Mechanics
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Fig. ‘3 Comparison between present and exact results for a clamped solid
circular plate subjected to a uniformly distributed exponentially decaying
impact load

for the boundary 2. The following relations can be obtained easily for
the boundary 1 as

¥:i =0, Ri*=(a—c)/bcosb (25)
and for the boundary 3 as
vi =, R*=—(a~c)/bcosb (26)
The angles 6; and & are
61 = tan~1{[b/(a — ¢)][1 — (@ — ¢)2/a?]l/?), Sa=7— 61 (27)

By substituting the expressions for R; and v; into equations (11a) and
(118), Z1,** and Py, * are expressed as a function of ¢ only. Hence the
integration can be performed numerically, and the displacement w(r,
6, t) is evaluated from equation (20) directly.

The results for the other plates can be obtained easily only by ob-
taining the expressions for R; and v; as in the same way as previously.
If the Mindlin plate theory is utilized instead of the classical plate
theory used in this analysis, the solution for the thick plate can be
given by the similar technique developed in this paper.

4 Numerical Examples

In this paper the boundary conditions are satisified approximately
by using the Fourier series although the solution satisfies the equation
of motion exactly. Therefore the results obtained must be investigated
with respect to both the convergence and the errors of calculation, In
the numerical calculation, first three residues are added up and N =
4 or N = 7 is included according to the convergence of the series.
Poisson’s ratio is taken as 0.3 and the curved boundary is divided into
20 segments.

To verify the present results, both present and exact results (see
the Appendix) are compared with each other for a solid circular plate
as shown in Fig. 3. In the figure, the present results with N = 4 are
denoted by the solid line and the exact ones by the small circle. It can
be noted that the present result coincides with the exact one. As a
numerical example, vibrations and the dynamic response of a trun-
cated elliptical plate as shown in Fig. 2 are investigated. Tables 1 and
2 depict the nondimensional natural frequencies ab = (w2b4ph/D)1/4
of the clamped and simply supported truncated elliptical plates for

' SEPTEMBER 1980, VOL. 47 / 623
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Table 1

frequency, * denotes Sato’s exact result {10, 11])

Nondimensional natural frequencies ab(=w?b3ph/ D)4 of clamped truncated elliptical plates (w represents the circular

c/a

a/b Mode No. 0 0.1 0.2 0.3 0.4 0.5 0.6
1.0 3.197(3.196%) 3.279 3.479 3.787 4.252 4.962 6.072
4.611 4.826 5.252 5.869 6.422 6.861 7.740

2.953(2.953*) 3.002 3.131 3.350 3.697 4.248 5.143

1.2 4.055 4.201 4.521 5.006 5.709 6.396 6.976
1 2.809(2.809%) 2.835 2.919 3.074 3.334 3.765 4.496

1.4 2 3.692 3.786 4.030 4.412 4.986 5.846 6.535
1 2.616(2.616%) 2.619 2.640 2.695 2.805 3.018 3.426

2.0 2 3.142 3.163 3.259 3.452 3.777 4.307 5.184
2.551(2.550*) 2.551 2.555 2.579 2.635 2.757 3.011

2.5 2.939 2.945 2.980 3.087 3.291 3.655 4.299
1 2.512(2.512%) 2.512 2.514 2.522 2.552 2.623 2.787

3.0 2.824 2.821 2.835 2.887 3.016 3.270 3.748

Table 2 Nondimensional natural frequencies b of simply suppoted truncated elliptical plates with y = 0.3 (* denotes Sato’s exact

result [10, 11])

c/a

a/b Mode No. O 0.1 0.2 0.3 0.4 0.5 0.6
Lo 2.222(2.222%) 2.299 2.463 2.682 3.006 3.482  4.209
2 3.728 3.920 4.271 4.771 5.424 5.662 6.092
14 1.955(1.953%) 1.987 2.079 2.213 2.408 2.708 3.195
2.937 3.042 3.272 3.597 4.065 4.762 5.485

1.817(1.818*) 1.821 1.858 1.929 2.036 2.206 2.497
2.0 2.432 2.464 2.591 2.790 3.077 3.519 4.233
1.735(1.735%) 1.734 1.737 1.759 1.807 1.891 2.041
3.0 2 2.111 2.112 2.140 2.237 2.395 2.641 3.060

various aspect ratios, respectively. The results for a solid elliptical
plate can be calculated when the truncated sides are removed in this
analysis. The calculated frequencies in such a special case of ¢/a being
zero are in very good agreement with the exact ones given by Sato [10,
11]. However as the aspect ratio a/b becomes significantly large, the
convergence of the series becomes poor, so that it is difficult to obtain
the good results for such slender plates.

For the case of truncated plates, the convergence of the series be-
comes poor as compared with the circular plates. Comparisons be-
tween the displacements (Dw/b4qq) X 102 along the x-axis of a trun-
cated elliptical plate subjected to the impact load with a/b = 2, ¢/a
=0.2,8*=0.5,and T = 0.2 for N = 5 and N = 7 are as follows:

x/a=005 02 04 0.6
(Dw/bqe) X 102 = 2.699 2.467 1.792 0.827
=2620  2.385 1.718  0.746

624 / VOL. 47, SEPTEMBER 1980

It can be observed that the results with reasonable accuracy can be
obtained when up to eight terms are included in the numerical cal-
culation. Figs. 4 and 5 show the displacements w* = Dw/qeb? along
the x and y-axis for the truncated circular (@ = b) and the truncated
elliptical plates (a/b = 2) subjected to the impact loads ¢ = go exp
(—Bt). Since the boundary conditions are satisfied approximately in
the present analysis, the calculated result has.a small error and the
displacement at the boundary does not vanish exactly as shown in the
figures. However the errors are significantly small, so that we can
conclude that the present method gives reliable results for dynamic

0.8
0.197 forN=5
0.089 forN =17
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Fig. 4 Displacments along the x and y-axis of a clamped truncated circular
plate subjected to a uniformly distributed exponentially decaying impact load
with a/b = 1 and ¢c/a = 0.2

response problems of arbitrarily shaped plates. Fig. 6 depicts the re-
sponse curves of the displacements for the truncated elliptical plate
with a/b = 2, ¢c/a = 0.2.

5 Conclusions

In this paper a direct method for solving dynamic response prob-
lems of an arbitrarily shaped plate has been presented. Numerical
calculations have been carried out for a circular or a truncated ellip-
tical plate subjected to a uniformly distributed exponentially decaying
impact load. The comparison between present and exact results for
typical plates such as the circular and the elliptical plates shows good
agreement. The method developed in this paper is straightforward
and the numerical results can be obtained easily for arbitrarily shaped
plates by using a minicomputer. It seems therefore the present method
has advantages as compared with the other general approximate
methods.
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APPENDIX

By taking the terms of n = 0 only in equation (2), the displacement
of-a circular plate subjected to a uniformly distributed exponentially
decaying impact load is found to be

w = (1/2D)[ AgJolar) + Bololar)
+ [wqor/2a(s + B)iJolar)Yi(ar)
- Yolar)di(ar) — (2/m)Tolar)Ki(ar) + Kolor)1(ar)li] (28)
The boundary conditions for the clamped circular plate are (W),=a

= (QW0/0r)r=q = 0. One can obtain the unknown constants Ag and By,
and the displacement i then can be expressed as

Dw/qoa* = [n/4a3a’(s +’ 53| E— [Jolar{1(aa)

+ Ji{aa)olar)folaa) Yi(aa) — Yo(aa)Ji(aa)

— @2/7)[lolaa)K1(aa) + Kolaa)1(aa)])/ (29)
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{Jolaa)1(aa) + J1(aa)o(aa)] By applying the Laplace transform inversion integral to equation (29),

+ (rla)dolar) Yilar) — Yolar)di(ar) the displacement as a function of time is obtained in a nondimensional
— (@/m)Iolar)Ky(ar) + Kolar)I(ar)]l] (29) form
‘ (Cont.) w* = Dw(r, 0, t)/qoa’ = Wi* + Wy (30)
where

Wit =[-(n/40%3)[Jo(arr)1(a*) + Ji(a*)olaxr*)]
X {Jola*) Yi(a*) — Yola*)1(a*) — (2/7) [Tole*) K1 (o*)
+ Kola*) ()} [Jola* ) 1 (%) + J1(e*)o(a*)]
+ (w/da*3) (r/a)ldola*r*) Yilekr*) — Yolootr#)d (a*r*)
— (2/m)Uola*r*)Ky(a*r*) + Ko(ar#)I1(or*)}]a=jpr exp (—B*T) (31)

Wyt = B, —m exp (JAT)
2 R o N —8Y)

X

[Jole*r ) 1(a*) + Ji{a*) ola*r*)]ifola*) Yi(a*) — Yola*)di(a*) — (2/m)[To(a*)K1(a*) + Kola*) 1 (a®)]}.
2Jo(a*Mola*) — (L/a*)[Jo(a*) [1(a*) + J1(a*) ole*)] -

and where A is the pth axisymmetric modal frequency for the solid circular plate.
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the important characteristics of critical damping surfaces.

Introduction .

Critical damping studies, apart from being theoretically interesting,
are also important in the design of sensitive instruments which must
have high amounts of damping (usually critical damping) to avoid
resonant amplitude distortion. '

-When the viscous damping in a linear dynamic system, expressed
as a percentage of the critical damping, is everywhere the same or is
given in modal form, the problem of determining the amount of
critical damping and thus characterize the system as underdamped
or overdamped is essentially one-dimensional and presents no dif-
ficulties.

However, for the more realistic model of a linear dynamic system
with viscous damping varying among its elements the problem of
determining critical damping becomes much more difficult since there
are many critical and partially critical damping possibilities corre-
sponding to different critical element damping value combinations.
The importance of this problem lies in the fact that introduces the
possibility of controlling the dynamic response more easily and with
a greater flexibility by differently varying the damping of a number
of elements.

Characterization of the free motion of a discrete linear dynamic
system with different amounts of ¥iscous damping in its elements can
be accomplished by determining the roots of the determinantal
equation of the system. Thus real, complex or purely imaginary roots
characterize the motion as overdamped, underdamped or undamped,
respectively. This is what is usually mentioned in the literature
without consideration of the case of critical damping or the case of
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coexistence of all kinds of the foregoing roots. The only exceptions
appear to be Crafton [1] and Bishop and Johnson [2] who have con-
sidered two-degrees-of-freedom spring-mass-damper systems and
studied the behavior of the frequencies for different amounts of
damping. However, their method of characterization of the motion
is not convenient for design purposes, since it requires a complete root
determination for every combination of element damping values as-
sumed. .

The present paper presents a detailed study of the effect of damping
distributed in an arbitrary manner throughout the structural elements
on the free motion of the system. A general method is first proposed

. to determine the critical damping surfaces of a viscously damped

linear discrete dynamic system; these are the loci, in “damping space,”
of amounts of damping leading to critically damped motions. Three
examples are then presented in detail which illustrate the proposed
method and lead to some interesting and unexpected results.

Critical Damping Surfaces

Consider a viscously damped linear discrete dynamic system of n
degrees of freedom characterized by the mass matrix [M], the stiffness
matrix [K], and the damping matrix [C], where the elements of [C]
are combinations of the m different damping coefficients ¢, (k = 1,2,
... m) of the various elements of the system. The number m can be
greater, equal or smaller than . The determinantal equation of this
system is

det [N*[M] + NC] + [K]] = | M[M] + MC] + [K] | = | DV | =0,
1

+an algebraic equation of order 2n in A.

For partial (complete) overdamping or critical damping some (all)

of the roots of (1) are of the form
A==b, b>0 2)

and in this case (1) becomes
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| b2 [M] =b[C] + [K] | = | D(b,ex) | = 0. 3)

In the m-dimensional space with coordinates ¢ (k = 1,2, ...,m),
equation (3) represents a family of m-dimensional surfaces S;. Each
member of the family corresponds to overdamping or critical damping
and is characterized by its own value of b, which is a function of the
¢r’s. The problem is to determine that b which corresponds to the
“critical damping surface,” i.e., the locus of combinations of ¢, leading
to critically damping motion and thus separating regions of partial
or complete underdamping from those of overdamping. There are
actually ¢ (¢ < n) critical damping surfaces since there are at most
as many partial critical damping possibilities as the number of the
pairs of roots A in (1) with zero imaginary part. Since critical damping
represents the threshold between overdamping and underdamping,
one can conclude that among the Sy surfaces, the critical surface S¢r
is the one for which the damping will be a minimum, i.e.,

(d/db) | D(b,cx) | = (9/2b) | D(b,ct) |
+ % (d/0cy) | D(b,ck) | (dcp/db) =0, (4)

(dcr/ob) =0, k=12,...,m.

An alternative derivation of (3) and (4) is the following: Consider
equation (1) with A= —R + jI, (R > 0,1 =real, ] = v/—1), i.e,,

AN =A(-RjD)=|D(-R+jD}|=0. (5)

Expansion of A(M\) in Taylor series about the point Ao = (—R,0)
yields

dA 1 -92A
A(=R,jI) = A(=R,0) + () —= += (=122
(=RJD ( L )aA (-R,0) 2!( )aAZ (-R,0)
1 3A
+— (—jI%) — 8
TREAFYCY H ©
which in view of (b) reduces to
1 0%2A
A(-R,0) ——12°— =0,
¢ ) 21 9A2 |(-Rr0)
' V)]
A 1 ,0%A
— e et =0.
OA |(-R® 3! O3 |(-R0®

For critical damping, for which I = 0, equations (7) lead to equa-
tions

A(-R,0) =0,

8
(A/ON) | (—ro) =0 ®

which are the same as (3) and (4).

In principle, one can solve (4) for b and obtain its critical value b,
as a function of the ¢’s. Thus the equation of critical damping sur-
faces will be given by (3) with b = b, i.e., by

‘ bzcr[M] - bcr[C] + [K] l =0. (9)

In practice, however, the nonlinear system of (3) and (4) has to be
solved numerically. Thus provided that differentiations in (4) can be
done analytically, one determines numerically a finite number of
groups of m + 1 values for b, and ¢}, ¢, satisfying (3) and (4) simul-
taneously, and one is then able to represent critical damping surfaces
in the m-dimensional ¢y, space as sets of points with coordinates c ¢r.
Eventhough the previous method of determining critical damping
surfaces is quite general and applicable, in principle, to a n-degrees-
of-freedom system, the fact that, to the authors knowledge, there is
no presently available efficient numerical treatment of the differen-
tiations in (4), limits the range of applicability of the method to
small-order systems. )

However, the particular point ¢; = ¢ = ... ¢, = ¢ of a critical
damping surface can be very easily obtained for the special case in
which {C)¢,=c is of the Rayleigh type, i.e., of the form

[C]C);-_—C =ai [M] +ay [K]x

628 / VOL. 47, SEPTEMBER 1980

(10) |

— .
2 ~ 2
1 K \ 2K ) K F
Z y 4 2
A L
7 | 8, ; Eez 2

A
C
Fig. 1 The two-degrees-of-freedom system of Example 2

where a1 and a3 are constants. For this case and for the { th (i = 1,2,
. «,n) mode with underdamping, (1) yields

N2+ ah)/(1 + aghi) = — we2, {11)
where w; is the ith natural frequency of the system.
Equation (11) can be solved for A; and give
A = —b; £ ju, (12)
where
bi = 1/2(ay + aswe?), wi?=wy?— b2 13)

a1 Faswe?=0, j=+/—1.

_ It is apparent then, in view of (12) and (13), that at critical damping

one has
bi or = Woi, (14)
with a1 and ag satisfying the relation
g or Woi2 = 2Wo; + a1 o = 0, (15)

where a1 ; and as , are their values at critical damping. Equations
(14) and (15) therefore represent the solution of (4) for the particular
surface point ¢y = ¢g =. .. ¢, = ¢ and for systems obeying (10). This
solution is unique if one of the a1 and ag is zero. Once the b; ’s have
been computed from (14), a numerical evaluation of the left-hand side
of (9) for a sequence of values of ¢ leads to the determination of the
common value ¢ of the cg’s which satisfies (9) for every i. One im-
portant result of this analysis is that, as equation (14) clearly dem-
onstrates, for systems obeying (10), one has g = n, i.e., as many critical
damping surfaces as there are degrees of freedom in the system.

Examples

Example 1. For the single-degree-of-freedom system m = n =
1 so that there exists only one critical damping surface of dimension
one, i.e., a point. The condition (3) reduces to

mb? — b + K = 0. (16)
Use of (4) provides b, = ¢o/2m which, in conjunction with (16) leads
to

wo = (K/m)1/2, an

Cer = 2muw,,

which "is the well-known condition of critical damping for this
system.

Example 2. Consider the two-degrees-of-freedom system of Fig.
1 consisting of a variable torsional stiffness shaft with two flywheels
and one viscous damper and being in free torsional vibration. This
system has been taken from reference {2, p. 507] which studies the way
in which the free motion of the system changes as the damping is in-
creased from zero to infinity by determining the roots of the deter-
minantal equation for a sequence of values of the amount of damping
present. Here the results of reference [2] will be verified by applying
the proposed method for determining critical damping.

The determinantal equation (1) for this system takes the form

(2]
A%+ 2aA3 + 6A% + A + 5 =0, (18)

where

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A HHH HTHTTH

A= )\/wl,

w12 = K/I,

o =c/2w;, (19)

and where I, ¢, and K stand for the mass moment of inertia of the
flywheel, the damping coefficient, and the torsional stiffness of the
shaft, respectively. Use of (3), (4), and (18) with A = —B = —b/w,
yields

a=2B(3+ B%/3(1+ B2, Bé+3B4+3B2-15=0. (20)

The only one real positive root of (20)g is B = 1.233 for which (20),
yields the equation of the only existing here critical damping sur-
face—a point, as

oer = 1,474, 21)

a value which is identical to that obtained in [2].

The existence of just one critical damping surface for this two-
degrees-of-freedom system indicates that this actually corresponds
to partial critical damping. For 0 < « < 1.474 the system is und-
erdamped, for o = 1.474 it is partially critically damped, and for o >
1.474 it is partially underdamped. Thus no matter how great the
damping parameter o may be, there is no way to reach complete ov-
erdamping, exactly because there is no other critical damping surface
fora > 1474 -

Example 3. Consider the two-degrees-of-freedom spring-dash-
pot-mass system shown in Fig. 2, where Kj, ¢;, and m; (i = 1,2) stand
for spring constants, coefficients of viscous damping and masses, re-
spectively, and x1 and x» represent the two translational degrees of

. ol
freedom of the system. Notice that for ¢1 = 0 one has a case similar
to that treated in Example 2. For this system, equation (1) be-
comes

M+ 2(81 + B3 + (w12 + wo? + wig? + 4B182) N2

+ 2(611022 + ﬂzwlz + ﬁgwlzz) A+ wilwe? = 0, (22)
where
w2 =Ki/my, wo?=Ka/mg, w12?=Ks/my, 23)
Bi=ci1/2m1,  Bo=ca/2my,
while equation (3) takes the form
bt — 2(B1 + Bo)b? + (wr? + wo? + wyo? + 451 82)b?
— 2(Biwe? + Bow:2 + Baw12?) b + wiw? = 0. (24)
The conditions of critical damping described by (4) yield
b4 — (3/2)(B1 + B2)b? + (1/2)(w1? + wa? + w12? + 481 82)b
— (1/2)(Brwa? + Bow1? + Baw12?) = 0. (25)

Thus the critical damping surfaces of this system are curves in the
(81,82) plane described by (24) with b = b, being a function of 81 and
B2 which can be obtained by solving (25). Construction of these curves

- can, in general, be accomplished by computing the left-hand sides of
(24) and (25) for all possible combinations of a finite number of values
for (31,82, and b, and selecting those combinations that simultaneously
satisfy (24) and (25); these combinations provide the points (8 ¢r,02 cr)
of the critical damping curves. In this case, however, the construction
of the critical damping curves can be done more easily by solving ex-
plicitly the cubic algebraic equation (25) for b in terms of 8; and
Be.

Journal of Applied Mechanics
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Fig. 3 Critical damping curves for the system of Fig. 2

Fig. 3 shows the two critical damping curves C; and Cs of the two-
degrees-of-freedom system of Fig. 2 in the (81,02) plane for the fol-
lowing numerical data:

K; = 3000 1b/ft = 43,779.528 N/m,

K, = 4000 1b/ft = 58,372.7038 N/m, (26)

m1 = mg = 11b sec?/ft = 14.593 N sec?m,
(1ft=0.3048m, 11b=4.448 N).

The two critical damping curves were constructed with the aid of a
computer by both the purely numerical method and the one based
on the solutions of the cubic equation. For 81 = 82 = 3, condition (10)
is satisfied with a1 = 26and ap = 0, ¢ = n = 2 and (14) and (15) lead
to

bi cr & Bcr = Woi, (l = 1’2) (27)

The critical damping curves C; and Cy divide the plane (31,02) into
the regions R1, R, and R3, as shown in Fig. 3. Curve C defines a state
of partial critical damping and separates a region of complete und-
erdamping (region R1) from a region of partial underdamping (region
Rj). Curve Cy defines a state of complete critical damping and sepa-
rates a region of partial underdamping (region Rz) from a region of
complete overdamping (region R3). The results of Fig. 3 were also
verified numerically by determining on the computer all the four roots
of equation (22) with the aid of Newton’s iterative method for quite
a number of possible combinations of numerical values of 81 and
Be.

The interesting thing in this example is the fact that region R is
unbounded and that even for values of 8; or 32 (but not both) ap-
proaching infinity there is still partial underdamping, while one might
expect to achieve overdamping if one of the 8’s is large enough. This
phenomenon is the two-dimensional counterpart of that of Example
2 and is amenable to the following physical explanation: At the limit,
as 01, for example, approaches infinity, the mass m becomes essen-
tially locked, x1, approaches zero, the system becomes a single-de-
gree-of-freedom one, and one can obtain

B2 e = wo = 44.72. (28)
Similarly, for 82 approaching infinity, one can obtain
ler=V w12 + wig® = 59.16. (29)

Equations (28) and (29) are equations for the asymptotes of the
critical damping curves and indicate that even for infinite values of
B1(8B2) there are values of 82(831) in region R, which are less than their
critical values, for which there is partial underdamping.

One can approximately construct the curves C; and Ca by assuming
that (27) holds true not only for the points 81 = B85 =  of the curves
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but for any point of them. Thus (24) with b; o, = w,; finally be-
comes

A1 — B
B2 = Eif—Di (30)
wh;are
A; = 2wo; (we? + wo;?),
B; = wo* + w12 we? + we; 2 (w12 + wo? + wio?), (31)
E; = 4w,;,

D; = 2we; (w12 + wio? + wy?), =12

It is evident from (30) that the approximate critical damping curves
are two equilateral hyperbolas with two branches each and asymptotes
B1 = D;/E; and B = A;/E;. Out of the two branches only that for which
B1 = B2 = wy; represents a critical damping curve.

A plot of the approximate critical damping curves on the basis of
the numerical data (26) is shown in Fig. 3. The approximate curves
of course coincide with the exact curves at 8, = (2, and they slightly
depart from them more and more as the §’s increase. Such approxi-
mate critical damping curves can be very useful for rapid design cal-
culations, although, unfortunately, no general extensions of their
validity can be presented here. :

Conclusions
The following remarks can be made on the basis of the preceding

630 / VOL. 47, SEPTEMBER 1980

developments about the free vibrations of linear discrete systems with
viscous damping varying among their elements:

1 There exist critical dami)ing surfaces for every system repre-
senting the loci of combinations of damping leading to partial or
complete critically damped motion and thus separating regions of

~ partial or eomplete underdamping from those of overdamping.

2 A general method is proposed for determining the equations
of these critical damping surfaces. The determination of the surface
point corresponding to equal amounts of damping is considerably
simplified for systems which, on the assumption that all amounts of
damping are equal, possess a damping matrix of the Rayleigh type.

3 The dimension of these critical damping surfaces is equal to the
number of the independent damping values in the system, while their
number is less or equal than the number of the system degrees of
freedom. For a n-degrees-of-freedom system with a damping matrix
reducible to Rayleigh type for equal amounts of damping, there are
at most one completely underdamped region, one completely ov-
erdampled region and n-2 partially underdamped regions.
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The Rotating Beam Gyroscope

This paper investigates the dynamics of a novel “multisensor” comprising a two-axis gy-
roscope and a single-axis linear accelerometer. The theoretical analysis indicates that
the gyroscope has two modes of operation, untuned and tuned, offering, respectively, an-
gular rate and angular displacement measurement capability, depending on the damping
and mistuning present. In addition to the sensing of two-axis angular motion, the instru-
ment is capable of measuring linear acceleration along a third axis. Experimental tests
on a prototype instrument show generally good agreement with the theory giving confi-

dence of the development potential of the instrument.

Introduction
This paper introduces a novel instrument of extremely simple basic
design, which can be used simultaneously as a two-axis gyroscope and
a linear acceleration transducer. The instrument is based on a simple
rotating cantilever beam, mounted as shown in Fig. 1 with the root
and tip of the beam situated on opposite sides of the spin axis. In a
previously published paper [1] the authors investigated the depen-
dence of the natural frequencies of such a beam on the ratio R = r/L,
of root offset r, to beam length L, and on the spin frequency n. In
particular it was shown that for values of r/L = R greater than ap-
proximately 0.067 the effect of the centrifugal loading is such that it
is possible to select a value of spin frequency that coincides with the
fundamental natural frequency of the cantilever. In this condition
the cantilever is said to be tuned to the spin frequency. For R < 0.067
_tuning is not possible because the effect of centrifugal loading is to
stiffen the cantilever so that the fundamental natural frequency is
always greater than the spin frequency. The present paper investigates
the possibility of using a rotating cantilever as the basis for a sensitive
gyroscope [2], which may be used to measure angular rates of turn or
angular displacements depending on the conditions of tuning and
damping, and linear acceleration irrespective of the condition of
tuning.

Analysis .

Equations of Motion. The main elements of the instrument and
appropriate frames of reference are shown schematically in Fig. 2.
Axes OXYZ are fixed in the instrument casing which houses the drive
motor. A rigid drive member is mounted on the motor shaft and ro-
tates at high speed about OZ with constant angular velocity n, relative

1 Formerly, University of Newcastle upon Tyne, Newcastle upon Tyne, En-
gland. '
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Fig. 1 Cantilever root offset

to the casing. Oxyz rotate with the drive member and their position
relative to OX YZ is defined by rotation nt about OZ. The sensitive
element consists of a thin uniform elastic cantilever attached to the
drive member at y = —r as shown. The center line of the undeflected
cantilever lies along Oy so that it’s tip is situated at y = L — r where
L is the cantilever length.

It is assumed that the center line of the undeflected cantilever is
perpendicular to the spin axis and that only linear vibration parallel
to the spin axis can occur. Rotatory inertia, which can be shown to
have no-effect on the fundamental operation of the instrument, has
been neglected together with shear deformation and axial extension
of the beam due to centrifugal loading. Input rotations to the in-
strument can be defined with considerable generality in terms of an
applied rotation ¢x(t) about the case fixed axis OX. It is assumed that
ox K n.
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Fig. 2 Schematic and reference axes

The equation of motion for the beam is derived in the usual manner
by considering the equilibrium of an element of length dy, situated
at distance y’ from the root of the cantilever as shown in Fig. 3. The
acceleration of such an element in direction OZ may be written to
first-order terms as

227 . .
az = Lg;z-— L(R — )| éx cos nt — 2n¢x sin nt] + a.(t)

where Z = z/L; £ = y’/L, R = r/L, and a. is the acceleration of the
instrument casing in direction OZ. Note that R is taken as positive
for the beam configuration shown in Fig. 1, but would be negative in
the case where the root and tip were situated on the same side of the
spin axis with the cantilever directed radially outward as, for example,
in the case of an aeroplane propeller.

The equation of motion follows as

d2Z ¢ oZ EI oZ d
2z -0—9-—+-——————-n2— T(E)O_Z}
ot p ot uLtoft of of
= (R — §)[dx cos nt — 2ngx sin nt] —-% (1)
where _

T(¢) = 3£Q2R — £) - (2R — 1)] (2

represents the centrifugal loading in the cantilever due to the spin.
EI is the flexural rigidity, u the mass per unit length, and c¢ is the
viscous damping coefficient per unit length, all assumed to be con-
stant.

The boundary conditions associated with equation (1) are

AtE=0

Z=%= R
of
Até=1
027  03%Z
=22 ®
o of

Solution of Equations of Motion. The presence of the centrifugal
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M+9M dy T+3T dy

=

0'

Fig. 3 Beam element

loading term T'(£) precludes an exact analytical solution of equation
(1) in terms of known functions. An-approximate solution will
therefore be constructed using Galerkin’s method [3]. A series solution
of the form

Zn= 3 anOan® )
z

is assumed where g (t) are a finite set of generalized coordinates, to
be determined, and ¢ (£) are the normal modes of the corresponding
nonrotating cantilever. )

In [1], where the free vibration of an undamped beam was studied,
a series containing two terms was assumed. In the present paper we
are primarily interested in the dynamical characteristics of the beam
at values of spin in the vicinity of the fundamental frequency where
the motion is predominantly at the first mode. To simplify the analysis
a series solution of only one term will be assumed. While this results
in a small loss in numerical accuracy of computed results in the region
of the tuning frequency, this is felt to be justified by the fact that all
the main dynamical features can be illustrated simply.

The fundamental mode of the corresponding nonrotating cantilever
is given in [4] as

f

¢(Y) = cosh (AE) — cos (AE) — ofsinh (A§) — sin (AE)] (5)

where A = 1.8751 and ¢ = 0.7341.

Free Motion and Tuning. The equation of motion for this case
is equation (1) with ¢x = ¢x = a. = 0. Following Galerkin’s method,
substitution of the assumed solution (5) in equation (1) yields the
following equation for g:

C
G+=—q+qpn?®+n2a)=0 (6)
n

where
1 d¢\2
= TE |—| d
an j; (€3] (af) £
and po; = AMEI/uL4)1/2 is the fundamental frequency of the corre-
sponding nonrotating beam.

The fundamental natural frequency p, of an undamped cantilever,
follows from equation (6) and may be expressed as

p2 = poi® + n2an (7

If R = r/L > 0.0687, it has been shown in [1] that a;; < 1 and tuning ’
to the spin frequency is possible.
Tuning occurs when p = n = n; and is achieved when
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Response to a Constant Applied Rate of Turn. The potential
usefulness of the device as an angular motion sensor is best illustrated
by considering its response to a constant rate of turn, dx=Q= const,
a. = 0, Appropriate substitution of equation (4) in equation (1) then
yields

G+ 2vpg + p2q = —2nQF sin nt 9)

where
F= fl (R—§8¢dE and »=c/2up.
0

p and ay; are as defined for equations (6) and (7).
Consider first the special case of an undamped beam, tuned ac-
cording to equation (8). In this case equation (9) reduces to

G+ n?q=-2nQF sinnt (10)

The particular integral now takes the special form associated with
resonance and the general solution of equation (10) may be expressed
as

q = qosin (nt + «g) + FQt cos nt (11)
where qo and « are initial condition constants.
For a step input of magnitude ¢x = Q
g=¢=0 at t=0, (12)

from which ag = 0 and g¢ = —F§/n. The general solution is thus

g = —(FQ/n)sin nt + FQt cos nt ~ (13)

For values of £ 3> 1/n (typically 1/n ~ 1073 sec) the second term on
the right-hand side of equation (13) predominates and the amplitude
of the response is governed chiefly by the total applied turn Qt. A
precisely tuned and undamped instrument would therefore operate
as an angular displacement measuring device until the amplitude of
beam vibration reached a level where the linear approximation theory
became invalid. Furthermore, since the orientation of the axes OXY
is arbitrary, the phase of the beam vibration relative to a suitable case
fixed reference determines the axis about which the input rate is ap-
plied. The instrument therefore operates essentially as a two-axis
device. Physically, the motion of the beam in this case is such that an
element of the beam, for example, the tip, moves on a path in space
that is essentially circular, the plane of the circle deviating from the
initial plane by an angle which increases linearly with time. The axis
about which the plane of the circle rotates determines the axis of the
input rate. The motion of the beam is thus akin to that of a free rotor
which maintains a fixed direction in space.

The response as given by equation (13) represents the response of
an ideal gyroscope. In practice however, damping will inevitably be
present and the instrument will not be operated precisely at the
tuning frequency. It is therefore more realistic to consider the general
case where damping and mistuning are present. The response in this
case follows directly from equation (9) and takes the form:

g = e~ *Pt{P sin pat + Q cos pat}
x —2nQF
[(p%—n?) + (2unp)?|1/2

sin (nt —vy) (14)

where

2vn,
y = tan™" [pz”_’;z], pa=pll—y2)i/2

and P and Q are initial condition constants. For a step input Q in
applied rate of turn at time ¢ = 0 the initial conditions are given by
equation (12) and P and @ take the values

_2nFQ  [ncosy —vpsinyl

P
py (0% —n?2+ (2vnp)?/2

(15)
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~2nkF) sin v

= 15
[(p% = N2 + (2vnp)?| /2 (15)

(Cont.)

Q

If the mistuning and damping are both small, as they may be in
practice, we may write

p,~p=n(l+mn

where n(<<1) represents the amount of mistuning. Equations (14) and
(15) may then be rearranged as

q= n—(;g—%l—z—) [e=¥n¢ cos ynt — 1] sin nt
L [1 — e=*nt cos ynt] cos nt
n(n®+ v?)
FQe-vnt . .
m [ cos nt + v sin nt] sin y nt
_ o e~ ?{cos ynt sin nt + sin ynt cos nt] (16)
n(n®+ v?)

For small intervals of times such that vnt < 1, nnt « 1 equation (16)
simplifies and the response is given by
—FQu2sinnt
n(n*+ v?)

Comparison of equation (17) with equation (13) shows that for small
intervals of time the response of the damped mistuned instrument
is substantially the same as that of a tuned undamped instrument,
and is governed by the total applied turn Qt.

For longer time periods such that vnt, nnt > 1 equation.(16) may
be expressed with good approximation as

i U
n(nz + V2)1/2

with v = tan™! (v/7) and the steady-state response is proportional to
the applied rate of turn Q. Thus the damping and mistuning limit the
length of time for which the instrument acts as an angular displace-
ment sensor and strongly affect the sensitivity of the instrument as
a rate sensor. Furthermore, equation (18) indicates that phase of the
output signal is critically dependent on the relative magnitudes of the
mistuning and damping. This means that, if the damping and mis-
tuning were of the same order, a significant error could occur in de-
termining the input axis (about which the input rate is applied) from
the relative phase of the output vibration. Thus, if the instrument
were to be used as a rate sensor, one would probably choose n > v so
that v — 0. The selection of the mistuning parameter would therefore
involve a tradeoff between sensitivity and accuracy.

Response to Applied Acceleration. Consider the case where $x
= ¢x = 0 and the instrument is subjected to an applied acceleration
ac(t) in direction OZ. Following Galerkin’s method appropriate
substitution of equation (4) in equation (1) yields

— FQt cos nt (17)

q sin (nt — 7y) (18)

G+ 2vpg + p2g = —Fia.(t) (19)

1 1
Fi=s j; $dE.

Without deriving specific solutions, the following points of interest
may be noted in relation to the response to linear acceleration.

The steady-state response of the beam will be proportional to a..
The beam therefore acts as a linear acceleration transducer in addition
to acting as a two-axis angular motion sensor. Since the useful re-
sponse to applied rotation is always at spin frequency n, it is a
straightforward matter to discriminate hetween the response to ap-
plied rotation and the response to applied linear acceleration unless
the applied acceleration has a component at frequency n which will
excite the beam in the same manner as an applied rate of turn. How-
ever, the bandwidth of @, (£3d8) will be much less than the natural
frequency p and in practical applications in which a combined gyro/

where

'SEPTEMBER 1980, VOL. 47 / 633

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



accelerometer might be used, only low frequency components of ac-
celeration would be of interest. Thus it will be possible to discriminate
useful acceleration information simply on a frequency basis.

Response to Angular Vibration. It is important to consider the
response of the instrument to angular vibration since it is known to
give rise to measurement errors in other tuned gyroscopes such as the
oscillogyro [4] and the Hooke’s joint gyro [5]. Consider the response
of the instrument to an angular vibratory input ¢x = { sin wt, a, =
0. Following Galerkin’s method, equation (1) yields

4+ 2vpg + pq

FQ
= ~2— 2n + w) cos (w + n)t — (2n — w) cos (w—n)t| (20)
where v, F, and p are as previously defined. The. general.solution of
equation (20) for an untuned instrument may be expressed as

.q = e *PL[A cos pgt + B sin pat|

+ ? {Ry cos [(w—n)t — 1] + Racos [(w+ n)t — as)}  (21)

where
Ry =[2n — wl/{lp? — (w — )% + [2up(w — n)|H1/2
Ro = [2n + w]/{[p? — (w + n)2]2 + [2vp(w + n)|31/2
o1 = tan~2vp(w — n)/[p? ~ (w — n)?|}
as = tanY2up (w + n)/[p? — (w + n)2]}

A and B are initial condition constants and p and pg are as defined
previously.

In general, the steady-state response, which is represented by the
second term on the right-hand side of equation (21) contains two
frequency components, (w — n) and (w + n). For the untuned in-
strument (p > n) the input vibration frequencies which cause reso-
nance depend on whether the spin frequency is above or below the
tuning frequency. Below the tuning frequency (n < p) resonance
occurs for values of w in the region of p + n in the first component and
p — n in the second component. Above the tuning frequency (n > p)
resonance occurs only in the first component when w is in the region
ofn+ pandn - p.

The response of the tuned instrument (n = p) is of special interest.
For an ideal tuned undamped beam the particular integral solution
of equation (20) follows on simplification of (21) as

q= 0 [cos (w — n)t —.cos (w + n)t] (22)
2w

As w — 0, resonance occurs in both the first and second components
of response and the limiting case when w = 0 corresponds to the re-
sponse to a constant applied rate of turn.

In the case where w = 2n the low frequency component of response
for the ideal instrument takes the form ‘

FQ
g=—cosnt (23)
4in
This should be compared with equation (13) which expresses the
corresponding response to a constant rate of turn. It can be seen that
equation (22) is essentially different from the predominant second
term on the right-hand side of equation (13).

In the presence of damping R is zero when w = 2n irrespective of
the state of tuning and the beam exhibits a null response in the low
frequency component.

Thus the instrument is immune to twice spin frequency angular
vibration in both the angular displacement and angular rate modes
of operation.

A further point of interest arises when the excitation frequency w
and the spin frequency n are equal. In this case w — n = 0 and the low
frequency component of steady-state response as expressed by
equation (21) becomes
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Fig. 4(a)

Detail of beam of test gyro

Fig. 4(b) General view of test gyro

- -

q="—" (24)

2p?
so that the beam adopts a steady offset from the original undeflected
position. While this response does not affect the angular motion
sensing capability of the device, it could be interpreted as a constant
applied acceleration in direction OZ if the instrument were used as
an accelerometer as explained in the previous section.

Experiments

The Experimental Gyroscope. A prototype beam gyroscope was
manufactured so that the main theoretical predictions could be tested.
The design was extremely simple and used commercially available
“off the shelf” components where possible.

The main elements of the experimental instrument are shown in
Fig. 4. The sensitive element consisted of a steel cantilever beam,
nominally 86.5 mm long, 10 mm wide, and 0.75 mm thick, mounted
diametrally across the drive plate so that the root offset r was 38.1 mm.
The drive plate and beam were spun by means of an externally
mounted hysteresis motor, the speed of which was controlled by the
electrical supply frequency. The drive plate and beam were enclosed
in a casing which could be evacuated to reduce drag on the rotating
elements.

The deflection of the beam was measured by means of a stationary
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Fig. 5 Variation of first natural frequency p with spin n

inductive proximity transducer mounted in the casing on the spin axis.
Phase reference signals, used in resolving the pickoff signal into
perpendicular components, were generated by two inductive prox-
imity transducers acting against an eccentric on the drive shaft. The
pickoff signals were filtered where necessary so that appropriate
components of output could be observed.

During manufacture particular attention was given to heat-treat-
ment of the sensitive element in an attempt to minimize internal
damping in the steel. In practice it was found that the air pressure in
the instrument casing did not significantly affect the damping of the
beam vibration. It was therefore concluded that hysteretic damping
in the beam material was the principal cause of energy dissipation.

- When manufacture was completed the rotating elements were
dynamically balanced to minimize vibration levels.

Constant rate inputs were applied to the test gyroscope by means
of test tables which were capable of providing stabilized rates of turn
in a range between a minimum of earth’s rate (15°/hr) and a maximum
of 60°/sec. Angular vibratory inputs were generated by means of a
special angular vibration test table.

Three main series of tests were conducted. The first-related to the
tuning condition, the second investigated the response to constant
applied rates of turn and the third examined the response to angular
vibration.

Free Vibration and Tuning. The (approximate) theoretical
variation of undamped natural frequency with spin is given by
equation (7) and tuning is achieved when the spin frequency is chosen
to satisfy equation (8). Experimentally, p and the damping ratio v
were measured by applying an impulse to the casing and recording
the resulting free vibration. The measured damping ratio » with the
casing evacuated and the spin frequency approximately equal to the
tuning frequency was found to be of the order of 3 X 1073, As men-
tioned earlier, variation of the absolute air pressure in the casing be-
tween 350 mm Hg and 60 mm Hg did not significantly affect the
damping ratio.

In view of the low damping ratio, the undamped natural frequency
was sensibly equal to the frequency of the damped vibration. Fig. 5
shows the theoretical relationship between p and n as expressed by
equation (7), together with experimentally measured points, for a
range of spin frequencies including the tuning frequency. Satisfactory
agreement between theory and experiment is demonstrated.

Constant Rate Input. The steady-state response of the damped
untuned instrument to a constant rate of turn is expressed by the
second term on the right-hand side of equation (14). Figs. 6(a) and

(b) show a comparison of the theoretical steady-state vibration am-
plitude and phase lag, respectively, with representative experimental
measurements of these quantities, taken over a range of spin
frequencies including the tuning frequency. Although there is some
discrepancy between predicted and measured response amplitude,
the predicted trend is nevertheless adequately confirmed. Fig. 7
compares the theoretical and experimentally determined sensitivity
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Fig. 6(b) Response to constant rate input; phase lag versus spin fre-
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of the gyro to a constant rate input for a range of spin frequencies near
the tuning speed. In this case also the theoretical trend is confirmed
and reasonable linearity is displayed. With a mistuning factor of the
order n ~ 0.01, the minimum detectable applied rate of turn was of
the order Q ~ 1073 rad/sec. These results tend to confirm the feasi-
bility of using the untuned beam gyro as a two-axis open-loop rate
gyro. The sensitivity would increase for < 0.01 but in the prototype
instrument the problem discussed in the following paragraph was
encountered as the tuning condition was approached.

It was not possible, with the prototype instrument, to make any
experimental measurements at the tuning condition. This was because
the beam was found to resonate when the tuning condition was
reached, due to a cause other than the applied rate of turn. The most,
likely source of excitation producing the resonance was considered
to be either the spin axis bearings or the housings in which they were
mounted. Any imperfection in this area could cause the drive shaft
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Fig. 7 Response to constant rate input; steady-state amplitude versus input
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to oscillate along its axis with a component at spin frequency, and in
fact accelerometer measurements of casing vibration indicated a
component of axial vibration at the spin frequency. As discussed in
the section “Response to Applied Acceleration,” the beam is very
sensitive to linear vibration at a natural frequency, which at tuning
coincides with the spin frequency. It is felt that this effect, which was
exaggerated by the relative crudity of the prototype gyro, resulting
from the limited manufacturing facility available, could be minimized
by appropriately high precision manufacture of the drive system.

Response to Angular Vibration. The theoretical response of the
instrument to angular vibration is expressed by equation (21) which
reveals that the steady-state response consists of two components
having frequencies equal to the difference and sum, respectively, of
the spin and input frequencies. The amplitude of each component
becomes large when its frequency coincides with a natural frequency
of the beam. Note that because the mathematical model adopted in
this paper effectively considers the instrument to have only one degree
of freedom, resonances are only predicted for frequency combinations
equal to the first natural frequency of the beam. In practice resonances
associated with the second and higher natural frequencies are also to
be expected.

Experimentally, the spin frequency was set at each of a number of
fixed values, above and below the tuning frequency, and the input
frequency was varied over the appropriate range. In each case the
pickoff output was found to consist of the predicted frequency com-
ponents. As the input frequency was varied the predicted two reso-
nances were observed, both occurring in the low frequency component
when n > n; and one in each component when n < n;. Theoretical
response curves and representative experimental points for values
of n > n; are shown in Figs. 8(a) and (b), for ranges of input
frequencies in the region of the two resonances. These show close
agreement between theory and experiment, which was also found for
values of n < ng;.

Conclusions :
A novel “multisensor” comprising a two-axis gyroscope and sin-
gle-axis linear accelerometer has been proposed, and its fundamental
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dynamical characteristics have been investigated. The gyroscope has
two possible modes of operation, namely, tuned and untuned. In the
untuned mode the instrument behaves, in steady state, as a two-axis
rate gyroscope and may, for short intervals of time, be used as an
angular displacement sensor, In the tuned mode the instrument offers
potential as an angular displacement sensor, its performance as such
being limited by the amount of damping and the degree of mistuning
which are inevitably present in a practical instrument.

In addition to its two-axis angular motion sensing capability, the
instrument is capable of simultaneously measuring linear acceleration
along a third (perpendiculay) axis.

Experimental evaluation of a prototype instrument has demon-
strated the practicability of the device as an open-loop two-axis rate
sensor in the untuned mode. Good agreement has been obtained be-
tween theoretical prediction and experimental measurement, which

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



gives confidence that the instrument is capable of development to
achieve higher levels of performance.
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a Forced Nonlinear Oscillator:
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The forced vibrations of a buckled beam show nonperiodic, chaotic behavior for forced
deterministic excitations. Using magnetic forces to buckle the beam, two and three stable
equilibrium positions for the postbuckling state of the beam are found. The deflection of
the beam under nonlinear magnetic forces behaves statically as a butterfly catastrophe
and dynamically as a strange attractor. The forced nonperiodic vibrations about these
multiple equilibrium positions are studied experimentally using Poincare plots in the
phase plane. The apparent chaotic motions are shown to possess an intricate but well-de-
fined structure in the Poincare plane for moderate damping. The structure of the strange
attractor is unravelled experimentally by looking at different Poincare projections
around the toroidal product space of the phase plane and phase angle of the forcing func-
tion. An experimental criterion on the forcing amplitude and frequency for strange at-
tractor motions is obtained and compared with the Holmes-Melnikov criterion and a heu-

ristic formula developed by the author.

Introduction

There has been growing interest in nonperiodic, steady-state so-
lutions of nonlinear differential equations in applications to atmo-
spheric dynamies [1], electrical circuits [2], and elastic structures [3,
4}. The equations governing these systems are deterministic while for
certain control parameters chaotic motions appear. The importance
of these motions is twofold. First, conventional methods for finding
steady-state solutions to nonlinear differential equations such as
perturbation schemes, and averaging techniques must be abandoned
or modified since they assume periodic solutions. The second point

is that in many physical systems observation of chaotic behavior is -

often ascribed to some randomness in the problem parameters. The
existence of strange attractor motions of deterministic systems may
obviate the need for the existence of random “demons” in certain
dynamical problems.

Mathematicians have used the name “strange attractor” to denote

1 Research supported in part by a grant from the National Science Foundation,
Engineering Mechanics Division, Grant No. 76-23627.

Contributed by the Applied Mechanics Division for presentation at the
Winter Annual Meeting, Chicago, I1l., November 16--21, 1980, of The AMERICAN
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Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y,
10017, and will be accepted until December 1, 1980. Readers who need more
time to prepare a discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division, May,
1979; final revision, January, 1980. Paper No. 80-WA/APM-2,
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bounded, chaotic, nonperiodic solutions of deterministic, nonlinear
differential equations in contrast to more predictable motions such
as those near equilibrium points and limit cycles. Strange attractor
oscillations have been found for third-order autonomous differential
equations by Lorenz [1] in developing an atmospheric dynamics
model. Strange attractor solutions have been found in analog com-
puter simulations of Duffing’s equation by Ueda (2, 5] and Holmes
[3, 4]. Ueda, 2], has also observed chaotic behavior in analog computer
solutions of a forced Van der Pol oscillator.

Mechanical examples of continuous, nonperiodic, bounded motions
in deterministic systems can be found in the vibrations of buckled or
curved plates and beams. These motions occur when the vibration
amplitude becomes large enough to cause the beam or plate to
“snap-through.” Tseng and Dugundji [6] have studied the nonlinear
vibrations of a buckled beam with fixed ends and observed both pe-
riodic and nonperiodic motions. They refer to the latter as continuous,
“intermittent” snap-through under harmonic excitations. In a recent
paper, the author and Holmes [7] examined the nonlinear forced vi-
brations of a cantilevered beam which is buckled by magnetic forces.
The harmonic excitation of this model exhibited chaotic snap-through
behavior similar to strange attractor motions found in analog com-
puter studies. In [6, 7}, the Galerkin approximation was used to reduce
the nonlinear beam equations to Duffing’s equation with harmonic
excitation.

The work of Tseng and Dugundji [6] was an extension of previous
work by Cummings [8], and Eisley [9] on large amplitude vibrations
of buckled and curved plates. Cummings treated the snap-through
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Fig. 1 Sketch of experimental apparatus

problem under a pulsed load but did not examine the intermittent
snap-through discussed in [6].

The present paper is an extension of the work of Moon and Holmes
[7] on the chaotic vibrations of a cantilevered beam buckled by
magnetic forces, Although there are potential applications for the
study of magnetically buckled structures, such as in fusion reactors
(see, e.g., [10]), its main interest in this paper is as one of the simplest
mechanical examples of strange attractor motions which can be easily
studied experimentally. In the previous work analysis of the magnetic
and elastic forces led to a Duffing-type equation for the first mode
approximation. Briefly, the beam was assumed to have a magnetiza-
tion M induced by the magnetic field of external magnets B°. The
magnetic field acting on the beam creates distributed magnetic forces
and couples

F=M-.vBl
c=mXxBo 1)

When a one mode Galerkin approximation is used, a magnetic energy
potential can be found in terms of M, BY

1
‘W=—-§fM-BOdv 2
This potential is nonlinear in the modal amplitude “a” and is ex-
panded in a Taylor series in “a;”
1 1 1
W=-va2+-Bat+-nab. 3
57 46 g (3)

The resulting nonlinear modal magnetic forces when added to linear
modal elastic forces lead to a nonlinear differential equation of the
form,

G+ dd + aa + Bad + pa® = Q24 cos Qi 4)

where a is the modal amplitude of the first bending mode of the
cantilevered beam, Ag is the vibration amplitude of the forced support
motion, and { is the frequency of the support motion. Structural
damping is represented by §. The control parameters in this problem
are the spacing of the magnets, damping, forcing amplitude, and
frequency. As a static problem only the spacing of the magnets is
relevant. The elastic bending stiffness, magnet field strength, and
positions of the magnets relative to the beam form a four parameter
system which admit one to five equilibrium positions of the tip. For
a given beam stiffness, the locus of points in the plane of magnet
spacing parameters for which the number of equilibrium points
changes is known as a butterfly catastrophe, [11], and is shown in Fig.
2. For the three equilibrium state case only two are stable and the
governing nondimensionalized differential equation takes the form

A+7A-—§(1—A2)A=fcoswt (5)
where the following nondimensional groups are noted:
v =8/wy, A=alxo
Q240
" oo
w = Q/wy
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The amplitude is normalized by x¢ and the time by 27/wo where x¢
is the static position of the beam tip and wo is the frequency for small
vibrations about the buckled position.

For fixed damping and frequency the motion for small forcing
amplitudes is periodic but for larger amplitudes becomes chaotic with
the beam tip jumping from one equilibrium position to the other as
shown in Fig. 3. A phase plane picture is shown in Fig. 4 and it is clear
that a continuous history of the motion has very little structure.

In this paper experiments are described which attempt to charac-
terize the behavior of this chaotic motion and to determine the critical
parameters for which one might expect chaotic behavior from a sec-
ond-order, single-degree-of-freedom system. Theoretical attempts
have been made recently to determine the nature of the attracting set.
In[4] Holmes has developed a necessary criterion for strange attractor
motions which determines the minimum forcing amplitude as a
function of forcing frequency. This criterion is compared with ex-
perimentally determined parameters as well as another theoretical
criterion posited by the author. Experimental Poincare plots in the
phase plane are used to partially unravel the strange attractor.

Description of Experimental Apparatus

The apparatus consisted of a steel (ferromagnetic) cantilevered
beam suspended vertically. The clamped end was attached to a vi-
bration shaker, (Fig. 1) while permanent magnets, 2.54 ¢cm (1 in.) in
diameter, were placed below the free end of the beam. The dimensions
of the beam were 18.8 cm (7.4 in.) long, 9.5 mm (3/8 in.) wide, and 0.23
mm (0.009 in.) thick. The magnets had a 0.18 Tesla magnetic field
normal to the magnet face and rested on a steel base.
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Fig. 3 Bending strain versus time for forced chaotic vibrations of the buckled
beam

Strain gages were attached to the beam near the clamped end while
a linear variable differential transformer was attached to the shaker
platform to measure the forced vibration amplitude of the beam base.
Data were recorded on a storage oscilloscope. )

To display motion in the phase plane and to perform a Poincare
mabp, a differentiator was used. In order to avoid spurious differen-
tiation from high frequency noise, a low pass active filter was built
(Bessel filter) with a 3 db drop in amplitude at 40 hz and less than 1
percent error in phase shift in the operating region. The experiments
were performed at driving frequencies below 15 hz. With no magnets
the beam had natural frequencies of 4.6, 26.6, and 73.6 hz. The am-
plitude and phase shift of the differentiator was checked carefully over
the range of driving frequencies.

To perform a Poincare map, a storage oscilloscope was used. The
scope trace intensity was modulated by a pulse triggered by the vi-
bration shaker amplitude. The bending strain was displayed on the
horizontal axis of the scope while the time rate of strain controlled
the vertical displacement of the scope trace. By modulating the trace
intensity in synchronization with a particular phase of the vibrator
motion, a dot would appear with every cycle and the set of dots over
time would provide a Poincare map or section of the motion.

Results

A number of different experimental methods were used to char-
acterize the nonperiodic motion of the beam including time histories,
Fourier analysis, zero crossing times distribution, Poincare maps, and
determination of chaotic motion threshold for driving amplitude and
frequency.

Static Bifurcations. Static buckling experiments were done as
reported in [7] to determine the critical values of magnet spacing Ay
and magnetic offset A; at which the number of equilibrium positions
changed (Fig, 2(a)). The locus of points in the A1, A2 plane where the
number of equilibrium solutions changes is known as a catastrophe
set, [11]. In classic symmetric buckling problems this set is simply a
point, namely, the buckling load. However when one allows other
parameters to vary, such as geometric imperfections, the set becomes
a curve, surface, or hypersurface in the parameter space. The di-
mension of the hyperspace depends on the potential energy func-
tion.

For this problem the magnetic potential (3) implies that four pa-
rameters will be sufficient to describe all the possible bifurcations.
The theoretical set is called a butterfly catastrophe, [11], and a two-
dimensional section is shown in Fig. 2(b), for the potential,

Y= ab+ A4a4 + A3a3 + A2a2 + Ala (6)

The projection shown in Fig. 2(b) is for Az = 0, A4 < 0. The number
of equilibrium positions in each region is shown by the circled num-
bers.

Comparison of the experimental and theoretical catastrophe sets

640 / VOL. 47, SEPTEMBER 1980

Fig. 4 Phase plane motion for the chaotic motion in Fig. 3; bending strain,
horizontal axis and time rate of strain, vertical axis
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Fig. 5 Experimental and theoretical thresholds for spontaneous chaotic
motion-moderate damping, 'y = 0.0168

shows good qualitative agreement. One can imagine a change of pa-
rameters A1(A\1, A2) and Ag(A1, Ag) which will transform the experi-
mental “rabbit” catastrophe Fig. 2(a), into the topologically identical
butterfly set, Fig. 2(b).

Most of the dynamic experiments were run in the three equilibria
regimes in the A1, A2 plane with two stable and one unstable equilibria.
However a few tests were performed for the five point case. In the
latter case, three are stable equilibria while two are saddle-type points
and are unstable.

Experimental Criteria for Chaotic Motions. Next the range
of vibration base amplitudes and frequencies for chaotic motions was
determined. These data were obtained by fixing the frequency and
varying the shaker amplitude. For small motions periodic orbits of
period one would occur. For larger amplitudes, period one, two, three,
four, or more times the driving period might occur. At a sufficiently
high amplitude, chaotic motions would occur. Such motions might
not persist. Thus, if a periodic motion were disturbed by deflection .
of the beam, a chaotic motion like that in Fig. 4 might appear and
decay to the periodic orbit. However a threshold would occur where
the beam would spontaneously jump out of periodic motion into
nonperiodic or chaotic motions.

This threshold amplitude of shaker motion is shown in Fig. 5 for
different shaker frequencies and damping. The lowest amplitude for
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Fig. 8 Experimental Poincare map of chaotic motion for low damping; ex-
perimental Poincare map of chaotic motion for moderate damping

chaos occurs at a forcing frequency below the natural frequency of
the linearized buckled beam. A comparison of the experimental cri-
teria with theoretical predictions is discussed in a later section of this
paper.

There is some belief that an upper criterion exists where the forced
motion changes from nonperiodic to periodic, [4], but this was not
observed within the range of shaker amplitudes available to the au-
thor.

Poincare Plots. A time history of the bending strain for non-
periodic motions is shown in Fig. 3. This oscilloscope trace shows vi-
bration about the two stable equilibrium positions, the transition
between them, and oscillations about all three equilibrium positions.
A phase plane portrait of this motion is shown in Fig. 4. Motion about
the left, right, and all three equilibrium points can be seen but it is
clear that the plane will become dense with these traces, making any
characterization of the motion difficult to interpret. Instead of looking
at the motion for all times, one can choose to observe the position in
the phase plane at certain multiples of periods of the forcing motion.
A sequence of points or dots on the oscillgscope will appear called a
Poincare map.

A period one Poincare map is shown in Fig. 6(a) for low damping.
One can see that there appears to be little global structure, though
locally small clusters of straight lines of dots can be seen. Thus the
forced nonperiodic motions of the near Hamiltonian system do not:
reveal much structure or order in the Poincare map.

To increase the damping, a 0.05 mm (0.002 in.) thick stainless steel
strip was glued to the beam which increased the damping from v =
0.0033 to vy = 0.0168.

The Poincare map for the moderate damping case is shown in Fig.
6(b). Here one can see that the period one Poincare map shows a great

Journal of Applied Mechanics

Fig. 7 Poincare maps of a strange attractor for different phase synchroni-
zation wilh forcing function

Fig. 8 Sketch of strange attractor surfaces in the product space of Poincare
plane and forcing amplitude phase

deal of order resembling a line wrapped back and forth on itself. In
analog computer studies [3], Holmes has shown that this parallel line
structure continues to exist when local regions of the phase plane are
magnified, suggesting the property of a Cantor set.

The Poincare map in Fig. 6(b) depends on the phase angle of the
driving motion, 6. For the symmetric problem examined here, the map
should invert itself when § — 6 + #. The change of shape of the strange
attractor for different § where 0 < § < 7, is shown in Fig. 7. One can
see that although the figure at 8 = 7 appears to be rotated, the evo-
lution of this change shows that the “arms” of the attracting set de-
form in such a way as to invert the shape.

It should be noted that the motion of the beam must pierce all of
these maps so that the lines in the Poincare plane become sheets in
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Fig. 9 Experimental multiperiod Poincare maps of the same chaotic mo-
tion

the toroidal product space of the Poincare plane and forcing phase
g, Fig. 8.

Tt is remarkable that a Poincare map synchronized with the forcing
motion appears to organize what appears to be chaotic behavior. It
should be clear that if the map is slightly unsynchronized, points from
different Py maps of the synchronized maps will project onto the
unsynchronized map. The resulting attracting set will appear as a blur
and the structure will be lost.

One of course can obtain multiperiod Poincare maps P defined
by

2nw 4n
{x,x|9=—1,——1....}.
2 w

We note that the maps P n = 2 are contained in the P! map but
the question arises as to whether the structure of the strange attractor
as seen in the higher period maps will look like that of the P! map.
Experiments were carried out for n = 2, 3, 4, 5 and indeed the struc-
ture of the attractor looks identical to the P! map as shown in Fig. 9.
For example, the only difference between P®) and P!is that P® took
20 min to obtain, while P! took around four minutes of data. This il-
lustrates again that although the motion appears to be chaotic in
continuous observations, stroboscopic, or P* maps reveal highly
structured features of this motion.

“Butterfly” Strange Attractor. While most of the experiments
were carried out for the single saddle and double sink or three equi-
librium point case, a few experiments were performed for the double
saddle or five equilibria case. As had been discussed by Holmes [4]
and Ueda [2], the strange attracting set in the Poincare plane seems
to be organized about the unstable manifold of the saddle point. When
two saddles are present in the phase plane of the unforced motion,
one would expect two organizing centers to appear in the Poincare
map for the chaotic motions. Experimentally this has been observed
as can be seen in Fig. 10.

Fourier Analysis. Frequency analyses of these chaotic motions
were carried out by digitizing the data and using a fast Fourier

642 / VOL. 47, SEPTEMBER 1980

Fig. 10 Experimental strange attractor in the Poincare plane for the five
equilibria case
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Fig. 11 ' Intersection of the stable manifold M; and unstable manifold M, of
the Poincare map in the phase plane (see [4])

transform [7]. The chaotic motions exhibit a continuous spectrum of
frequencies below the driving frequencies, including subharmonics.
Similar results were reported earlier by Ueda [5] and Holmes [4] for
a forced Duffing’s equation.

Threshold Criteria for Chaotic Motions

Various qualitative analyses have demonstrated the existence and
characteristics of chaotic motions in deterministic nonlinear systems.
However there is at present no theory to predict for what range of
parameters these chaotic motions will occur. The engineer would like:
a chaotic “Reynolds number” or an equivalent parameter below which
periodic motions would be insured and above which chaotic, non-
periodic motions would occur in the forced nonlinear oscillator.

In [4] Holmes has presented a necessary criteria for the strange
attractor based on the work of Melnikov [12]. For chaotic motions to
occur, the forcing amplitude, driving frequency, and damping in (5)
must satisfy the relation

V2 W
= =. 7
',fl 3rw cosh (\/5) : @

In [4] Holmes showed that the Poincare map itself has a saddle
point and that as the forcing amplitude is increased the stable and
unstable manifolds of the saddle of the Poincare map intersect, giving
rise to infinitely many intersections or homoclinic points as shown
in Fig, 11. It has been shown in {4] that two arbitrarily close points in
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the Poincare phase plane can be widely separated under iterations
of the Poincare map.

Comparison of the Holmes-Melnikov criterion with experimental
thresholds in the driving amplitude-frequency plane for fixed
damping is shown in Fig. 5. While the theoretical threshold (7) gives
a lower bound it does not compare well with measurements for low
damping. Also it predicts that the minimum forcing amplitude occurs
at a driving frequency greater than the natural frequency while ex-

periments indicate that for low damping the minimum occurs below

the natural frequency. There is evidence however that this criterion
may give good results for high damping (v > 0.1), [4].

It should be pointed out that the experimental thresholds were for
“spontaneous” departure from forced periodic motion about a buckled
state to chaotic motions. Experiments have shown that under certain
initial conditions chaotic motion can occur below the spontaneous
threshold. Thus it is possible that initial conditions could be found
for which chaotic motion could occur near the Holmes-Melnikov
criterion.

As just mentioned, it has been predicted and observed experi-
mentally that multiperiod subharmonic forced oscillations are often
precursors to the strange attractor behavior. Thus a better criterion
may be found by studying the stability of subharmonic motions as has
been reported by Hayashi [13]. Unfortunately the stability criterion
as reported in [13] does not use f and w as parameters and it is difficult
to determine if a subharmonic stability criterion will compare well
with the threshold in Fig. 5. But this seems to be a worthwhile direc-
tion to go in.

Finally, we propose a hueristic criterion based in part on a pertur-
bation solution for forced periodic motion, and experimental obser-
vations. First we observe that the criterion sought governs the tran-
sition from forced periodic to nonperiodic motion. Thus, before
chaotic motions oceur, the response amplitude and velocity are known
functions of forcing amplitude and frequency, i.e., {x2) = g(f, w),
where { ) indicates time averaged. If a critical amplitude of (x2) or
(%2) can be found, then f and w can be related when chaotic motion
is incipient.

To find the response function we write (5) about the buckled po-
sition A = 1 or —1. If we denote the motion about A = 1 by

A—1=X/xo

where x¢ is the static deflected position of the tip of the beam, then
the equation of motion takes the form

. . 3 1
X+4X+X 1+§uX+§u2X2 = xof cos (wt + ¢o)  (8)

where u = 1/x¢. The parameter u will act as a perturbation parameter,
while the phase angle ¢ will be adjusted so that the first-order motion
is proportional to cos wt. Then using either Duffing’s method, or
Linstedt’s perturbation method [13], [14] one assumes a solution of
the form

X =Cocos wt + u(Cy + Cq cos wt) + u2X; 9)

The resulting force-response relation is found to be

[ = ST+ o=
X0 . 2 X0

Finally, it has been observed that over a limited range of frequencies
close to the natural frequency in the post buckled state, the periodic
motion seems to change to chaotic at a critical velocity. This velocity
was not measured. However we hazard a guess that the critical velocity
is near the maximum velocity on the separatrix for the phase plane
motion of the undamped, unforced oscillator. This is certainly a guess,
but this velocity is a characteristic of the beam and independent of
the force. In nondimensional units (dA/dt)max = %. Thus we assume
that near the chaotic threshold
Co

X0

(10)

(11)

R
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where « is near but less than unity. These assumptions lead to a eri-
terion of the form

o 3 a?)2 1/2
o 1-— 2y o + 2 2}
h 2w [[( “) 8w2] e

The constant « gives us a “cheat” factor with which to fit the data.
However what is remarkable, at least to the author, is that with rea-
sonable values of a (near unity) the criterion compares very well with
the experimental data both qualitatively and quantitatively as shown
in Fig. 5. In Fig. 5 the dimensional forcing frequency and amplitude
are given by

(12)

Q = wow, Ag = xofwo?/ Q2

It is left to theoreticians to determine whether the assumptions
implicit in (12) are at all related to the subharmonic stability criterion
of Hayashi or the Holmes-Melnikov equation (7), or whether (12) is
simply a fortuitous guess.

Summary

The experiments reported here show that a simple mechanical
structure can exhibit nonperiodic or chaotic motions even when the
forcing inputs are highly deterministic. The results are consistent with
qualitative analysis and analog computer solutions of a deterministic
forced Duffing’s equation. In both the mechanical structure and the
analog studies reported earlier, the nonperiodic motion exhibits a
remarkable mathematical structure in the Poincare plane, resembling
a sheet folded infinitely many times about the saddle point with
properties of a Cantor set. This structure is preserved in higher-order
maps of period two or higher. However the maps must be exactly
synchronized with the phase of the driving motion or else this orga-
nized structure will be blurred or washed out. Experimentally the
structure of the strange attracting set is more readily observed in
moderate to highly damped systems.

The attempt by Holmes [4] to develop a dynamical “catastrophe”
set of parameters for which strange attractor motions will occur seems
to give a lower bound for the driving force. An ad-hoc criterion de-
veloped in this paper gives a set of driving amplitudes and frequencies
closer to the experimental set. However the effects of other parameters
such as initial conditions have yet to be explored.

The extension of this work to other nonlinear and multistate me-
chanical systems should reveal similar phenomena. In experiments
on the dynamics of a magnetically levitated model on a rotating
guidance track the author has observed similar chaotic behavior [15).
Lateral “rattling” motions of trains may also fall into this class of
problems.

Whatever the specific example however, it is clear from these ex-
periments and those of others that what appears to be “random” or
chaotic motion in many mechanical systems may be governed by
deterministic mathematical models and controlled by nonrandom
parameters.

Strange attractor dynamics in other engineering systems such as
chemical reactors and aerospace applications have been reported in
[16], including a two-dimensional mechanical oscillator with chaotic
behavior [17].
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An Application of the Poincare Map
to the Stability of Nonlinear Normal

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-
freedom Hamilionian system is studied by deriving an approximation for the Poincaré

map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as
an alternative to the usual linearized stability analysis based on Floguet theory. An ex-
ample is given for which the Floquet theory approach fails to predict stability but for
which the Poincaré map approach succeeds.

Introduction

This paper is concerned with certain periodic motions, called
nonlinear normal modes (NNM'’s), which have been shown to occur
in a wide class of coupled oscillators [24, 18, 10]. In particular we shall
be interested in the stability of NNM’s. As usual in discussing the
stability of periodic motions in a nonlinear system, we shall be con-
cerned only with orbital (and not Liapunov) stability [4].

The usual procedure for determining stability of a periodic motion
in a nonlinear system involves perturbing the solution whose stability
is to be studied, and then linearizing the perturbed equations. The
resulting linear system of equations has periodic coefficients and lies
in the realm of Floquet theory; e.g., for small amplitudes of vibration
the stability problem is often reduced to consideration of the Mathieu
equation [28, 22, 16]. The question of the stability of a given NNM
will often depend upon the values of the system parameters (e.g.,
spring constants, geometry, etc.) The parameter space is typically
decomposed into stable and unstable regions separated by a codi-
mension 1 “transition” surface. (e.g., in the case of the Mathieu
equation £ + (0 + € cos t)x = 0 the § — e parameter plane hasregions
of stability separated from regions of instability by transition curves
[12].) In a particular problem, analytical expressions may be obtained
for the transition surfaces by perturbation methods [26, 21].

It is our purpose in this paper to provide an alternate procedure for
determining the stability of NNM’s in autonomous two-degree-of-
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Fig. 1 The system §

freedom Hamiltonian gystems. The procedure is based on using the
Birkhoff-Gustavson (B-G) canonical transformation to obtain an
approximation for the Poincaré map. We believe that this method
offers some advantage over the usual Floquet theory approach just
described. Specifically, the procedure does not require linearization
in the neighborhood of any particular motion and hence it yields a
global picture of the flow. Thus it not only permits conclusions to be
drawn about the stability of NNM’s, but it also provides insight into.
the dynamical structure of the system.

Moreover, there exist systems for which the Floquet theory ap-
proach simply fails to predict stability for a given NNM! We will de-
scribe such a system in this paper. The failure of Floquet theory in
this case is related to the essentially nonlinear nature of the stability
problem. We will show that the method based on the B-G transfor-
mation and the Poincaré map does, however, predict stability for this
problem.

The System

Congider a nonlinear autonomous two-degree-of-freedom Hamil-
tonian system S which consists of two unit masses constrained to move
along a straight line and restrained by two anchor springs and a cou-
pling spring, Fig. 1. The positions of the masses are given by gener-
alized coordinates x and y, both of which are taken to be zero when
the springs are unstretched. We assume that the restoring force F' for
the identical anchor springs is given by F = d + kd3, while for the
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Fig. 2 A nonlinear normal mode (NNM)
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Fig. 3 Bifurcation of SNM’s (y = Cx) for system $

coupling spring, F = d3. Here d is the spring deformation and k is a
parameter.
The equations of motion for the system S are
oV 1%
, V= (1)
ox oy

where the potential energy V(x, y) is given by

V(e Sy o @

The system S possesses a first integral corresponding to the conser-
vation of energy,

.H(x,y,x,y)=%(a&2+5/2)+V(x,y)=h (3)

where H(x, y, %, y) is the Hamiltonian.

In a previous work [23] it has been shown that the system S pos-
sesses bifurcating NNM’s. In a manner similar to Rosenberg [24] we
take NNM’s to be periodic motions which pass through the origin 0
and which have precisely two rest points, Fig. 2. NNM’s which project

onto the xy-plane as straight lines have been called similar normal

modes (SNM’s) [24].
The system S possesses SNM's, y = Cx, where

c=1,—1,1—§i——”"“"2_4). n

When 0 < k < 4 there are only two SNM’s, y = £x. An additional pair
of SNM’s bifurcates out of the y = —x mode when k > 4, and out of
the y = x mode when & < 0, Fig. 3.

The stability of the ¥ = —x out-of-phase mode and of the two
SNM'’s which bifurcate out of it has been investigated in a previous

646 / VOL. 47, SEPTEMBER 1980

Fig. 4 Stability results from Floquet theory. The stability chart is for the
Mathieu equation % + (8 + ¢ cos f)x = 0 (S = stable, U = unstable). Solid
lines represent transition curves, 8 = V; & €/2 + 0(¢?). The locatlon of the
SNM’s for varying k Is displayed as folllows: The dashed line corresponds to
the out-of-phase mode y = —x; the dark solid line corresponds to the in-phase
mode y = x (which lles on the transition curve); the dotted lines correspond
to the pairs of bifurcating modes. Arrows indicate directlon of increasing
k.

work [16)]. Results were obtained using a linearized stability analysis
and Floquet theory. The stability analysis, valid for small energies
h, was shown to finally reduce to the study of a single Mathieu
equation. This Mathieu equation governs perturbations which are
orthogonal to the SNM under investigation, and therefore the stability
being considered is orbital stability [15].

It was shown [16] that upon bifurcation at k = 4 the two new peri-
odic motions enter as stable, while the existing y = —x periodic motion-
changes from stable to unstable. See Fig. 4 which shows the location
of the SNM’s for varying k on a Mathieu equation stability chart.

The same analysis can also be used to investigate the stability of
the modes which bifurcate out of the y = x in-phase mode when k =
0. It has been shown that these modes enter as stable [15], Fig. 4.

However, this same kind of linear stability analysis fails to predict
stability for the ¥ = x in-phase mode [16]. In this case the SNM lies
along a transition curve in the associated Mathieu equation stability
chart, Fig. 4.

In what follows we present an alternate method of stability analysis
which will be shown to yield stability information for the y = x mode
of system S.

The Poincaré Map

In this section we will discuss a powerful technique for analyzing
two-degree-of-freedom problems, the Poincaré map. Its purpose is
to provide a two-dimensional description of a flow which is occurring
in a four-dimensional phase space.

Let us consider an autonomous two-degree-of-freedom Hamilto-
nian system. Although the phase space (x, ¥, %, y) is four-dimensional,
the first integral H = h, equation (3), restricts the motion to a three-
dimensional surface. If another independent first integral exists then
the energy manifold, H = h, is fibered by invariant two-dimensional
tori. These may be pictured in three-dimensional space as a family
of concentric tori, Fig. 5. .

Now consider the two-dimensional surface 2 which results from
“slicing” the three-dimensional energy manifold H = h with a plane,
say x = 0, Fig. 6. Z, which looks locally like a two-dimensional plane,
will in general intersect a particular motion infinitely often. A motion
beginning on 2 returns to 2 after making a circuit around the torus.
This produces a mapping of 2 onto itself. This map is known as the
Poincaré map [20, 9, 2, 1], and the two-dimensional surface 2 =
fx = 0} n {H = h} is called asurface of section. We will choose y, y as
coordinates on 2 and will project % down onto the y — y-plane for
convenience.

In order to insure that the Poincaré map gives a realistic picture

- of the flow in the neighborhood of a given motion, we require that the

motion intersect the surface of section Z transversally (nontangen-
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Fig. 5 In a two-degree-of-freedom Hamliltonian system, the existence of a
first integral which Is independent of the Hamlitonlan implies that the three-
dimensional energy manifold will be fibered into invariant torl; a given motlon
remalns on a single torus for all thme

Fig. 6 A motlon starting at P on the surface of section 2 = {x = 0jn{H =
h} reintersects 2 at Q producing a Polncaré map

tially) [5]. A motion will fail to intersect = transversally whenever the
normal to the “slicing” surface (i.e., x = 0) is perpendicular to the
tangent of the motion. The normal to the surface x = 0is (1, 0, 0, 0)
and the tangent to the motion (x, y, %, y) is (£, y, £, ¥). Thus
transversality is violated whenever (%, y, £, 3} - (1,0,0,0) =0 or 2 =
0. We impose the additional restriction that ¥ > 0 when x = 0 in order
to insure that the motion always pierces 2 from the “same side.”
Therefore successive intersections of a motion with the y, y surface
of section 2 lie inside the region £ (y, ¥, k) = 0. This region is bounded
by the curve £(y, ¥, h) = 0, obtained by solving the equation H(0, y,
%, y) = h equation (3), for x.

Periodic motions which pierce the surface of section 2 once per
cycle appear as fixed points of the Poincaré map. More complicated
periodic oribts may appear as n-cycles of the map, i.e., as fixed points
of the map composed with itself n times.

Suppose a periodic motion which corresponds to a fixed point of
the Poincaré map is stable. Then in phase space the closed curve
which corresponds to the periodic motion will be enclosed by tori
which contain neighboring motions. The Poincaré map will reveal the
fixed point to be surrounded by concentric closed curves. Thus stable
periodic motions become centers in the y — y-plane. Similarly un-
stable periodic motions appear as saddle points in y — y-plane. It is
important to recognize that the dynamic on the y — y-plane is that
of a map and not of a flow, and although we speak of centers and
saddles these must not be confused with the singular points associated
with the flows of phase plane analysis (cf. [14]).

The Poincaré map can be found analytically as follows: Let f(x, y,
%,y) = ¢ be a first integral which is independent of the energy integral
H = h. The intersection of the f = ¢ surface with the surface of section
Z represents the invariant curves of the Poincaré map. For fixed en-
ergy h these invariant curves may be written

Fly, ) = F(0, 3,40y, 3, h)y) = ¢ (5)

Note that if no such independent first integral f = ¢ exists then the
energy manifold will not, in general, be fibered by invariant tori, and
the motion may even be ergodic.

Journal of Applied Mechanics
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Fig. 7 The Poincaré map for the linear system L for h = 1; each invariant
curve Is assoclated with a value of ¢

To familiarize the reader with the Poincaré map we will now con-
sider a well-known integrable two-degree-of-freedom linear system
L. The system L consists of two unit masses which are constrained
to move along a straight line and which are restrained by two linear
anchor springs and a linear coupling spring. All three springs have a
spring constant of unity.

Choosing generalized coordinates x, y as in Fig. 1, the poténtial
energy for L becomes

Vix,y) =22+ y2%—xy. (8)

The general solution to the equations of motion (1) consists, of course,
of a superposition of the two linear normal modes: here the x = y in-
phase mode has frequency 1 and the x = —y out-of-phase mode has
frequency /3 [6. p. 370].

In addition to the conservation of energy for the entire system, H
= h, equation (3), the system L possesses an independent first integral
corresponding to conservation of energy in either mode alone. Taking
the x = y in-phase mode, conservation of energy gives

YHu?+Yhu2=c (7)
where u = (1/4/2)(x + y). That is, ‘
fy 6,9 =Y @+y)2+YE+y)?=c 8)

To generate the Poincaré map, set x = 0 in equations (3) and (6)
and solve for £(y, ¥, h):

3= (2h — 2y —yHif2. ©
Then set x = 0 in equation (8) and use equation (9) to obtain
J,9)=Y[2h — 2y2 — 332 + 592+ Yyy2 =c.

For fixed h, say h = 1, equation (10) represents a one-parameter
family of invariant curves with ¢ as parameter, Fig. 7. These curves
fill the interior of the region in the y ~ y plane bounded by the el-
lipse

(10)

2y2+y2%=2h (11)

obtained by setting % = 0 in equation (9).
From Fig. 7 we see that the system L exhibits two stable periodic
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Fig. 8 The surface of section X for system L is topologically equivalent to
a 2-sphere. Here we see a “side” view of 2 (the y-axis Is directed into the
paper). Solid lines are Invariant curves which lle on the x > 0 (“front”’) side
of 2. Dashed lines lie on the x < 0 (“rear”) side of 2. Dofted lines represents
x=0.

motions, ¢ = 0 (x = —y) and ¢ = 1 (x = y). There are no other periodic
motions since the natural frequencies are incommensurable. For 0
< ¢ < 0.25 the invariant curves are closed and surround the out-of-
~ phase mode ¢ = 0, while for 0.5 < ¢ < 1, they surround the in-phase
mode ¢ = 1. However for 0.25 < ¢ < 0.5 the invariant curves are
composed of two disconnected pieces. Nevertheless the motions which
correspond to these disconnected curves are not qualitatively different
from the other nonperiodic motions of the system. Their disconnected
appearance is due to the topology of the energy manifold H = h,
equation (3). We offer the following description of this situation.

The energy manifold H = h for the system L is topologically
equivalent to a 3-sphere. By slicing it with the 3-plane x = 0 we pro-
duce a surface of section 2 which is topologically equivalent to a 2-
sphere. The Poincaré map of Fig. 7 is a projection of this surface onto
the ¥ — y-plane. The front half of 2 corresponds to # > 0 while the
rear half corresponds to % < 0. Since we have taken # > 0 in equation
(9) we see only the front half of 2 in Fig. 7. The bounding curve & =
0 separates the front half of 2 from the rear half. As mentioned pre-
viously, any motion which intersects Z at £ = 0 does so nontransver-
sally. Thus every disconnected invariant curve in Fig. 7 has a motion
associated with it which intersects 2 nontransversally.

In fact any such disconnected invariant curve in Fig. 7 forms a
closed connected curve on 2. Such a curve includes points on both the
front and rear halves of 2. Due to the symmetry of the system L, the
invariant curves on 2 are symmetric with respect to the origin.
Therefore the rear half of Z (¥ < 0) looks just like the front half (% >
0) turned upside-down, Fig. 8.

The stability of a periodic motion follows directly from the nature
of the invariant curves in the neighborhood of a fixed point of the
Poincaré map. It has been shown that stability results which are ob-
tained from a linear stability analysis and Floquet theory are equiv-
alent to results obtained by expanding the Poincaré map about a fixed
point and neglecting cubic and higher-order terms [15, 8, 13, 19]. In
cases where Floquet theory fails to predict stability (e.g., system S),
the Poincaré map will still give stability results if higher-order terms
are retained in expansions about a fixed point. We will return to this
point when we find the Poincaré map for system S. First, however,
we will use the B-G transformation to determine an approximate first
integral for the system S.

The Birkhoff-Gustavson Transformation

In this section we will use an approximate method developed by
Birkhoff [3] and extended by Gustavson [7]. The idea of the method
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is to choose new dependent variables via a generating function in order
to simplify the form of the Hamiltonian. Although the method can
be continued to all orders of accuracy, we shall neglect terms of 0(6),
i.e., terms of the form x*yf%7y® where «, 3, v, § are non negative in-
tegers and « + B+ ¥ + 6 = 6. As a result, our conclusions will only be
valid for small energies k. In order to simplify the notation in this
section, we will write

(12)

¥

x=x, y=%xg X=2d1, §=2a

The Hamiltonian for system S, equation (3), may be written

H=H(xj,%)=H® + H® (13)

where H{ is a homogeneous polynomial of degree n. We first
transform variables from (x;, %;) to (£, n;) by a near-identity ca-
nonical transformation based on the generating function x17; + xa272
+ W®(x;, mi);

aww owWw
§i=ux;+ , Ei=ait , Ji=L2 (14)
on; ox;
Substituting (14) into (13) we find, neglecting terms of 0(6).
1 2
H(Z)(xj, £Hy==- ¥ x2+ %;2
2j=1
1 2
=3 T £+ 92+ DWW, np) (15)
j=1
where
2 Ie] o
D= % nj—-&— (16)
i=1 0t Yoy
and .
H®(xj, %;) = HO(E, nj). )

Note that the replacement of x; by £; in the argument of W is valid
to 0(6). ’

Before judiciously selecting W), we perform a second canonical
transformation which will simplify the operator D. We transform from

(&, nj) to (g, p)):
£ =(q+ip)/NVZ, mj=(g;+p)/V2
where i = v/—1. The transformed Hamiltonian K(g;, p;) becomes

K(qj, pj) = K®(gj, pj) + EW¥(q;, p;) + K" g;, p;) (19)

(18)

where
: 2
K®(qj, pp) = HOj,m) =i % pjaj
=

EW®(gj, pj) = DWW(E;, 1))

.2 d d ’
=i L2y
; § (QJ 24, bj bpj)
and where K9 (g;, p;) is H9(£;, n;) transformed to g, p variables.
We now choose W so that the transformed Hamiltonia K has a
simple form which will yield a first integral. A typical term of W@ is
Capysq1°92°p17p2’, where a + 8 + v + 8 = 4. It will be more conve-
nient to work with. W® as a column vector, which we may do in view
of the isomorphism between the space of homogeneous polynomials
ofsdegree four and R35, see Table 1.
From equation (19) we would like to choose W so that

EW® = —K®, (20)

Here E is a 35 X 35 diagonal matrix with typical diagonal term i (o
+ 8 — v — 6), W is a 35-column vector whose elements are to be
determined, and K® is a 35-column vector with known elements.
It if were possible to choose W) to satisfy equation (20) then
equation (19) would be immediately integrable. However, the matrix

- E ig singular. There are nine diagonal terms of E which vanish. They

correspond to the following values of ¢, 3, 7y, 6:
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Table 1 Isomorphism between the space of homoge-

neous polynomials of degree four and R35, A basis vector

in the former space may be written g:%¢2? p1¥ p2® where

a+ 3+ v+ 6 =4, and is represented in the table by

(afy6). The corresponding basis vector in R%5 is g, = (0,
by eory0,1,0,...,0),in which the nth element is unity and

gll others are zero. e, is represented in the table simply
v n.

n (af3vd) n (aBv6) n (afy8)
1 (0004) 13 (0301) 25 (1300)
2 (0013) 14 (0310) 26 (2002)
3 (0022) 15 (0400) 27 (2011)
4 (0031) 16 (1003) 28 (2020)
5 (0040) 17 (1012) 29 (2101)
6 (0103) 18 (1021) 30 (2110)
7 (0112) 19 (1030) 31 (2200)
8 (0121) 20 (1102) 32 (3001)
9 (0130) 21 (1111) 33 (3010)
10 (0202) 22 (1120) 34 (3100)
11 (0211) 23 (1201) 35 (4000)
12 (0220) 24 (1210)

(aBy5) = (0202), (0211), (0220), o)
(1102), (1111), (1120),
(2002), (2011), (2020).

Thus equation (20) has no solution for a general X9,

Nevertheless we may choose W@ to simplify the transformed
Hamiltonian K, equation (19), as much as possible. We proceed as
follows:

Since E is a diagonal matrix, its null space and range are comple-
mentary spaces. Let P be a projection operator onto the range of E
and let @ be a projection operator onto the null space of E. Then we
may write ‘

K@ =PK@® + QK®, (22)
Now instead of equation (20) we may choose W® so that
EW® = —pK@ (23)

The general solution to equation (23) is not unique, since any vector
in the null space of E may be appended to a given solution. However
if we require W to lie in the range of E then a unique solution
emerges. (The transformation which maps the right-hand side of
equation (23) into W is called the pseudo-inverse of E, [25]). It is
to be noted that any first integral which is independent of the Ham-
iltonian H is never unique since, e.g., functional combinations of H
and itself may be added to it. The nonuniqueness of W reflects this

fact.
If W is chosen so as to satisfy equation (23), then equation (19)

becomes
K=K® 4+ QK®, (24)

By direct computation for system .S we obtain the following ex-
pression for the projection of K% onto the null space of E (i.e., the
space spanned by the basis vectors of equation (21)),

QK@ = ¢1q92po? + caqa®pip2 + c392?p1?
+ ¢49193p2 + ¢50193P1D2 + c6q192D1%
+ c9q12p9? + c3q1?p1p2 + cog1?p1?  (25)

where
ci=co=—3(k+1)/8
cz=cs=ce=cg=Y
ca=cq=—%
c5 =~

To determine a first integral corresponding to the approximate
Hamiltonian K, we note that

Journal of Applied Mechanics

EK®@ =9 (26)
and therefore, using equation (24),
EK = EK® + EQK® = (. (27)
Nextrwe note that
, o2
K®(q;,pj)=1i -21 (pig; + pidy)
j'=
.2 oK oK
=1 Z —-—gj + —pj
j= og; ' op;’
= —EK. (28)

From equations (27) and (28) we see that K® = 0 and therefore K (@
= constant is a first integral. Moreover, since K =-constant is also a
first integral, we may with greater convenience choose the difference
K —K® = K™ = constant as a first integral corresponding to the
system based on the approximate Hamiltonian K. As far as the orig-
inal system S is concerned, @K = constant is an approximate first
integral valid when terms of 0(6) are neglected.

Using the inverse of the canonical transformation (18) and again
neglecting terms of 0(6), we may transform the expression (25) for
QK@ back to the original variables. In this way we find the approxi-
mate first integral to be

fle,y,%,9) = 1+ RB)[(x2+ 292+ (y2+ 937
+ 4(x2+ 2 (y2 + y2) — 4(x2 + %2+ y2 + yA(xy + 2y)
+ 2(x2 = £2)(y2 — y2) + 8xyxy

=c,

(29)

A simple computation shows that df/dt = 0 if terms of 0(6) are ne-
glected.

As a check, we note that system S is integrable when & = 0. Setting
u=(1/v/9)(x +y)and v = (1/2/2)(—x + ¥) uncouples the two equa-
tions of motion (1) in this case. It turns out that for k = 0

Flx,y, £, ) =x2+ 22+ y2+ 32— 2xy + 2y) + (x —y»*

= ¢onstant (30)

is an exact first integral independent of the energy integral (3). If we
set & = 0 in our approximate first integral (29), we find that

f=F240(6) (31)

which confirms that f is a first integral to 0(6).

Note that we did not have to find W in order to obtain the ap-
proximate first integral (29). This situation usually occurs only for
the low-order 1:1 or 3:1 resonance cases, i.e., for systems in which the
linearized normal modal frequencies are in the ratio 1:1 or 3:1. (System
S has a 1:1 resonance.) In all other cases the B-G method proceeds in
a slightly different manner. There follows a brief outline of the B-G
procedure for such cases.

In systems without 1:1 or 3:1 resonances, the transformed Hamil-
tonian K of equation (19) has been shown by Birkhoff [3] to be a
function only of the product terms 7; = p1g1 and 73 = page. This
result implies that w; and w2 are two independent first integrals,
since

oK oK
pj=——=~— (32)
ag;j om;
and
oK oK
gGj=_—=q (33)
op;j om;
and therefore
j = pjq; + pid; = 0. (34)

Thus, for such systems 1 and 7 are chosen as the two independent
first integrals, They represent the energies in each of the approxi-
mately uncoupled oscillators. In this case, however, W4 (&, 5;) is
needed in order to transform back to the original variables x;, %; to
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0(6). We note that since K@ = 0, we could again choose QK® = K
— K@ ag an approximate first integral to 0(6). Here, however QK 4
could be zero, whereas it is generally not zero in the 1:1 and 3:1 reso-
nance cases.

Application

In this section we will use the approximate first integral (29) to
obtain an approximate Poincaré map (valid for small energies h) for
the system S.

To generate the Poincaré map, set x = 0 in equations (2) and (3)
and solve for £(y, ¥, h):

k+1 1/2
x=[2h—y2—( )y4—y'2] > 0. (35)
Then set x = 0 in equation (29) to obtain
Fo, 9y = (L+ R4 + (v2 + 922 + 2:2(y2 + 3y2)
~439(£2 + y2 + 37) ‘
=c (36)

in which % = %(y, y, h) is given by equation (35). For fixed h, k,
equation (36) represents a one-parameter family of invariant curves
with ¢ as parameter. These curves fill the interior of the region of the
y — y-plane bounded by the curve

y2+(k+1)y4+y2=2h (37)
obtained by setting % = 0 in equation (35).

NNM'’s appear as fixed points of the Poincaré map which lie on the
y-axis (y = 0). This follows from the requirement that a NNM pass
through the origin (x = 0, y = 0). At any fixed point, the level curves
7, ¥) = ¢ possess a singularity. Thus, for a NNM, we require

Fon=0 Loy-=
oy 09 =0 S0 =0 (38)

From equations (35) and (36) we see that (y, y) = f(—y, ¥) so that the
first condition of (38) is satisfied identically. The second condition
of (38) gives, after some algebra,

_.__M) (39)

&~ 2|

These values of ¥, together with the condition y = 0, give the position
on the Poincaré map of all the NNM’s which occur in system S. The
in-phase mode y = x corresponds to y = /i, the out-of-phase mode
y = —x corresponds to ¥ = — v/, and the bifurcating modes of
equation (4) correspond to the last two values of y in equation (39).
This analysis proves that system S possesses no other NNM’s than
the SNM’s referred to in equation (4) (subject to the assumption that
h is small.)

In order to investigate the stability of these NNM’s, we will examine
the nature of the invariant curves of the Poincaré map in the neigh-
borhood of the corresponding singular points,

First we move the origin to the fixed points by substituting

y=%+/k, y2=h(ld:

w=y-=yo (40
in the expression for f, equation (36), wheye Yo is one of the NNM
values of equation (39). Then we expand f in a Taylor series about y
= 0, w = 0, and neglect cubic and higher-order terms.

For the out-of-phase mode y = ~x this procedure gives

¢c—co
8h

where co = 2h2(k + 8) is the value of ¢ at the fixed point. For k < 4,
equation (41) is a family of ellipses while for & > 4 it is a family of
hyperbolas. Thus the out-of-phase mode is stable for k < 4 and un-
stable for & > 4, a result which is in agreement with the Floquet theory
approach, cf. Fig. 4.

For the in-phase mode v = x, however, the same procedure gives

(k — Hw? —y2=

(41)
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Fig. 9 Sketches of the Poincaré map for system S for different ranges of the
bifurcation parameter k; the upper (lower) tixed points correspond to the in-
phase (out-of-phase) mode and to the modes which bifurcate from it

¢ —Cp
8h

where now ¢g = 2h2k. Thus the invariant curves in the neighborhood
of the fixed point appear to be parallel lines and therefore equation
(42) fails to predict stability. This result agrees with Floquet theory
which also failed to predict stability for this mode.

In the case of the Poincaré map, however, we may consider the ef-
fect of nonlinear perturbations about the periodic motion in the fol-
lowing manner. As noted previously, equations (35) and (36) show that
F(v, ) is an even function of y. We therefore set

z=y?2 (43)

and substitute (40) and (43) into (35) and (36). Expanding f in a
Taylor series about z = 0, w = 0 and neglecting higher-order terms,
we obtain '

8hkw? + 8y/hkwz + 2k + 1—hk(1 + R)]22=c —cq (44)

kw? = (42)

The nature of this conic section depends upon the sign of the
discriminant of (44) which equals

—32hk + O(h%) (45)

To O(h?), when k < 0 the discriminant is positive, the conics (44) are
hyperbolas and the singularity in w — 2 coordinates is a saddle. The
two separatrices of this saddle for z > 0 map into two separatices in
w — y coordinates and hence in w — y coordinates the singularity is
a (nonlinear) saddle. For & > 0 the discriminant is negative and the
conics (44) in w — z coordinates are ellipses. In w — y coordinates this
singularity becomes a (nonlinear) center. Therefore the Poincaré map
predicts that the in-phase mode is unstable for k < 0 and stable for
k>0,

The stability of the bifurcating NNM’s may be investigated in a
similar fashion. Sketches of the Poincaré map for various values of
k are given in Fig. 9.

Conclusion
We have investigated the dynamical structure of a pair of nonlinear

_coupled oscillators S by generating an approximation for the Poincaré

map via the B-G canonical transformation. In particular we investi-
gated the existence and stability of NNM’s and found that the system
8 admits only 2 or 4 NNM’s, depending upon the value of the pa-
rameter k. The bifurcating modes enter as stable while the mode from .
which they bifurcated changes from stable to unstable upon bifur-
cation.

It is to be noted that all these results are valid only for small h. This
is not only because the B-G method is a perturbation method valid
for small A, but also because KAM (Kolmogorov-Arnold-Moser)
theory tells us that the invariant tori generally do not fill the energy
manifold H = h in systems which are not integrable [17, 1]. The set
of motions which lie on invariant tori typically have decreasing
measure as h is increased. For large enough h the Poincaré map (ob-
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tainable by numerical integration) loses all semblance of order and
appears to be filled with “noise,” i.e., with motions which seem to be
ergodic. ' ’

It is also to be noted that although we used the B-G method to
generate the approximate Poincaré map, it could have been obtained
by other equivalent methods. We mention Whittaker’s adelphic in-
tegral {27] and the method of Lie transforms [11] and refer the reader
to [15] where all three methods are compared and are shown to be
equivalent to lowest-order terms.

Finally, we note that for negative k system S admits additional
equilibrium points besides the origin x = y = 0 [15}. In order that the
energy manifold H = h be compact (i.e., closed and bounded) for
negative k&, it is necessary to restrict the energy h to be smaller than

" alimiting value dependent on k. If the energy manifold is not compact,
the bounding curve for the Poincaré map will generally possess
branches which reach to infinity. In such a case the system S will not
be physically realistic.
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Natural Frequencies of Mindlin Circular Plates

T. kvie,! G. Yamada,? and S. Aomura3

The natural frequencies of vibration based upon the Mindlin plate
theory are tabulated for uniform circular plates with free, simply
supported, and clamped edges for the first several tens modes.

The natural frequencies of uniform thin circular plates of a ho-
mogeneous isotropic material are usually calculated by the classical
plate theory, in which the rotatory inertia and shear deformation are
not considered. Leissa [1] have presented the numerical values in his
monograph and, recently, Itao and Crandall [2] have also presented
the values for the first 701 modes of vibration of circular plates with
free edges. However, the numerical values obtained by the classical
theory cannot present accurate values for the higher modes’ vibration.
For obtaining more accurate values, one should calculate numerically
on the basis of the Mindlin plate theory in which both of the rotatory
inertia and shear deformation of plate are taken into consider-
ation.

The design data present the natural frequencies (the dimensionless
frequency parameters) of uniform Mindlin circular plates with several
plate thickness under free, simply supported, and clamped edge
conditions up to the higher modes.

The equations of free vibration of a Mindlin circular plate are
written as (3, 4]

oM, 10M,, M,— M,
—L =L ,+w2 =0
or r o r Q ‘p’
oM, 10My 2M,y 2p
Fo— = Qo+ W2y =0
or r ob W+ 12 w v
aQr 1 aQﬂ Qr
—_—t—— + w2ohW =0 1
or r 60 r b &

where p is the mass per unit volume, b is the plate thickness, and w
 is the radian frequency. The components of the moments and shearing
forces are :

o I
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Qo = k2Gh. (\pg =+ :—a—ﬂw—l) (3)

in terms of the transverse deflection W and the angular rotations y,
and Y of the normal to the neutral surface in radial and circumfer-
ential directions, respectively. E is Young’s modulus, » is Poisson’s
ratio, and D is the flexural rigidity of the plate expressed by D =
Eh3/12(1 — #2). G is the shear modulus and «2 = 72/12 is the shear
coefficient. The appropriate solutions of (1)—(3) have been obtained
for the deflection and rotations by Mindlin and Deresiewicz [3, 4] as
follows: .

owy 1 ow

V= (o1~ 1>—+ (o2 = 1) E 4 ==

or r o
dwy 1bw2 Owsg

= (o —1)————+ 1)-
L
W= w1 + Wa (4)
using the functions
wi = AlJn (51 I) cos nf
a

wg =Agsdp (52 f) cos nb
a

r
w3 = Asd, ((53 —) sin nf 5)
a
where A; are arbitrary constants and /,, (x)} expresses Bessel function

of the first kind. For simplicity of the analysis, the following dimen-
sionless parameters have been introduced:

1
512, B2 = 5 MR+ S £ (R - S)2+ 4 \—41/2)

= 2(RAM = S1)/(1 - v)
o1, 03 = (622, 612) (RNt —S~1)~1
= (h/a)2/12, S =D/k2Ga%h = {2/7X1 — v)}h/a)®  (6)
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DESIGN DATA AND METHODS

Table 1 Frequency parameters \,, 2 of uniform Mindlin circular plates with free edge; ¥ = 0.3

h/a

n 8 0 0.05 0.1 0.15 0.2 0.25
0 1 9.003 8.969 8.868 8.710 8.505 8.267
2 38.443 37.787 36.041 33.674 31.111 28.605

3 87.750 84.443 76.676 67.827 59.645 52.584
4 156.818 146.758 126.274 - 106.397 90.059 76,936
1 1 20.475 20.260 19.711 18.917 17.978 16.979
2 59.812 58.215 54.257 49,341 44.434 39.948
3 118.957 112.984 99.935 86.235 74.331 64.462
4 ‘197.872 182.271 152.750 126.047  105.033 88.312
2 0 5.358 5.330 5.278 5.205 5.114 5.008
1 35.260 34.598 33.033 30.942 28.668 26.427
2 84.366 81.185 73.875 65.510 57.722 50.956
3 153.306  143.557 123.771 104.471 88.530 75.651
3 0 12.439 12.311 12.064 11.722 11.314 10.866
1 53.008 51.537 48,227 44,116 39.960 36.110
2 111.945 106.405 94.531 81.930 70.862 61.613
3 190.692 175.921  147.991 122.486 102.270 86.155
4 0 21.835 21.492 20.801 19.871 18.816 17.724
1 73.543 70.799 64.891 58,043 51.545 45.819
2 142.431 133.628 115.957 98.446 83.801 71.918
3 231.031 209.863 172.453 140.255 115.568 96.464
5 0 33.495 32.766 31.270 29.334 . 27.255 25.221
1 96.755 92.172 82.722 72.464 63.253 55.458
2 175.735 162.643 137.951  114.962 96.513 81.864
3 274.252  245.198 197.055 157.766  128.421 102.979
-6 0 47.378 46.031 43.255 39.831 36.351 33.113
1 122.570 115.473 - 101.480 87.201 74.982 64.981
2 211.789 193.265 160.361 131.416 108.984 91.436
3 320.299 281.762 221.721 175.011 140.806 112.962

As a frequency parameter C1i = (o7 = D" () + v/ (8;) — w2, (5;))
A = phatw?/D 0] Coi = —2n(a; — D,/ (8:) — Jn(8:))
is adopted here. Csi = o3,/ (6;)

The boundary conditions at the edge r = a are written as

Ciz = n(1 — »){Jn'(33) = Jn(8a)}

M,=M,y;=6, =0 forafreeedge ' ®) Caz = =" (83) = Jn'(83) + n2J, (B3)}

M, =M,y =W =0 forasimply supported edge Cas = n J,(8s) (10)
=yYy=W=0 f lamped edge

=t or & clamp g for a circular plate with free edge,

By eliminating the coefficients A; of (5) from the equation which is

obtained by substituting (2)—(5) into the boundary conditions (8), one Cui = (oi = D" (8:) + v Jn" (&) — vn? Jn(8:)}

can obtain the frequency equation Coi = —2n(0; — D/ (8;) — Jn(8)}
Cii Ciz Gyl o Cap=dJp(6;)
Ca Cz Cal =0 9 C1a = n(1 = 0)Jn"(33) — In(33))
Cs1 Czp Cas
Caz = —{Jp” (83) — J5’(03) + n2J,(d3)}
Elements of the determinant of (9) are C33=0 (11)
Journal of Applied Mechanics SEPTEMBER 1980, VOL. 47 / 653
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for a plate with simply supported edge, and
Cui=(o; = 1) Ja/ (%),  Coi=nlo;—1)Jn(d)
Cai = Jn(6;), C13 = nd, (83), Cos = J,"(03)

Caz=0 i=1,2 (12)

for a clamped plate.

Though the values of 612 are always positive in sign, the values of
022 and 832 become negative and hence 82 and 83 have imaginary values
for A* < 1/RS. Within this range of A, the function ,,(x) in the pre-
ceding equations should be replaced with modified Bessel function
I, (x) of the first kind.

Tables 1-3 present the frequency parameters \,s? obtained by the
Mindlin theory for uniform circular plates of Poisson’s ratio » = 0.3
with several thickness ratios h/a. In the columns marked with an as-
terisk, many intricate frequencies appear under the influence of the
rotatory inertia and shear deformation of plate. When the thickness
ratio h/a tends to zero, the quantities R, S; o1, a3 are all zero, and 6,
— A,82 = JA (j = v/—1) and 83 becomes an infinite imaginary number

Journal of Applied Mechanics

DESIGN DATA AND METHODS

of the order of 1/S. In this case, (9) reduces to the determinant with
2 X 2 elements representing the frequency equation [1] of thin plate
derived by the classical plate theory where the rotatory inertia and
shear deformation are not taken into account. The eigenvalues of thin
plate are also written on the left-most columns of Tables 1-3 for ref-
erence.

One can quote the natural frequencies of circular plates which given
boundary conditions and dimensions from the tables.
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Effect of Blunt Chamfers on Contact Pressure
Distribution and Elastic Limit

H. A. Francis'

The interfacial pressure profile is derived analytically, and the
elastic load limit is evaluated numerically, for plane strain fric-
tionless elastic contact between a flot surface and a symmetric
trapezoidal body whose obtuse corners are replaced by tangent cir-
cular ares. The shape of the pressure distribution depends only on
plateau and arc widths. The results enable design of radiused
chamfers to give peak-to-mean pressure ratios as low as 1.2 and
elastic mean pressure limits up to 1.5 times the yield stress. Con-
versely, the pressure peak and elastic limit can be predicted for any
microscopically blunt chamfer.

Introduction

In many engineering applications it is desirable to be able to control
or predict the contact pressure distribution within an interface be-
tween two solid bodies. For example, interfacial pressure peaks could
be beneficial in reducing fluid leakage, but detrimental in terms of
wear and fretting processes. It is often necessary to insure that a
pressure-dependent variable such as thermal or electrical contact
conductance per unit area is reasonably uniform over the interface.
Finally, subsurface regions of high deviatoric stress are associated with
contact pressure peaks, and these may be undesirable with regard to
plastic flow, creep, cracking, or fatigue.

For any frictionless elastic contact region on an initially plane
surface, there will be a pressure singularity (infinite spike) at the
contact periphery wherever the opposing surface has a sharp edge,
90° or greater [1]. At the other extreme, for the same contact region,
there is always some shape of opposing surface which will give a uni-
form contact pressure distribution. However, the required surface
geometry is, in general, difficult to machine accurately. As a practical
means of avoiding contact stress concentrations, a chamfer (bevel)
or a “radius” (circular segment) is usually designed to replace a 90°
edge, since they are both easy to machine. Goodier and Loutzenheiser
[2] derived the pressure distribution for plane strain elastic contact
between a plane surface and a flat surface with radiused edges.
However there has been no comparable analysis of chamfers. A survey
of six common mechanical engineering handbooks yielded no guidance
on the design of chamfers or radii.

It may be inferred from the elastic contact behavior of a wedge {3]
that a perfectly sharp chamfer, or indeed any slope discontinuity,
within an elastic contact will produce a pressure singularity. However,
in practice the pressure spike will have a finite maximum because (a)
a machined chamfer will be blunt at some small scale, and (b) a suf-
ficiently sharp chamfer will effectively be blunted by local plastic flow

! The Charles Stark Draper Laboratory, Inc., 555 Technology Square,
Cambridge, Mass. 02139.
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in one or both surfaces during the first loading of the contact. Thus
every real chamfer is bridged by a curved segment, whether by design
or accident.

This paper presents an analytjc solution for the plane strain, elastic,
frictionless contact between a semi-infinite flat body and a symmetric
body whose profile consists of a plateau, each end of which is con-
nected with continuous slope to a straight chamfer by a convex cir-
cular segment. These results can be used to design a radius-chamfer
profile which will give a required pressure distribution or elastic limit,
or else to predict the contact mechanics of an existing chamfered part,
using the circular segment to approximate the measured microscopic
apex profile. Contact with a blunt wedge emerges as a special case.
Tt should be noted that a completely analogous derivation could be
carried out for the axisymmetric case (i.e., the contact of the end of
a radiused and chamfered cylinder) using a method devised by
Sneddon [4]. Similar efforts, using iterative numerical techniques,
have been applied to the problem of predicting the contact pressure
distribution for an axisymmetric roller of specified profile loaded
radially against a flat surface [5-7].

Derivation
Consider a plane strain frictionless contact between two elastic

‘bodies which can be approximated as half spaces. The z-axis is normal

to the interface, and all displacement is in the xz-plane (e, = 0). Let
the contact region be —a < x < +a, and let £ = x/a. Let w(x) be the
overlap of the undeformed surfaces (dw/dy = 0), and define the di-
mensionless shape function ®(£) = [w(§) — w(1)}/h, where h = w(0)
— w(1). Muskhelishvili [8] has shown that provided the end pressures
p(—1) and p(+1) are not infinite, the contact pressure distribution
is given by

h(l—E2)VV2 41 —~d'(s)d
P _h(1-£? I (s)ds .
E* a qz -1 (s — E)1 —s)1/2
and the mean pressure is given by
b 1 p+ipld) hl p+1—s®’(s)ds
—=— ——dit=-- — 2
Ex 2 ‘ﬁl E* ¢ a8J-1 (1 —s2)1/2 @)

where ®'(£) = d®/dE, 1/E* = 3[(1 — 112)/E1 + (1= v9%)/Ey], and Ej,
Es, vq, vo are the Young’s moduli and Poisson’s ratios of the two
bodies.

Fig. 1 shows the undeformed overlap geometry w(x) for the sym-
metric plateau-radius-chamfer contact. The two Regions I (Jx| < x1)
constitute the flat plateau, the two Regions II (x1 < |x| < x4) are
circular segments of radius R, and the two Regions ITI (x2 < |x| <a)
are straight chamfers of slope G. The surface slope is continuous at
the junctions x1, xo. For most practical cases, the circular segment can
be approximated by a parabolic segment of apex radius R; for G <
0.20, the errors in segment dimensions are less than 1 percent. The
undeformed surface dimensions are then related by the expression
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Fig. 1 Overlap profile w(x) of the two undeformed surfaces; the plateau ()
and chamfer (lll) are both tangent to the circular segment (i)

x1— %2 = GR. Table 1 lists the various contact configurations which
constitute special cases of the general symmetric six region geometry.
Note that the contact mechanics, as described by equations (1) and
(2), depends only on the shape of the overlap w(x), thus one surface
does not necessarily have to be flat.

The integrals in equations (1) and (2) can each be written as the sum
of five definite integrals, with ®'(£) taking the forms

8@ = Cy, 1§Z[<I>’ =—-Cy, tg[q)' = Q, @
3
B = O£ — &), 1B[® = —Calf - £,
where
aG 1
Cr=—=—7,—7= “
Yh -+ 8
a? 1

(5)

O Bk~ G B0l 2 + )]

Introducing the complementary variable 7= (1 — £2)1/2, the resulting
formulas are

1’_(Q=’l_c_2[521n I——" Ll l—-—"”l
E+* admw n—"n2 n—m
+£ln (Eny + Exn)(Eno = E) + 27 arcsin (§9m1 — Exm2)|  (6)

(&1 — &) (Eng + Eam)

DESIGN DATA AND METHODS

P

Ex*

hGy
a8

[£ama — £1m1 + arcsin (Eam1 — E1mo)] (7

In computing p(£), singularities may be avoided using the following
rules:

1 Whené={p,setbn — £ =T1andsetyn—n = &
2 When £ = £y set £z — &on =1 and set 9 — 9 = £,
3 When £ = £ =0, all In terms are zero.

4 Whené=§=1,p=0.

Equations (5) and (6) show that the shape of the contact pressure
distribution (which is symmetric about £ = 0) depends only on the two
quantities &1 = x1/a and & = xa/a, while the magnitude is set by £1,
&9, and the aspect ratio h/2a of the undeformed overlap of the surfaces
(Fig. 1). However, it is important to note that for a given surface ge-
ometry (specified by any three of x1, xo, G, R), £, and £; are not con-
stants and will decrease as the load per unit y length @, the contact
half-width a, and the ratio k/a simultaneously increase. From equa-
tions (5) and (7), Q (= 2ap) can be expressed as a function of a, and
the resulting equation can be solved numerically to give the value of
a for a given load. Equation (4) then gives the value of h/a needed to
evaluate p(£).

Plastic flow commences in the softer body 1 when the maximum
value (with respect to position) of a stress quantity denoted by Ys
reaches the value of the uniaxial yield stress Y; of material 1. For the
von Mises yield criterion, in plane strain,

O'yy)2 + %(Uxx - o'yy)2 + 37, 2]1/2

(8)
9)

Yy = [é(a'zz = ox)?+ %(U'zz -

Oyy = v1(022 + 0xx)

For each contact geometry, the stresses oy, 62z, 71, were evaluated
on a grid of subsurface points using the formulation of Bell, et al. [9],
in the plane strain limit, for a 200 point piecewise linear approxima-
tion to p(£). This provided the value of the critical yield stress (Y )max,
and its location (+§y, {y), where { = z/a and z is the depth coordi-
nate.

Results
The most convenient way to plot the results for all practical com-

Table 1 Special cases of the general symmetric plateau-arc-chamfer contact shown in Fig. 1
Surface Profile w(x) Regions £ = xl/a £, = x,/a Pressure Singularities
: lim m
Rectangle with sharp I El = 1 52 = 1 0 p(l -¢€) ¢ (=172 <m < 0) [1)
corners
lim
i = = + - 3

Wedge with sharp III 51 0 52 0 o pl{te) = 2n|e| [3]
- apex

Trapezoid with sha I+ III 0<E =E, <1 Lim plE, t e) = -En]e]

pe * P 17 %2 e+ Plog

corners

Parabola (Hertzian II 51 =0 52 =1 None

cylinder)

Rectangle with I+ 1II 0 < 51 <1 52 =1 None

rounded corners

Wedge with rounded II + III El =0 0 < 52 < 1 None

apex

Trapezoid with I+ II + III 0 < El < 52 <1 None

rounded corners
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Fig. 2 Ratio of dimensionless mean contact pressure p/E* to the overlap
variable h/a, plotted against arc width £, — £, for various values of plateau
half width &,
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Fig. 3 Dimensionless peak value pna/P and standard deviation o,/p of
contact pressure, plotted against arc width Eg - E1 for various contact con-
figurations

binations of £; and £, is to take as abscissa the dimensionless projected
arc width £, — & = (x2 — x1)/a, a measure of the bluntness of the
chamfer. In Fig. 2, the ratio of dimensionless mean pressure p/E* to
the deformation variable h/a is plotted as a function of £2 — &1 for
various cases. The plot shows that for a given h/a, P increases with
plateau width 2§, and that as arc width decreases, b approaches a
constant value, except when there are no chamfers within the contact
(2= 1).

Two measures of the nonuniformity of the pressure distribution
p(£) are the ratios pmax/P and o5/, where o, is the standard devia-
tion of p(£), defined as o2 = f§[p(£) — P]2dE. Both quantities are
plotted against £5 — £1 in Fig. 3. For £ ~ &1 < 0.1, the relative pressure
variation ¢,/p is effectively independent of {2 — £; (excepting the
curve £ = 1), while the relative height of the two identical pressure
spikes increases with decreasing arc width according t6 pmax/D < (&2
— £1)"Y2for £, = 1 (no chamfer) and weaker power laws for £5 < 1. The
flattest pressure profile that can be achieved with radii and/or
chamfers obtains for the case £2 = 1 and 0.2 < £4 < 0.5, i.e., no cham-
fers and wide arcs in contact. This optimum geometry offers a small
improvement, in terms of pressure uniformity, over a plane strain
Hertzian contact (§1 = 0, & = 1). A perfectly flat pressure distribution

{(Pmax/P = 1, 0,/B = 0) for plane strain contact would be given by the

symmetric transcendental profile shape function [10]
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Fig. 4 Dimensionless critical yleld stress ( Y, )max/P plotted against arc width
&, ~ &4 for various surface geometries, taking v4 = 0.3; the softer body 1
deforms elastically as long as ( Yy )max < Y4
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Fig.5 Depth §' y of the positions of maximum Y, where plastic flow initiates,
plotted against arc width £, — £, for selected values of £,

BB =1~ ——[A+H A +H+ (1= In (-]
2In2

(-1<E<+1) (10)

for which p/E* = 0.567 h/a.

In Fig. 4, the dimensionless critical yield stress (Y./)max/D is plotted
against £2 — &1, and the curves have the same general configuration
as Pmax/P in Fig. 8. The surface geometry giving the lowest pressure
peaks permits loading up to p = 1.5Y; before plastic flow nucleates
in the softer body 1. Figs. 5 and 6 show the coordinates ({y, +&y) of
the two symmetric positions of maximum Y5, and the location £,
of the two interfacial pressure maxima, for the various contact
geometries specified by &1, £2. Fig. 5 shows that as the arc width £5 —
£; decreases to zero, {y also goes to zero, i.e., plastic flow nucleates
nearer the interface. Fig. 6 shows that for £, — £; < 0.8, the lateral
positions of (Y./)max and Pmax are both near the center of the are, (1
+ £2). There is only one pressure peak (at £, = 0) when £ = 0
(rounded wedge), and there is only one initial yield position (£y = 0,
{y > 0) when either £; = O or £5 — £, > 0.85.

Applicability of the Results

The results presented in this paper for an infinite strip interface
can be applied to finite rectangular, annular, and cylindrical contact
interfaces provided the conditions of plane strain and half-space ge-
ometry are adequately satisfied. The specific geometric limits imposed
by these conditions could be found only by a full three-dimensional
finite-element solution for a particular pair of finite bodies in contact,
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Fig. 6 Lateral coordinates of the symmetric positions of initial yield, £y,
the contact pressure peaks, +£,,, and the arc midpoints, 23 (£, + £,), all three
plotted against arc width £, ~ £, for various plateau widths 2§,

however the general requirements can be stated semiquantitatively
without analysis. :

Consider first the conditions for plane strain for each of the three
contact regions shown in Fig. 7, using the coordinate system defined
earlier. For a rectangular contact area, Fig. 7(a), it is obvious that all
displacement lies in the xz-plane if the y dimension of both bodies
is 2b everywhere in the xz-plane. If one body extends beyond y = b,
then there will be pressure singularities along y = £b. In this case the
deviation of the stresses and displacements from the plane strain
solution will be smallest on the x-axis and will decrease as a/b de-
creases. For an axially symmetric annular contact, Fig. 7(b), the plane
strain solution will be a good approximation if the contact width 2a
is sufficiently less than the inner radius Ry. For the full cylindrical
contact surface of Fig. 7(c) (e.g., a sleeve shrink-fitted onto a shaft),
again plane strain contact will be approached in the limit a/R, —
0. .

Now consider the requirement that the two bodies extend far
enough from the interface in the xz-plane for the contact mechanics
to be close to the half-plane solution. Suppose that for body 1 two
chamfers of slope G terminate at “cliffs” x = +L,, while body 2 is
semi-infinite. As L,/a decreases, or as (7 increases, the loss of the
elastic material outside these free surfaces will reduce the constraint
to displacement of the contact surface in body 1, thus lowering the
value of the function 5/E* versus h/a. Hence both a/L, and G must
be sufficiently small not to alter appreciably the deformation be-
havior.

Conclusions

Relationships have been derived and illustrated which enable
quantitative design of a symmetric, continuous-slope, plateau-ra-
dius-chamfer surface profile which, when loaded against a flat surface
under conditions approximating plane strain, will give nearly any
required degree of contact pressure uniformity. Conversely, the results
can be used to predict the contact pressure distribution for a given
blunt chamfer profile. In addition, the stress analysis results, Figs.
4-6, can be used to design the contact geometry so as to prevent plastic
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Fig. 7 Three finite interface geometries for which the infinite strip contact
results are applicable: (a) rectangular, (b) annular, (c) cylindrical contact
regions

flow near the pressure peaks. Provided specific geometric conditions
are met, the results are applicable to finite rectangular, annular, and
cylindrical contact interfaces between finite bodies.

The symmetric shape of the pressure distribution (and hence the
symmetric shape of the subsurface stress distribution) is determined
solely by the width and position of the two curved segments within
the contact interface, while the mean pressure f depends additionally
on the slenderness h/2a of the undeformed overlap profile. The
eritical yield stress (Y,)max, which is the minimum value of yield stress
Y for which plastic flow will not occur, depends on the contact con-
figuration in the same general manner as does the pressure peak
height p yax. By maintaining arcs wider than 0.3a in the contact, it is
possible to keep the two pressure peaks below the value 1.55, to keep
the RMS pressure deviation below 0.3p, and toload uptop =1.4Y,
without plastic flow. As the arc width decreases, the two pressure
peaks and the two symmetric positions at which yield initiates move
toward the center of each arc.
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W?ve‘Propagation in a Plate
With Periodic Structure:
Antiplane Strain Model

M. Dravinski?

Introduction

Wave motion in a periodic layered medium may be of considerable
interest in problems involving nondestructive testing of composite
materials [1, 2]. However, most of the analytical studies deal with
waves in an infinite elastic medium [3, 4]. In this work, the wave mo-
tion in a plate of finite thickness and infinite length, with periodic
structure, is considered. The main objectives of the present analysis
are

1 To establish a simple, general method to determine the dis-
. persion relations for wave in periodically layered plates.

2 To determine the influence of the basic cell upon the overall
dispersion relation for the plate.

Each layer is assumed to be linearly elastic, isotropic, and homoge-
neous. Perfect bonding between the layers is understood. The method
employed in this work is essentially due to Haskell [5], and is used
frequently in geophysics and earthquake engineering.

Statement of Problem

A plate of infinite length (|x| <=;0 <z < 2,,,) consist of n identical
cells. The fundamental cell is composed of m different layers. Perfect
bonding is assumed between the layers and the cells; therefore, the
sandwich structure consists of n X m layers of infinite extent along
the y-axis. The steady-state wave motion is assumed to be of the an-
tiplane-strain type with the displacement field specified by u. = u,
= 0 and uy = v(%, 2, w). Each layer in the unit cell is characterized by
the density, p;, the shear velocity, §;, and the thickness, h;j, j = 1, 2,

., m.

The steady-state wave motion is gox:erned by
22 22 P
—+—+=|vx, 2 w)=0, 1
(bx2 o T g ( ) (1)

1 Research Associate, Department of Civil Engineering, University of
Southern California, Los Angeles, Calif. 90007.
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where w represents the circular frequency and §§ denotes the shear
wave velocity. The upper and lower faces of the plate are either
stress-free, or fixed. The former case implies the following type of the
nonmixed boundary conditions:

U'yz(x. 0,w) =0, o'yz(x, Zmn, ) = 0,

Solution of Problem
For waves in the plate, the following form of displacement field v(x,
2, w) is assumed:

vix, z, w) = p(z)eikx, 3)

where k represents the wave number in the x-direction and the factor
e~ ig understood. Substituting (5) into the equation of motion (1),
the displacement and stress field in the jth layer of the fundamental

 cell are given by

vj{x,2,w) = (aj cos g;z + bj sin gjz)e’®*, (4)
0y (x, 2, ©) = pigj[—am sin gjz + by, cos gjz]e™ =, 5)
with
w? . .
q_,'2=-—2—k2, ]=1,2,...,m. (6)
B;

An elastodynamic state, V,, is introduced [6], associated with the in-
terfacez =z VT = [, 0y2)s = 2,2, 7=0,1,2,...,m n,wheresu-
perscripts + denote that z approaches z, from above or below, re-
spectively. The two elastodynamic states for the rth layer are related
through [5]

Vi=AVey, r=12,...,mn, (7)

where the matrix A, is defined by
sin g h,

Mmrgr R
—urqr sin g-h, cos g-hy

cos q,h,

A= r=12,...,m-n. (8)

Similarly, the elastodynamic states at the top and bottom of the
(r — 1)th layer are related by

Vie1 = ApeiVyeg, r=1,2,...,m-n. 9)

The continuity of the displacement and stress fields at each interface
implies V,.* = V.=, so for the elastodynamic states V, and V,— it fol-
lows that
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Dispersion curves for siress-free boundary conditions: single two-layer
Bi=p1=hi=h;=1B:=p,=2 !

V=AMV, r=12,...,m-n. (10)

The elastodynamic states at the top and the bottom of the sandwich
plate are related by

Virn = A Amn—18Amn—2. . . Ap(n-1Amn-1)-2. . . Am(n-2)- ..

AnAm-1. .. AVp (11)

Due to periodicity in the structure of the plate, equation (11) can be
replaced by

Vi = A™V,, A= ApApm—1An-2, ..., Ay, (12)
where A is a characteristics matrix of a fundamental cell. Using the
boundary conditions (2), it follows from (11) that the corresponding

dispersion equation is

.>421 = 0, (13)

where the Ajj i, J = 1, 2, represents elements of the matrix A defined
by A = A™. Using the indicial notation, the dispersion relations (13)
can be expressed through

A2iAijAjr . . ArsAs1=0, i,J,...,=12, (14)

where, if not stated differently, summation over the repeated indices
is understood and the left-hand side of (14) consists of n matrices A.
For example, a sandwich plate which consists of one, two, three, etc.,
fundamental cells, the dispersion equations that follow from (14)

are
n=1A454=0 (15a)

n=2 AgAp =0 (1556)
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20 .

A
g

Fig. 2 Dispersion curves for stress-free boundary conditions: double two-
layercell; S1=p1=hi1=h,=1,8,=p,=2.

n=3, As(A1,An + AnApr) =0 (15¢)
n =4, AsifA1,ArsAst + Ago(ArrAr + ApAre)] = 0 (15d)

n =5, AnlA1,ArsAgAn + Ago[A1,ArsAst
“ o+ Agg(ArAry + A} = 0. (15e)-

It is evident from (15) that the dispersion relation of a fundamental
cell can be factored out. Similar results follow for the fixed-fixed plate.
Therefore, to find the roots (the wave numbers) of the dispersion
equation for any number of cells, one evaluates first the roots for the
single cell and proceeds with the roots associated with the presence
of additional cells.

- -For a given frequency w, there are, in general, several wave numbers
k which satisfy the frequency equations (14). The wave numbers form
the normal modes of propagation in the k& — w space for the model
under consideration. The frequency equation (15) imply that the
modes of a single cell are “preserved” in a multicell plate for nonmixed
boundary conditions (2). Thus the normal modes for a plate composed
of several fundamental cells consists of modes associated with a single
cell and the modes which account for the presence of supplementary
cells,

Evaluation of Results

As an illustration, plates which consist of two-layered fundamental
cells are studied in more detail. The top layer is taken to be of unit
thickness, with shear wave velocity, 8, and density, p, all equal to one.
Dimensionless shear wave velocity, density, and thickness for the
bottom layer of the cell are assumed tobe 83 = 2, pg = 2,and hg = 1.
The characteristics matrix A (equation (12)) is given by A = AzA4,
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where Ay and A; are defined by (8). From (8) and (12), the charac-
teristics matrix follows explicitly. Substitution of the elements of the
matrix A into (15) provides the dispersion relations for the sandwich
plate which consists of one, two, three, etc., number of cells.

The roots of the frequency equation (the dimensionless wave
numbers k) are assumed to be either real or pure imaginary; the for-
mer implying progressing type of waves in elastic medium, while the
latter describes locally standing waves [6} which exponentially decay
with increasing x.

For plates that consist of one and two fundamental cells and the
stress-free boundary conditions (2), the dispersion relations are
presented by Figs. 1 and 2. The results depicted in Fig. 1 demonstrate
progressing and the locally standing waves for a one cell plate. It can
be seen that at each frequency w there exists a finite number of pro-
gressing modes and an infinite number of locally standing modes (for
the sake of illustration, only the first few modes are presented). This
is an analogy compared to the case of a single layer plate, where the
progressing modes reduce to the family of hyperbolae, and the locally
standing modes to the family of circles [6]. For a sandwich plate, which
consists of two fundamental cells, part of the dispersion curves are
presented by Fig. 2. This is only the part due to factor Apg In (15). A
complete set of dispersion relations is obtained by superposition of
the results presented by Figs. 1 and 2.

The lines k = w and k = f81/B2w separate the dispersion curves for
progressing waves in the k-w space into two physically different re-
gions (see Figs. 1 and 2):

1 Bi/Baw < k.

2 k< Bi/Bow.

For values of (k, w) in Region 1, the z dependence of the displacement
field in the top (bottom) layer can be expressed in terms of circular

(hyperbolic) functions (see equations (3)—(6)). For the wave numbers
in Region 2, the z dependence of the displacement field in both layers
is of the sinusoidal character.

The fact that the dispersion equation for a single cell can be factored
out provides a significant advantage in the evaluation of dispersion
relations numerically. For a high number of layers in a cell, often the
lower modes are very close to each other at higher frequencies.
However, factorization of the dispersion equation for a one cell plate
simplifies the procedure considerably by allowing evaluation of the
two factors of the dispersion equation separately (see (15)).
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Shear and Rotatory Inertia
Effects on the Large Amplitude
Vibration of the Initially
Imperfect Plates

Z. Celep?

In this paper, the free flexural vibration of dn elastic rectangular
plate having initial imperfection is investigated including the effects
of transverse shear and rotatory inertia. It is assumed that the vi-
bration occurs with large amplitudes which leads to nonlinear dif-
ferantial equations. On the basis of an assumed vibration mode, the
modal equation of the plate is obtained and solved numerically.

Introduction

Chu and Herrmann {1] studied the free vibration of a rectangular
plate with hinged and immovable edge. The effect of large amplitudes
on both free and forced vibrations of the rectangular and circular
plates having a variety of boundary conditions were investigated by
Yamaki [2]. A similar study was made by Hung [3] who used the
method of successive approximations. Vendhan [4] applied the
higher-order Galerkin’s approximation to the solutions of these vi-
bration problems. Recently, Prathap and Varadan {5] have investi-
gated the nonlinear vibrations of rectangular plates using an averaging
technique which helps to satisfy some of the boundary conditions.

The classical plate theory neglects the effects of shear deformation
and rotatory inertia. Mindlin [6] extended this theory to cover these
effects on the dynamic behavior of the plates. Kumbasar [7] suggested

! Department of Civil Engineering, The Technological Institute, North-
western University, Evanston, I1l. 60201,
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the inclusion of these effects by using equations of three-dimensional
theory of elasticity and gave a solution to the free vibration of simply
supported rectangular plates. Iyengar and Raman [8] and the author
[9] studied the effects of shear deformation and rotatory inertia on
the vibration of rectangular and circular plates by applying the
method of initial functions. The large amplitude vibration of rec-
tangular plates including the transverse shear and rotatory inertia
effects was investigated by Singh, Das, and Sundararajan [10] and
Sathyamoorthy [11].

Further, the classical theory is based on the assumption that the
plane has no imperfections. The statical and dynamical behavior of
imperfect plates is very much dependent on the size of the initial
imperfection. This dependence becomes important in plates having
large initial imperfection. The first attempt to investigate the free
vibration of such plates was made by the author [12, 13].

There is a close similarity between the governing equations of ini-
tially imperfect plates and those of shallow shells, when the in-plane
displacements of the shell are neglected. Reissner {14, 15] studied the
vibration of shallow shells assumming that the vibration takes place
principally in the direction of the shell normal. Grossman, Koplik,
and Yu [16] derived the variational equation for axisymmetric vi-
bration of spherical shells. A more general investigation was presented
by Singh, Sundararajan, and Das [17] for moderately thick, straight,
and curved elements in a unified way. Further, they included the
transverse shear and rotatory inertia effects.

In the present Note the influence of transverse shear and rotatory
inertia on the large amplitude vibration of plates having large initial
imperfection is studied. A similar investigation was carried out by the
author [18] using a simple generalization of Timoshenko’s beam
theory.

Governing Equations

Consider a plate of rectangular shape having an initially imper-
fection wp = wo(x,y) as shown in Fig. 1. u, v, and w are used to repre-
sent the displacement components of the plate. In order to consider
the effects of transverse shear deformation and rotatory inertia in the
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where Ay and A; are defined by (8). From (8) and (12), the charac-
teristics matrix follows explicitly. Substitution of the elements of the
matrix A into (15) provides the dispersion relations for the sandwich
plate which consists of one, two, three, etc., number of cells.

The roots of the frequency equation (the dimensionless wave
numbers k) are assumed to be either real or pure imaginary; the for-
mer implying progressing type of waves in elastic medium, while the
latter describes locally standing waves [6} which exponentially decay
with increasing x.

For plates that consist of one and two fundamental cells and the
stress-free boundary conditions (2), the dispersion relations are
presented by Figs. 1 and 2. The results depicted in Fig. 1 demonstrate
progressing and the locally standing waves for a one cell plate. It can
be seen that at each frequency w there exists a finite number of pro-
gressing modes and an infinite number of locally standing modes (for
the sake of illustration, only the first few modes are presented). This
is an analogy compared to the case of a single layer plate, where the
progressing modes reduce to the family of hyperbolae, and the locally
standing modes to the family of circles [6]. For a sandwich plate, which
consists of two fundamental cells, part of the dispersion curves are
presented by Fig. 2. This is only the part due to factor Apg In (15). A
complete set of dispersion relations is obtained by superposition of
the results presented by Figs. 1 and 2.

The lines k = w and k = f81/B2w separate the dispersion curves for
progressing waves in the k-w space into two physically different re-
gions (see Figs. 1 and 2):

1 Bi/Baw < k.

2 k< Bi/Bow.

For values of (k, w) in Region 1, the z dependence of the displacement
field in the top (bottom) layer can be expressed in terms of circular

(hyperbolic) functions (see equations (3)—(6)). For the wave numbers
in Region 2, the z dependence of the displacement field in both layers
is of the sinusoidal character.

The fact that the dispersion equation for a single cell can be factored
out provides a significant advantage in the evaluation of dispersion
relations numerically. For a high number of layers in a cell, often the
lower modes are very close to each other at higher frequencies.
However, factorization of the dispersion equation for a one cell plate
simplifies the procedure considerably by allowing evaluation of the
two factors of the dispersion equation separately (see (15)).
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Shear and Rotatory Inertia
Effects on the Large Amplitude
Vibration of the Initially
Imperfect Plates

Z. Celep?

In this paper, the free flexural vibration of dn elastic rectangular
plate having initial imperfection is investigated including the effects
of transverse shear and rotatory inertia. It is assumed that the vi-
bration occurs with large amplitudes which leads to nonlinear dif-
ferantial equations. On the basis of an assumed vibration mode, the
modal equation of the plate is obtained and solved numerically.

Introduction

Chu and Herrmann {1] studied the free vibration of a rectangular
plate with hinged and immovable edge. The effect of large amplitudes
on both free and forced vibrations of the rectangular and circular
plates having a variety of boundary conditions were investigated by
Yamaki [2]. A similar study was made by Hung [3] who used the
method of successive approximations. Vendhan [4] applied the
higher-order Galerkin’s approximation to the solutions of these vi-
bration problems. Recently, Prathap and Varadan {5] have investi-
gated the nonlinear vibrations of rectangular plates using an averaging
technique which helps to satisfy some of the boundary conditions.

The classical plate theory neglects the effects of shear deformation
and rotatory inertia. Mindlin [6] extended this theory to cover these
effects on the dynamic behavior of the plates. Kumbasar [7] suggested
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the inclusion of these effects by using equations of three-dimensional
theory of elasticity and gave a solution to the free vibration of simply
supported rectangular plates. Iyengar and Raman [8] and the author
[9] studied the effects of shear deformation and rotatory inertia on
the vibration of rectangular and circular plates by applying the
method of initial functions. The large amplitude vibration of rec-
tangular plates including the transverse shear and rotatory inertia
effects was investigated by Singh, Das, and Sundararajan [10] and
Sathyamoorthy [11].

Further, the classical theory is based on the assumption that the
plane has no imperfections. The statical and dynamical behavior of
imperfect plates is very much dependent on the size of the initial
imperfection. This dependence becomes important in plates having
large initial imperfection. The first attempt to investigate the free
vibration of such plates was made by the author [12, 13].

There is a close similarity between the governing equations of ini-
tially imperfect plates and those of shallow shells, when the in-plane
displacements of the shell are neglected. Reissner {14, 15] studied the
vibration of shallow shells assumming that the vibration takes place
principally in the direction of the shell normal. Grossman, Koplik,
and Yu [16] derived the variational equation for axisymmetric vi-
bration of spherical shells. A more general investigation was presented
by Singh, Sundararajan, and Das [17] for moderately thick, straight,
and curved elements in a unified way. Further, they included the
transverse shear and rotatory inertia effects.

In the present Note the influence of transverse shear and rotatory
inertia on the large amplitude vibration of plates having large initial
imperfection is studied. A similar investigation was carried out by the
author [18] using a simple generalization of Timoshenko’s beam
theory.

Governing Equations

Consider a plate of rectangular shape having an initially imper-
fection wp = wo(x,y) as shown in Fig. 1. u, v, and w are used to repre-
sent the displacement components of the plate. In order to consider
the effects of transverse shear deformation and rotatory inertia in the
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Fig. 1 Coordinate system and supporting types of the rectangular plate

plate theory, the displacement components for a point off the middle
surface are taken in the following form:

ulx,y,2,t) = uo(x,y,t) + zo(x,y,t),
v(x,,2,t) = volx,3,t) + 2B (x,¥,t),
w(x,y,z,t) = wlx,y,t) (1)

where 1o and vg represent the displacement of the middle surface and,
« and 8 stand for the bending slope in the x and y-directions. The
strain components of the plate are

€ =0,

€& = €0t 2ay, € =€t 20,

Yxy = Y0 + Z(Oé,y + ﬁ,x); Yyz = ﬁ +wy, Y=o +wy, (2)

where €0, €50, and o denote the strains of the middle surface of the
plate and they are defined as

€x0 = gz + 0.5[(wo + w),x]2 — 0.5(wo,x)?,
€y0 = Voy + 0.5[(wo + w) 42 — 0.5(wo,)?,

Yo = Uo,y + Do,x + (w0 + w),x (w() + w),y — Wo,x Wo,y-
The stress-strain relations on the middle surface become

0.0 = Eleco+ peyo), oy0=Eleyo+ pexo), 70=Gvo,  (3)

where 00, 0y0, and 79 denote the normal and shear stresses of the
middle surface. E, G, and u are the usual material constants. The
relations between the moment and shear resultants and the strains
are taken as follows:

M. =D(ax+B,), My=D(B,+ poy),
Mgy = 05D(1 — p) oy + B),

Q. = kGhia +w,), Qy=kGh(B+wy), (4)

where k and h denote the well-known shear coefficient and the
thickness of the plate, respectively. The equations for free vibration
of the plate become

h3 phd .,

pnc -
Mx,x +Mxy,y - Qx _Ea =0, Mxy.x +My,y - Qy _—12_6 =0,

Qx,x + Qy,y + oxoh(wo + w),xx + Uyoh(wo + w),yy
+ 2Toh(wo + w),xy - phw =0. (b)

Neglecting the in-plane inertia of the plate, and assuming a potential
function as

0x0= Qyy, Oy0= Dxx, To= ~Puys ’ (6)

the in-plane equilibrium equations of the plate are fulfilled identically.
Using the compatibility equation, the following four equations are
obtained from the foregoing equations for the unknown functions ¢,
w, o, and B:

AAG + EL(wo, ) + 0.5EL(ww) =0, )

and
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Dot yx + 0.5D(1 — play, + 0.5D(1 + u)B.y

3

h3 .,
(a+w,x)—%a=0,

 khE
- 0.5
1+
D@y + 0.5D(1 — ) 1x

khE

h3 .
+0.5D(1 + Wy — 0.5 B+ w,) - ”1—2,6 =0,
m

1+

L{g, wo+w) + (ay+ By + Aw) — ptr = 0, (8)

21+ w)
where L is a nonlinear operator and defined as
L(¢,w) = Drx Wyy — 2¢,xyw,xy + @ yyW,xx

The equations of the perfect plate are obtained, if the initial imper-
fection vanishes in equations (7). Eliminating « and § from equations
(8), it follows:

D h2
—~ Adw = 31; Aw + O[L(wo,¢) + L(w,¢) — ptb], ©)
where
3 2
p=14+2010 (ﬂa——DA)
RhE 12 ot2

The nonlinear vibration of the initially imperfect plates with large
amplitudes is controlled by equations (7) and (9) which have been
obtained by the author [18] by generalizing Timoshenko’s beam
theory for initially imperfect plates. If one assumes that the ampli-
tudes and imperfection are small, then equation (7) is satisfied
identically and equation (9) appears as

20 o0

D
— AAw +
h khE 12 ot?

h2
DA)pLi') B A+ o = 0,

12
which was deduced by Mindlin [6] and by the author [9] by using two
different methods.

;Boundary Conditions

Two types of boundary conditions are considered for the deflection
function w(x,y,t), as well as for the stress function ¢(x,y,t). The
conditions for the deflection function are as follows:

(1) Plate Having All Edges Simply Supported

andw=0, Wyy =0, along x=0 and x =g,

along y=0 and y=b,
(2) Plate Having All Edges Clamped

w=0, w,=0,

w=0, wy, =0,

1 = =
and along x=0 and x=q,

w=0, wy,=0, along y=0. and y=b.

The boundary conditions for the stress function ¢ are as follows:
(1) Plate Having Movable Edges

a b
ﬁ D xx dx =0, ﬁ (/’,yydy =0,

which means that the resultant forces at the edges have to vanish,
(2) Plate Having Immovable Edges

J;“ {65y — 1o xx ~ 0.5E[(wo + w) 412 + 0.5E (wo,x)¥dx = 0,

b
j; (6 — 1y — O5E[(wo + w) )12 + 0.5 (wo,,)8dy = 0.

The combination of these boundary conditions gives four types of
supporting conditions for the plate as shown in Fig. 1. They are simply
supported plate with movable edges (SM-plate), simply supported
plate with immovable edges (SI-plate), clamped plate with movable
edges (CM-plate), and clamped plate with immovable edges (CI-
plate).

Approximate Solution
The solution of the coupled nonlinear governing equations (7) and

SEPTEMBER 1980, VOL. 47 / 663

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES

(9) under the given boundary conditions is a difficult task, if not im-
possible. Therefore w(x,y,t) and ¢(x,y,t) are selected in such a way
that equation (7) and at the same time the-supporting conditions are
satisfied. Then, Galerkin’s method is applied to equation (9) in order
to eliminate the spatial coordinates of the problem. To illustrate the
solution procedure, a plate having an initial imperfection

wolx,y) = ol (x,y)

is considered, where the shape function are
R(x,yy=sin cox -sin By, for SM and SI plates,
R(x,y) = sin® agx -sin2 By, for CM and CI plates,

where ap = m/a and ¢ = w/b. The deflection of the plate is assumed
to be w(x,y,t) = 8(¢t)R(x,y), where 8y and 0(t) indicate the initial
imperfection of the plate and the deflection of the middle of the plate.
The stress function ¢ is determined using equation (7) and the cor-
responding supporting conditions as

¢ _ ag?Bo® (cos 200%  €OS 2ﬁoy) P,y? Pyx?
== 02 + 200f) | p L
E- 32 2l Bo 9E | 2E
for SM and SI plates,
¢ . 1 (1302 ag? )
£ = (62 + 2000) {— ™= cos 200 + == cos 2
% ( o ){ 3 gz €08 200 * g 5 <08 Loy

a?B?[ 1
32 [(4ao? + B2

ao?
——cos4a X +——cos4
5 19 ( 0 Bs? ﬁoy)
X cos dagx - cos 23y +

ao?Bo?

" 16(arg? + Bo?)?

1
m cos 20 - oS 460y]
] 0

P.y?
oF

Pyx?
2K

+

>

cos 20% - COs Zﬁoy} +

for CM and CI plates,

where the average values of the normal stresses obtained using the
supporting conditions are

P _ k(0% + 20,0) Py, «(6%2+ 2000)

= e use), = B ),

1]

where k = 0 for SM and CM plates, k = Y for SI plates and x = 3, for
CI plates. It remains to determine 8(t) by satisfying equation (9) as
accurately as possible. Applying Galerkin’s method to equation (9)

a ~b[D ph?
j; j;‘h Adw =25 A - B[L(ws,¢)

+ L{w,¢)] — ;')u")lw dx dy = 0.

With the nondimensional parameters

b 8 \/ﬁt a
=—, == = s }\=—,
fo=3 =y 7 ha? b

the following modal equation which governs the nonlinear vibration
of SM and SI plates is obtained

22 d2¢
1+ 21+ 4
[ 12 ( )l dr?

AL+ A2+ 1202(1 — ) (@, + N2, ) ({0 + )

R RN S I
. [12(1_ )d4+7r7 1@+ M@)o + D]
+1_M2(1+>\)GIT2

+ 3L + A (G + D2+ 260

+ 1274r2(1 + A2)(@Q, + \2Q,) (S + {)} =0, (10a)
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where

_ 2 — A?
Qo=@ 42000 +ar,  By=" (242000 +y.

While ¢, and g, vanish for SM plates, and for SI plates they are
(P42l 2§*Z+2§§

8(1—u? 8(1 —

A similar modal equation is obtained for CM and CI plates as fol-
lows:

== +ur, gy =7 (1 + M.

[ LN v)] L 16—” [B(L+ M) + 222 ¢
+ 1672(1 — u2(@, + \2G,) (5o + )
1
2
) {(4 + >\2)2 * (1 + 4)2)2
r4 ﬁi_“_f
12(1 — p?) d7t

4
__7r4)\4 1__
3

(1 n )\2)2] (fo+ f)(fQ + 2§0¢) + v [

4 __ -
+ g 1!'21‘4d—;—2 [(@: + AN2Qy)({o + 9]l

_.7"_4)\4r4[
9

(1 +2>\2)2] dr? [(Co+ D2+ 2008
f

1 1
+
(4 +A2)2 (144222

4 wer?
— 2
_ ANY(5N% + 18) _ 4)\4(5 + 18A%)

(4 + \2)2 (422 + 1)2
+17(1 + A8]({2 + 280)

(1 )\2) + ! )
14+ 422

+——}\2 2404
" [ (4 Y

+ 921+ A2

+ % w21+ NG + N, (Go + s‘)] =0, (100)

where .
17 M1 1]
64 4 l@nz+1)2 204+ 22

>\4
+——tyq,
2(1+x2)2} q

w2 7 W1 1
((Z + 2600) { 4 |(4+ 222 T+ e

}\2
+———t4q,.
2(1 + >\2)2} O

§'2+2f0§){

The quantities g, and gy vanish for CM plates, and for CI plates they
denote

2+ 208
32(1 — u?)

24268

2
32(1 — p?) b+ 9.

Gy = 3w ————(1+pur?), ¢y=3m2———-

Numerical Results and Conclusions

To obtain the period of the flexural vibration of the plate, equation
(10) has been solved numerically on the B3700 Computer at the
Computer Center of the Technical University, Istanbul, Turkey. The
numerical solution is carried out for the square plate, i.e., for A = 1,
using the method of Runge-Kutta and assuming k& = % and u = 0.3.
Moreover, the fourth derivatives with respect to time in equation (10)
have not been taken into account because of the negligible effect on
the period. The initial conditions of the free vibration are assumed
tobe {(r = 0) = {, {(r = 0) = 0, where {, represents the initial am-
plitude of the plate. The results of the numerical calculation are
plotted in Figs. 2 which give only the variation of the nondimensional
period of the SI plates versus the initial amplitude, i.e., 79 = 70({3),
where 7 denotes the period of the initially imperfect plate relative
to the period of the corresponding perfect plate at the small ampli-
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SI-plate
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Fig.2(a) {o=0

tudes. The curves on the figures illustrate the effects of transverse
shear and rotatory inertia. As it is seen, three values are considered
for the thickness-length ratio r. The vanishing ratio corresponds to
the. thin plate for which shear and rotatory inertia effects are ne-
glected. The results of the perfect thin plate are the same as those of
Chu-and Herrmann [1], Hung [3], and Yamaki [2]. Further, the results
of the perfect plate having a nonvanishing thickness-length ratio r
agree with those of Singh, Das, and Sundararajan [10]. The figures
concerning initial imperfections with nonvanishing thickness-length
ratio are new. They represent the effects of the initial imperfection
and that of the thickness-length ratio on the period of the plate. When
the plate has no initial imperfection, the curve of the period is sym-
metrical and the period decreases with the increasing initial amplitude
as Fig. 2(a) shows. The presence of rotatory inertia and shear effects
are more pronounced at small amplitudes, where the period increases
with the thickness-length ratio, but make only slight changes in the
period at-large amplitudes. If the plate has an initial imperfection,
the curves change dramatically. The symmetry of the curves vanishes,
and the maxima becomes a minima surrounded by two adjacent
maxima as seen in Fig. 2(b). The effects of transverse shear and ro-
tatory inertia become more pronounced at the maximas, and the pe-
riod increases with the thickness-length ratio. The maximas increase
with increasing imperfection, and they become two asymptotes of the
curve for a certain value of the imperfection. With further increase
of the initial imperfection, the curve changes and one more asymptote
will appear as seen in Fig. 2(c). The thickness-length ratio makes slight
changes in the curve of the period, and it becomes more effective at
about the asymptotes of the curve. While the asymptotes correspond
to the unstable equilibrium positon and to the positions having equal
potential energy level with the unstable equilibrium positon, the
minimas represent the stable equilibrium positions. Only the stable
equilibrium position of the perfect plate corresponds to a maxima.
Similar curves were obtained by Singh, Sundararajan, and Das [17]
for large amplitude vibration of some moderately thick and doubly
curved shells. The behavior of the initially imperfect plates at the free
vibration without considering the effects of shear and rotatory inertia
was explained [12] and an analogy was presented by the author
[13].
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A Note on the Flow of a
Viscoelastic Liquid Near an
Oscillating Infinite Porous Plate

D. N. Mukhopadhyay' and T. K. Chaudhury?

Introduction

In view of the growing importance in chemical industries, different
models of viscoelastic fluids have engaged attention of many inves-
tigators, Stress-relaxing liquid of Oldroyd [1] is a rate-type model
satisfying the condition of material frame-in-difference [2]. In the
approximation of very short relaxation time, this model reduces to
the second-order fluid model of Coleman and Noll [3]. The present
problem considers the unsteady flow of a viscoelastic liquid of Oldroyd
near an infinite porous plate oscillating in its own plane. The purpose
of the study is to gain some information about the influence of re-
laxation time in the presence of mass transfer through the surface.
The corresponding problem for a second-order fluid is governed by
a differential equation of third-order with two boundary conditions
and can only be solved by a method of successive approximation de-
veloped by Beard and Walters [4]. However for an Oldroyd fluid, with
a particular solution for one normal stress component consistent with
the second-order fluid model, the differential equation obtained is
of second-order and can be completely solved. This solution gives the
solution for a second-order fluid as an approximation and we believe
that our solution is a more general one in respect of the stress-relax-
ation property of the fluid. The most interesting feature of our solu-
tion is that for the mass transfer parameter within a certain range
there exists a critical-relaxation parameter beyond which the role of
the stress-relaxation property of the fluid is reversed.

Formulation and Solution of the Problem .
The constitutive equation for a viscoelastic fluid of Oldroyd [1] has
the form

P;j=—pd;; + T}
T}
Ti+ M > + ViTijr — VirTri — VieTin| = 2n0e;; 1

where Pj; and e;; are, respectively, stress tensor and rate-of-strain
tensor, V; is the velocity component, A; is the relaxation time, and 5o
is the viscosity coefficient. With x-axis along the plate parallel to the
direction of motion and y-axis perpendicular to it directed into the
fluid, the velocity components for the problem are taken as (1, — vg
0) where u = u(y, t) and —vy is the constant suction.

The differential equation for u will be obtained by elimination of
stress component Ty between (1) and the momentum equation. This
elimination is affected by taking the particular solution T, = 0, which
means vanishing normal stress T, at the line of entry (or exit) of the
fluid through pores of the boundary.
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Fig.2 Velocity profiles of a viscoelastic fluid near an oscillating porous plate
for 7 = w/2 (Case 1)

We assume the motion to be entirely due to the oscillation Ugei«t
(real part) of the plate. Now introudcing the nondimensional quan-
titiesT = u/Ug, E=yVw/v, 7= wt, R = Vy/v/wr, A = A, where
R is the mass transfer parameter, A is the relaxation parameter, and
v = 10/p, we have for i the equation

73 i3 2% o [ou %
———R—+>\—-—2)\R—(—:)=(1—)\R2)— 2)
or? o1 \0o¢ of2
and the boundary conditions Z(0, 7) = ei*, 7 = 0 when & — «. It is
evident from (2) that this flow problem divides itself into three cases,
namely, AR2 E 1. In the first case, i.e., when the relaxation time A\; <
v/V?, the flow considered is possible for both blowing and suction

- at the oscillating plate; while in the second case, i.e., when Ay = »/V¢?,

the flow is possible only for blowing. In the remaining case, i.e., when
A1 > v/ Vo2, no solution is possible for suction while for blowing the
problem is indeterminate in the sense that the boundary conditions
cannot determine the arbitrary constants uniquely.
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A Note on the Flow of a
Viscoelastic Liquid Near an
Oscillating Infinite Porous Plate

D. N. Mukhopadhyay' and T. K. Chaudhury?

Introduction

In view of the growing importance in chemical industries, different
models of viscoelastic fluids have engaged attention of many inves-
tigators, Stress-relaxing liquid of Oldroyd [1] is a rate-type model
satisfying the condition of material frame-in-difference [2]. In the
approximation of very short relaxation time, this model reduces to
the second-order fluid model of Coleman and Noll [3]. The present
problem considers the unsteady flow of a viscoelastic liquid of Oldroyd
near an infinite porous plate oscillating in its own plane. The purpose
of the study is to gain some information about the influence of re-
laxation time in the presence of mass transfer through the surface.
The corresponding problem for a second-order fluid is governed by
a differential equation of third-order with two boundary conditions
and can only be solved by a method of successive approximation de-
veloped by Beard and Walters [4]. However for an Oldroyd fluid, with
a particular solution for one normal stress component consistent with
the second-order fluid model, the differential equation obtained is
of second-order and can be completely solved. This solution gives the
solution for a second-order fluid as an approximation and we believe
that our solution is a more general one in respect of the stress-relax-
ation property of the fluid. The most interesting feature of our solu-
tion is that for the mass transfer parameter within a certain range
there exists a critical-relaxation parameter beyond which the role of
the stress-relaxation property of the fluid is reversed.

Formulation and Solution of the Problem .
The constitutive equation for a viscoelastic fluid of Oldroyd [1] has
the form

P;j=—pd;; + T}
T}
Ti+ M > + ViTijr — VirTri — VieTin| = 2n0e;; 1

where Pj; and e;; are, respectively, stress tensor and rate-of-strain
tensor, V; is the velocity component, A; is the relaxation time, and 5o
is the viscosity coefficient. With x-axis along the plate parallel to the
direction of motion and y-axis perpendicular to it directed into the
fluid, the velocity components for the problem are taken as (1, — vg
0) where u = u(y, t) and —vy is the constant suction.

The differential equation for u will be obtained by elimination of
stress component Ty between (1) and the momentum equation. This
elimination is affected by taking the particular solution T, = 0, which
means vanishing normal stress T, at the line of entry (or exit) of the
fluid through pores of the boundary.
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Fig.2 Velocity profiles of a viscoelastic fluid near an oscillating porous plate
for 7 = w/2 (Case 1)

We assume the motion to be entirely due to the oscillation Ugei«t
(real part) of the plate. Now introudcing the nondimensional quan-
titiesT = u/Ug, E=yVw/v, 7= wt, R = Vy/v/wr, A = A, where
R is the mass transfer parameter, A is the relaxation parameter, and
v = 10/p, we have for i the equation
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and the boundary conditions Z(0, 7) = ei*, 7 = 0 when & — «. It is
evident from (2) that this flow problem divides itself into three cases,
namely, AR2 E 1. In the first case, i.e., when the relaxation time A\; <
v/V?, the flow considered is possible for both blowing and suction

- at the oscillating plate; while in the second case, i.e., when Ay = »/V¢?,

the flow is possible only for blowing. In the remaining case, i.e., when
A1 > v/ Vo2, no solution is possible for suction while for blowing the
problem is indeterminate in the sense that the boundary conditions
cannot determine the arbitrary constants uniquely.
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For A\R2< 1,
i = e~Af cos (1 — Bf), (3)
where
__V2R+8S _ 4+2V2 RS
T 2v/Z(1 - \R?)’ 24/2S(1 — \R2)’
S=+vr+R2—4X, r=+/(RZ—-4\)2+186.
ForAR?2=1andR <0,
i = e~4% dog (r — B*§), (4)
where
boo N e 12N
R(1+4)%)’ R(1+422)°

If we take Coleman and Noll’s second-order fluid the governing dif-
ferential equation of the present problem will be
o p A _ 0217 > o2 fomw bﬁ)
o7 13 a£2 at2\or oLl
where now A = —vow/10, vo being the coefficient of viscoelasticity. By
successive approximation (5) gives the solution

(5)

Rm +
1+ AE ﬁ%) ir=mf o the first power in A, (6)
where
R++/R%2+ 4]
m = —————

2

It can be easily seen that the solution (6) may be obtained from our
solution (3) by taking A to be small and retaining terms upto the first
power in A.

Discussion

It is found from computation of d4/0A that for blowing (R < 0) the
amplitude of velocity increases with the increase of A while for suction
(R > 0) the amplitude at first increases with X but after critical value
of A(= \.) it begins to decrease with A. This critical value of A de-
creases as R (i.e., suction) increases and for B > 0.5958 = R1*, A, be-
comes negative. Therefore, when R > R;* the amplitude decreases
with A within the entire range of validity of the solution.

Similarly, from the computation of d2B/d\ it is found that for suc-
tion (R > 0) B increases, i.e., the phase lag with respect to the plate
motion increases with the increase of A; while for blowing (R < 0) the
phase lag at first decreases with A but after a critical value of A(= A;")
it increases with A. This critical value of A decreases as R(<0) increases
(i.e., — R decreases) and for R > —0.5366 = Ro*, A.’ becomes negative.
Therefore, when 0 > R > Ro*, the phase lag increases with A within
the entire range of validity of the solution. From computation, we find:
for R = 0.25, A\, = 3.9212; for R = 0.5, \, = 0.6317;and for R = —1, A\’
= (.7468. Thus, for small suction, the amplitude of the velocity in-
creases with the increase of the relaxation time of the fluid but when
relaxation time exceeds certain value, the stress-relaxation property
of the fluid begins to dampen the amplitude. For large suction the
stress-relaxation property of the fluid always acts as a damping agent.
For blowing, however, this stress-relaxation property of the fluid al-
ways behaves as an amplifying agent. The critical-relaxation pa-
rameter does hot arise if mass transfer is not involved. It is further
observed from computation that although the two cases AR%2 <1 and
AR2 = 1 are governed by two entirely different differential equations,
the solution in the first case smoothly changes over to that of the
second case in the valid region.
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Axisymmetric Plume Flow in a
Vertical Uniform Free Stream
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Introduction
The axisymmetric plume that arises from a point heat source has
been studied [1, 2]. In many systems of practical interest, however,
the plume flow does not occur in a quiescent ambient medium but is
affected by the existence of an externally induced flow. This paper
considers the circumstance when the external flow is aligned with the
plume flow and aids or opposes the natural convection mechanisms.
This problem is of interest in heat removal from heated elements, such
as electronic components, where an external flow is generated in ad-
dition to the natural convection flow in order to restrict the temper-

ature level-attained by these elements [3].

The effect of mixed convection on the heat transfer, for various flow
circumstances, has been considered [4, 5]. These studies determined
the effect of natural convection mechanisms on a dominant forced
convection circumstance and vice versa. The present study considers
the effect of an external flow on the plume flow, for the two Prandtl
number values of 7.0 and 0.7 and at various levels of external flow. Of
particular interest was the effect on the velocity field, on the center-
line temperature and on the boundary-layer thicknesses.

Analysis

The boundary-layer equations that govern the flow, in an axisym-
metric plume above a point heat source, are written in terms of the
vertical and radial velocity components © and v, temperature ¢, the
vertical coordinate from the point source x, and the radial distance
y, from the axis of symmetry, as

— (yu) + — (yv) = (1a)
ox
ou ou v o ou
u—+v —=-—(y——)+gﬁ to) (1b)
ox qy yoy
ot ot o} ot
. u—+v-——=g—( ) (1e)
ox oy yoy\ oy

where g is the gravitational acceleration, § the coefficient of thermal
expansion, v the kinematic viscosity, « the thermal diffusivity, and
l » the temperature of the ambient fluid. In the foregoing equations,
Boussinesq approximations have been employed and the pressure and
viscous dissipation terms in the energy equation have been ne-
glected.

Consider a steady thermal input §p at x = 0 and y = 0 in an ex-
tensive ambient medium at temperature ¢ .. Then the thermal energy
Q(x) convected in the resulting plume must be the same for all x >
0 and equal to @, since there are no sources or sinks in the plume. The
center-line temperature is denoted by ¢o(x). Employing the similarity
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the entire range of validity of the solution. From computation, we find:
for R = 0.25, A\, = 3.9212; for R = 0.5, \, = 0.6317;and for R = —1, A\’
= (.7468. Thus, for small suction, the amplitude of the velocity in-
creases with the increase of the relaxation time of the fluid but when
relaxation time exceeds certain value, the stress-relaxation property
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stress-relaxation property of the fluid always acts as a damping agent.
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Introduction
The axisymmetric plume that arises from a point heat source has
been studied [1, 2]. In many systems of practical interest, however,
the plume flow does not occur in a quiescent ambient medium but is
affected by the existence of an externally induced flow. This paper
considers the circumstance when the external flow is aligned with the
plume flow and aids or opposes the natural convection mechanisms.
This problem is of interest in heat removal from heated elements, such
as electronic components, where an external flow is generated in ad-
dition to the natural convection flow in order to restrict the temper-

ature level-attained by these elements [3].

The effect of mixed convection on the heat transfer, for various flow
circumstances, has been considered [4, 5]. These studies determined
the effect of natural convection mechanisms on a dominant forced
convection circumstance and vice versa. The present study considers
the effect of an external flow on the plume flow, for the two Prandtl
number values of 7.0 and 0.7 and at various levels of external flow. Of
particular interest was the effect on the velocity field, on the center-
line temperature and on the boundary-layer thicknesses.

Analysis

The boundary-layer equations that govern the flow, in an axisym-
metric plume above a point heat source, are written in terms of the
vertical and radial velocity components © and v, temperature ¢, the
vertical coordinate from the point source x, and the radial distance
y, from the axis of symmetry, as
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expansion, v the kinematic viscosity, « the thermal diffusivity, and
l » the temperature of the ambient fluid. In the foregoing equations,
Boussinesq approximations have been employed and the pressure and
viscous dissipation terms in the energy equation have been ne-
glected.

Consider a steady thermal input §p at x = 0 and y = 0 in an ex-
tensive ambient medium at temperature ¢ .. Then the thermal energy
Q(x) convected in the resulting plume must be the same for all x >
0 and equal to @, since there are no sources or sinks in the plume. The
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variable 7, the generalized temperature ¢() and the dimensionless
stream function f(n) are
- {—lw
to—tw ’ :
with yu = ¥y, yv = — ¥, and Gr,, = gBx3 (o — t=)/v?
The total convected thermal energy at any location is given by

é V=xflp), n= f (Gr,) /4 @)

Q (x) = j;m 0Cp(t — to)u2mydy

= 2mvpCp(to — tw) X j;w ¢ f'dn= Qo 3)

where p is the density of the fluid and C,, the specific heat at constant
pressure. Therefore, the center-line temperature varies as x 1 for an
axisymmetric plume and is given as

o 9o

2wuCpl x
The governing differential equations for to — t» = N/x, where N is
a constant, are obtained as

to~ tew where [ = j:)m f’¢dﬁ (4)

R ) (’i) + =0 (50)
n
(n¢’Y +Pr(fey =0 (5b)
where the primes denote differentiation with respect to 7.
The velocity components are obtained as
u= Y \/El‘; (_) and v=-— Y (er)1/4 (i - }i) ®)
x n x n 2

The five independent boundary conditions for the aforementioned
system of equations can be shown to be [2]

¢’(0)=f(0)=f’(0)=1—d>(0)=%(w)=0 W

Let us now consider a laminar vertical stream flow past an axi-
symmetric plume. The problem then concerns a steady thermal input
Qoatx = 0and y = 0 in an extensive laminar vertical stream flow at
velocity - and temperature t.. The boundary-layer equations are
the same as those previously’given, equation (1). However, the
boundary condition pertaining to the vertical velocity in the ambient
medium is altered.

"

K\‘/er(li)%:humasn%m
x )

This gives
r Re,
—— =+ e(x)asy—> 8)
n vV Gr,
where
Re, = ==X
v

The foregoing parameter, Re,/+/Gry , indicates the relative magni-
tude of the forced convection effects, compared to the natural con-
vection mechanisms. The plus sign refers to aiding flow and the
negative to opposing flow. Since this parameter, denoted as e(x), is
obtained as a function of x for the vertical surface, similarity solutions
can not be obtained. )

However, in the present case, an interesting circumstance arises.
As has been shown by Fujii [1] and others, the center-line velocity is
not a function of x in an axisymmetric plume but is a constant. This
result arises because of the fact that Gr, varies with x as x2, the
temperature dependence on x being x ™1, and this results in u being
independent of x from equation (6). The external velocity u. is also
taken as independent of x. The relative magnitude of forced con-
vection compared to natural convection is, therefore, expected to be
independent of x. Since ¢ is independent of x, the constancy of Q(x)
downstream is maintained for a linear decrease in the center-line
temperature. ’ '
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Fig. 1 Axial and radial velocity profiles for alding and opposing flows at
Pr=17.0

Therefore, the problem of the axisymmetric plume flow in the
presence of the perturbing effect of an external laminar stream is
governed by equation (5), along with the boundary conditions

¢(0) =f(0) =f(0) =1—¢(0) =0,
and

ey = ke (9)
n

where ¢ is a constant. A perturbing effect is considered so that the
basic natural convection mechanisms dominate. Numerical solution
was obtained by means of the fourth-order Runge-Kutta integration
scheme and the results obtained are discussed as follows.

Numerical Results

Results were obtained for Prandtl number values of 7.0 and 0.7,
which correspond essentially to water and air, and at various values
of the forced convection parameter e. Fig. 1 shows the corresponding
profiles for Pr = 7.0. The axial velocity component approaches the
free-stream velocity outside the boundary layer and the radial velocity
component rises from its value of zero at the center line, due to sym-
metry, to indicate the entrainment at the edge of the boundary layer.
With aiding forced convection effects, a positive free-stream velocity
is present and with opposing a negative one. The center-line velocity
is found to increase with aiding effects and to decrease with opposing
effects. Opposing flow tends to curb the vertically rising natural
convection flow and thus cause a thickening of the boundary layer.

A very similar behavior is seen in Fig. 2 for Pr = 0.7. The effect on
the center-line velocity is, however, found to be essentially negligible
in this case. This is obviously related to the larger viscous effects in
the case of the higher Prandtl number. The effect on the temperaturg
field is shown for Pr = 7.0 in Fig. 3. The effect is obviously quite small
over the range of ¢ considered. An aiding flow, with a narrower
boundary layer and a more effective heat transfer mechanism, gives
rise to lower temperatures in the boundary layer.

The percentage effect on the center-line velocity and temperature,
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Fig. 4 Comparison of the computed values of N and Uy,,y, for the present
problem, to those of an axisymmetric plume, as functions of ¢

as compared to those for an axisymmetric plume, is shown as a func-

tion of e in Fig, 4. Aiding flow increases the center-line velocity, Unmax,

by about 5 percent for Pr = 7.0 at € = 0.1, whereas the effect is only

about 1 percent for Pr = 0.7. Opposing flow decreases the center-line

velocity in a similar manner. The center-line temperature given in_
terms of N, where iy — .. = N/x, indicates an increase of about 5

percent at Pr = 0.7 for opposing flow at € = 0.1. The effect is smaller

at Pr = 7.0, Similarly, aiding flow decreases the center-line temper-

ature as just discussed. This study, therefore, indicates the effect of
an externally induced flow on the plume flow parameters and deter-

mines the resulting profiles as a function of the mixed convection

parameter ¢, for circumstances where the external flow is a small

perturbation on the natural convection flow.
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Fig. 1 Tresca yield condition

cross section, whose rigid-plastic face sheets obey the Tresca yield
condition, was recently presented [1]. The optimality criterion, a
generalization of the constant energy dissipation theorem [2], was
developed by allowing the thickness of each face sheet to vary inde-
pendently, and applied to a conical frustrum with rollers at its outer
adge and constrained against rotation at its inner edge.

In the present Note, the theory [1] 1s applied to conical frustrums
with hinged and clamped outer edges.

Basic Equations
For axisymmetric loading, the nondimensionalized? equations of
equilibrium are :

d(rT,)/dr — Ty + r(ps + 8) = d(rBy)/dr — By + r(p; —s) = 0,
T, + B, + 45 = 4w/r. )

To equations (1), we adjoin the compatibility conditions on the gen-
eralized strain rates

te — d(rtg)/dr = by — d(rbg)/dr = r(tg — bg)/4, (2)
and the optimality conditions

Tity + Toto=f1, Bxby + Boby = fo. (3)

With the adoption of the Tresca yield condition (Fig. 1), Euler’s
theorem for homogeneous functions, flow law, and equation (3) may
be used to show that

t; = of1/oT;, bi=0fs/0B; (i=ux,0) (4)

Equations (1)-(4), subject to continuity of T, By, ty, and by are
solved by assuming that appropriate stress regimes apply for certain
regions of the shell. For example, the stress regime (4, d), together
with equations (2) and (3) will yield a solution for the strain rates. If
the resulting strain rates satisfy the normality requirements imposed
by equations (4) and if the stresses obtained from equations (1) lead
to non-negative thicknesses, then the solution obtained will be op-
timal.

It has been previously established [1] that the only stress regimes
compabible with equation (4) are:

1 Any combination of corners, excluding B and E.

2 Side CD(AF) and corner c(f).

3 Side bc(ef) and corner C(F).

Examples

In each of the following examples, it is assumed that a central boss
is rigidly attached to the shell’s inner edge, and that the load w(r) is
non-negative.

Hinged Outer Edge. The boundary conditions at the inner radius
rq are tg = by = 0. Equations (2), evaluated at r, implies t4t, > 0 and
bobx = 0 near r,. Therefore, the appropriate regime must consist of

the corners A or D and @ or d. Anticipating that N, = 0, M, < Oand .

2 For a definition of all nondimensionalized variables used in this Note, see
Reference [1].
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€9 = by + £y < 0, where ¢4 is the strain rate associated with Ny, it follows
that the regime for the inner region r, <r <r,is (A,d), hence equa-
tions (2) furnish .

toe = (P2Fre2)/2r2 F (r + 2roHr — rg)2/12r2 2 0,
box==(r2=r,2)/2r2 % (r + 2r,)(r — rg)2/12r2 <0, 5)
It can easily be shown that these inequalities are satisfied provided
r1Sré=8—r/24 [(ro/2 + 3)2 + 2r, 2172, (6)

where r* satisfies tg(r*) = 0 and bg(r*) < 0.

Since equations (5) require ¢y < 0 for ry < r < ry, the kinematic
condition at the hinged outer edge bg(rp) + t4(ry) = 0 can be satisfied
only if the solution consists of at least one more regime. At the outer
edge M, vanishes and N, is positive. Thus, both T, and B, are posi-
tive near rp so that the only admissible regimes are (A or F; a or f).
Assuming the solution consists of but two regimes, bg(r1) <0 and es(ry,)
= Q requires that t5(rp) = 0. This suggests choosing (4,f) for the outer
regionry < r < ry, so that

to=r=YCua(v/r) + C2Kola/P)] 20, t,=1-120,
—1<by=r"Y=4+ Cdo(+/r) + CaKo(/1)]1 20, b.=1, (7)

where I,, and K, are modified Bessel functions of the first and second
kind, respectively. The constants C1 and Cy, determined from the
continuity requirements on ¢4 and by, are

C1= —rifriKo\/r1) + (gr1 — DKV r)1/2,
Cs = rilérdo(V/ry) + (1 — DI/, 8

where 0 < £ = t5(r1) <n=bg(ry) < 1. The critical radius r; separating
the two regions and determined from eg(ry) = 0, must be such that the
inequalitites in (6) and (7) are satisfied.

The determination of ry is best accomplished numerically. However,
it can be shown that C; > 0, and if we let r'yax be the solution to C; =
0 for ry, then r{ < rpax < r* and r; — ryay corresponds to rp — «.
Furthermore, it may be shown that inequalities (7) are always satis-
fied, so that the two regime solution (5) and (7) is always kinematically
admissible. )

The generalized stresses are determined from the equilibrium
equations (1), T = Tg, By = Bg for r <ryand By = 0 for r = r; subject
to continuity of B, at r; and the statical condition T (rp) = B, (rp).
If the resulting stresses satisfy Ty = 0 everywhere and B, < 0 for r
<riand B, = 0forr = ry, then they are minimal. In particular, if the
loading consists of a concentrated load applied to the central boss,
w = wy, it is straightforward to show that these inequalities are indeed
satisfied. )

Clamped Outer Edge. Suppose now that the outer edge r = ry,
is clamped. Arguments identical to those for the preceding example
again lead to the regime (A, d) for the inner region r, <r <r;, where
ry satisfies inequality (6) and the strain rates are given by equation
(5).

At the outer edge, the support conditions require t4(rp) = bg(ry)
= 0. Evaluation of equations (2) at rp shows that t,tp < 0 and b, by <
0 near the outer edge. The regime near that edge, therefore, consists
of the corners C or F and ¢ or f: Anticipating that N, = 0, M, > 0 and
€ = by + £, = 0, the regime (C, f) for the outer region ro < r < ry is
obtained. Integration of equations (2) now furnishes

12 te=(U/4r)or —rp)r —rp — 4) >0, t,=—1,
~1<by=(1/4r)r —rp)r —rp +4) <0, by =1. 9)
Equations (9) will satisfy their appropriate inequalities if ro = rpi,

where

(10)

Imin

_ [rb +4-2(4+rp)2 for r, <12
r, — 4 _ for rp>12°

Forry <12, tg(rmin) = 1 and for rp = 12, bp(rmin) = 0.
Since ty(r1) + bp(r1) <0 and tg(rg) + by(re) > 0, it follows that r;
< rgand at least one intermediate region r1 < r < rz exists. Assuming
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a three-regime solution, the condition ¢4(rg) > 0, —1 < by(r1) <0 and
N, = 0lead to regime (4, f) for the middle region. Therefore the strain
rates are still given by equations (7) and (8). The two critical radii ry
and rg are determined from continuity of ty and by at ro. Thus

C1 = ~ralproKo(v/rg) + (yra — HK2/721/2,
Ca = rolprolo(v/r) + (vra — HIs(+/r))/2,

where p = tg(rg) and v = —by(rg). The existence of r; and ro where ry
< I'max and rg Z ryi, may easily be established numerically be solving
equations (8) and (11) for given r, and r.

Once again, it may be shown that the inequalities imposed by (7)
on the strain rates are satisfied, so that the three regime solution (4,
d), (4, f) and (C, ) is always kinematically admissible. If the stresses,
obtained from equations (1) corresponding to each regime satisfy T,
20,B, <0forr<r,Ty20,B,=0forr;<r<rgand T, <0, B,
2 0 for r = rg, then they are the minimal stresses. In particular, these
inequalities will be satisifed for a concentrated load applied to the
central boss.

(11)

Summary

Optimal designs for cones which are either hinged or clamped at
the outer edge have been presented for a certain class of loads. The
designs are completely determined by the sequence of minimal re-
gimes. For the hinged shell these regimes were (4, d) and (4, f), and
for the clamped shell they were found to be (4, d)(4, f) and (C, f). If
ry > rq, which is often the case, the region governed by the regime (A4,
f) will consist of almost the entire domain of the shell. The regime (4,
d) is necessary merely to meet the fixed inner edge condition, and in
the case of the clamped shell the regime (C, f) is needed near the outer
edge for the same purpose.
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Taylor-Gortler Instability of
Turbulent Wall Jets Along
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Turbulent wall jets have attracted considerable attention, because
they are concerned in boundary-layer control and heating, cooling,
drying or thermal insulation of solid surfaces. The purpose of this
Note is to consider a critical condition for Taylor-Gértler instability
of a turbulent wall jet along a concave wall, as a result of which lon-
gitudinal vortices are expected to occur as secondary flow in the wall
jet. The appearance of the longitudinal vortices might influence
momentum, heat, and mass transfer in turbulent wall jets. Tani [1]
first found experimentally the longitudinal vortices appearing in
turbulent boundary layers along concave walls, and Sandmayr [2]
made theoretical consideration for the instability problem of the
turbulent boundary layer, in which an eddy-viscosity concept was used
for the Reynolds stress. For wall jets, Kahawita [3] and Kobayashi and
Tomita [4] studied a laminar flow case. Kobayashi, et al. [4], also
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Fig. 2 Neutral stability curves for turbulent wall jet

considered a turbulent wall jet in a still fluid. Wall jets are often ap-
plied in a moving stream, where a ratio () of the free-stream velocity
to the maximum velocity in the wall jet varies downstream. We con-
sider here the Taylor-Gortler instability of turbulent wall jets for
various values of the ratio f.

Theory

An orthogonal curvilinear coordinate system (x, y, 2) is taken as
shown in Fig. 1. A free stream with a uniform velocity U= and also a
‘two-dimensional incompressible wall jet are directed along the axis
x. The radius R of the curvature on the wall remains constant in the
x -direction and is far larger than the thickness b of the wall jet. In
turbulent wall jets, it is known that a location of zero Reynolds stress
(tr = 0) does not coincide with a position of maximum velocity. Al-

" though an eddy-viscosity concept breaks down at the position of

maximum velocity, we use the eddy-viscosity ¢ for the turbulent wall
jets, as the primary consideration, in order to relate the Reynolds
stress to the basic flow field. We shall now suppose that the basic
turbulent wall jet is slightly perturbed with the type of longitudinal
vortices, which may be expressed as
u=U(y) +i(y)et cos az,
v=>0(y)ert cos @z, w =(y)e”tsin az (1)

with the wavenumber o and a measure v of the growth rate of the
disturbances. We obtain finally a set of perturbation equations gov-
erning the present linear instability problem in the neutral state
(y = 0) as follows:
Mu” + M'T — o?Mu = U'T, 2)
MTW + 2M'5” + (M” — 202M)D” — 202M'V’
+ o2M” + o2M)T = —202G%Un, (3)

v+ o = 0, 4)
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a three-regime solution, the condition ¢4(rg) > 0, —1 < by(r1) <0 and
N, = 0lead to regime (4, f) for the middle region. Therefore the strain
rates are still given by equations (7) and (8). The two critical radii ry
and rg are determined from continuity of ty and by at ro. Thus

C1 = ~ralproKo(v/rg) + (yra — HK2/721/2,
Ca = rolprolo(v/r) + (vra — HIs(+/r))/2,

where p = tg(rg) and v = —by(rg). The existence of r; and ro where ry
< I'max and rg Z ryi, may easily be established numerically be solving
equations (8) and (11) for given r, and r.

Once again, it may be shown that the inequalities imposed by (7)
on the strain rates are satisfied, so that the three regime solution (4,
d), (4, f) and (C, ) is always kinematically admissible. If the stresses,
obtained from equations (1) corresponding to each regime satisfy T,
20,B, <0forr<r,Ty20,B,=0forr;<r<rgand T, <0, B,
2 0 for r = rg, then they are the minimal stresses. In particular, these
inequalities will be satisifed for a concentrated load applied to the
central boss.

(11)

Summary

Optimal designs for cones which are either hinged or clamped at
the outer edge have been presented for a certain class of loads. The
designs are completely determined by the sequence of minimal re-
gimes. For the hinged shell these regimes were (4, d) and (4, f), and
for the clamped shell they were found to be (4, d)(4, f) and (C, f). If
ry > rq, which is often the case, the region governed by the regime (A4,
f) will consist of almost the entire domain of the shell. The regime (4,
d) is necessary merely to meet the fixed inner edge condition, and in
the case of the clamped shell the regime (C, f) is needed near the outer
edge for the same purpose.
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gitudinal vortices are expected to occur as secondary flow in the wall
jet. The appearance of the longitudinal vortices might influence
momentum, heat, and mass transfer in turbulent wall jets. Tani [1]
first found experimentally the longitudinal vortices appearing in
turbulent boundary layers along concave walls, and Sandmayr [2]
made theoretical consideration for the instability problem of the
turbulent boundary layer, in which an eddy-viscosity concept was used
for the Reynolds stress. For wall jets, Kahawita [3] and Kobayashi and
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considered a turbulent wall jet in a still fluid. Wall jets are often ap-
plied in a moving stream, where a ratio () of the free-stream velocity
to the maximum velocity in the wall jet varies downstream. We con-
sider here the Taylor-Gortler instability of turbulent wall jets for
various values of the ratio f.

Theory

An orthogonal curvilinear coordinate system (x, y, 2) is taken as
shown in Fig. 1. A free stream with a uniform velocity U= and also a
‘two-dimensional incompressible wall jet are directed along the axis
x. The radius R of the curvature on the wall remains constant in the
x -direction and is far larger than the thickness b of the wall jet. In
turbulent wall jets, it is known that a location of zero Reynolds stress
(tr = 0) does not coincide with a position of maximum velocity. Al-

" though an eddy-viscosity concept breaks down at the position of

maximum velocity, we use the eddy-viscosity ¢ for the turbulent wall
jets, as the primary consideration, in order to relate the Reynolds
stress to the basic flow field. We shall now suppose that the basic
turbulent wall jet is slightly perturbed with the type of longitudinal
vortices, which may be expressed as
u=U(y) +i(y)et cos az,
v=>0(y)ert cos @z, w =(y)e”tsin az (1)

with the wavenumber o and a measure v of the growth rate of the
disturbances. We obtain finally a set of perturbation equations gov-
erning the present linear instability problem in the neutral state
(y = 0) as follows:
Mu” + M'T — o?Mu = U'T, 2)
MTW + 2M'5” + (M” — 202M)D” — 202M'V’
+ o2M” + o2M)T = —202G%Un, (3)
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Fig. 3 Variations of G in neutral state with the velocity ratio 8

where the primes denote differentiation with respect to 1 (= y/ym),
and U = U/Up, @ = 0/Up, T = dym/v, T = Dym/v, 0 = &Y, G =
Revyn/R,Re = Unym/v, M = (u+ pe)/u (p: the density of the fluid,
e its viscosity, v: the kinematic viscosity). G is called the Gortler
parameter, and Re is the Reynolds number.

The boundary conditions which arise from the requirements of no
slip at the wall (n = 0) and of disappearanceas 7 —> @ are T =7 = 0’
= 0 in view of continuity equation (4).

Results and Discussions

The present instability problem is now reduced to find the Gortler
parameter G as an eigenvalue together with two components (y) and
D(n) of the perturbation velocities as eigenfunctions. w(x) is then
obtained from equation (4). The set of the differential equations (2)
and (3) was numerically solved by finite-difference technique and
successive approximation procedure. Fig. 2 shows neutral stability
curves in relation of the Gértler parameter G to the dimensionless
wavenumber o of the longitudinal vortices for several values of the
velocity ratio 8 = Uw/Un, where the stable range is below each neutral
curve. Because detail data for distributions of the velocity U(y) and
the Reynolds stress in the turbulent wall jet along a concave wall are
absent, we used in the present calculations the experimental results
by Bradshaw and Gee [5] for a turbulent wall jet along a flat plate in
a case of 8 = 0, by Irwin [6] for 8 = 0.377 and by Kruka and Eskinazi
[7] for 8 = 0.2, 0.4, and 0.6. Fig. 2 indicates that, as the velocity ratio
B increases, the stable range becomes smaller and the critical Gértler
parameter (G.) and the associated wavenumber (o.) are decreased.
Fig. 2is in a case of the Reynolds number Re = 104, Calculations for
different values of the Reynolds number (Re = 5 X 103 ~ 2 X 105)
show that the value of G in the neutral state increases with increasing
Reynolds number as a function G ~ Re™ withn = 1.0~ 1.1 for 8 =
0~0.6,

Further calculations were carried out for 8 = 1, which corresponds
to a turbulent boundary layer. Experimental values of the Reynolds
stress by Klebanoff [8] were used in order to obtain a neutral stability
curve. It was found that the parameter G in the neutral condition
increases with Re, where n is 0.3 ~ 0.5 in the same range of Re in the
wall jets.

Fig. 3 shows the effect of the velocity ratio 8 to the parameter G in

the neutral condition for ¢ = 1, 2, 2.5, and also at the critical condition. -

It is concluded from Fig. 3 that turbulent wall jets are more stable for

672 / VOL. 47, SEPTEMBER 1980

occurrence of the longitudinal vortices than turbulent boundary
layers, and that turbulent wall jets with less 3 are more stable. The
fact comes from an increase of the eddy-viscosity e in wall jets with
less .
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Plasticity
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General Background

The nonlinear theory of elastic-plastic materials developed by
Green and Naghdi [1, 2] employs the total strain and plastic strain
among its independent kinematical variables.? Another theory by Lee
[3] utilizes an intermediate stress-free configuration, together with
the associated multiplicative decomposition of the deformation gra-
dient. As pointed out by Green and Naghdi [4], Lee’s development
is valid only for initially isotropic materials. Other authors, among
them Mandel [5] and Lubliner 6], have more recently made use of
the multiplicative decomposition and have claimed that the theory
of Green and Naghdi is unduly restrictive in that (see, e.g., [6, p. 165])
it is applicable only to “certain special cases of isotropy.” The main
purpose of this Note is to show that if full invariance requirements
are invoked, then the theories employing the multiplicative decom-

" position lose the generality attributed to them [5, 6] relative to the

development in [1, 2]. In addition, although a complete list of refer-
ences on the subject is not cited, some aspects of the present discussion
will serve to clarify certain misunderstandings in the literature on
plasticity involving the use of the multiplicative decomposition
without satisfying full invariance requirements.

Let X be a particle of an elastic-plastic body B and denote by X and
x, respectively, the positions of X in a fixed reference configuration
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Fig. 3 Variations of G in neutral state with the velocity ratio 8

where the primes denote differentiation with respect to 1 (= y/ym),
and U = U/Up, @ = 0/Up, T = dym/v, T = Dym/v, 0 = &Y, G =
Revyn/R,Re = Unym/v, M = (u+ pe)/u (p: the density of the fluid,
e its viscosity, v: the kinematic viscosity). G is called the Gortler
parameter, and Re is the Reynolds number.

The boundary conditions which arise from the requirements of no
slip at the wall (n = 0) and of disappearanceas 7 —> @ are T =7 = 0’
= 0 in view of continuity equation (4).

Results and Discussions

The present instability problem is now reduced to find the Gortler
parameter G as an eigenvalue together with two components (y) and
D(n) of the perturbation velocities as eigenfunctions. w(x) is then
obtained from equation (4). The set of the differential equations (2)
and (3) was numerically solved by finite-difference technique and
successive approximation procedure. Fig. 2 shows neutral stability
curves in relation of the Gértler parameter G to the dimensionless
wavenumber o of the longitudinal vortices for several values of the
velocity ratio 8 = Uw/Un, where the stable range is below each neutral
curve. Because detail data for distributions of the velocity U(y) and
the Reynolds stress in the turbulent wall jet along a concave wall are
absent, we used in the present calculations the experimental results
by Bradshaw and Gee [5] for a turbulent wall jet along a flat plate in
a case of 8 = 0, by Irwin [6] for 8 = 0.377 and by Kruka and Eskinazi
[7] for 8 = 0.2, 0.4, and 0.6. Fig. 2 indicates that, as the velocity ratio
B increases, the stable range becomes smaller and the critical Gértler
parameter (G.) and the associated wavenumber (o.) are decreased.
Fig. 2is in a case of the Reynolds number Re = 104, Calculations for
different values of the Reynolds number (Re = 5 X 103 ~ 2 X 105)
show that the value of G in the neutral state increases with increasing
Reynolds number as a function G ~ Re™ withn = 1.0~ 1.1 for 8 =
0~0.6,

Further calculations were carried out for 8 = 1, which corresponds
to a turbulent boundary layer. Experimental values of the Reynolds
stress by Klebanoff [8] were used in order to obtain a neutral stability
curve. It was found that the parameter G in the neutral condition
increases with Re, where n is 0.3 ~ 0.5 in the same range of Re in the
wall jets.

Fig. 3 shows the effect of the velocity ratio 8 to the parameter G in

the neutral condition for ¢ = 1, 2, 2.5, and also at the critical condition. -

It is concluded from Fig. 3 that turbulent wall jets are more stable for
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ko and the current configuration «-at time ¢. Let F, which for conve-
nience we express as a function of X and ¢, be the deformation gra-
dient relative to the configuration kg and recall that det F > 0, where
det stands for determinant. The transpose and inverse operations will
be denoted by superscripts T and —1, respectively, and I is the unit
tensor.

Now it may be observed that if H is any tensor function of X and
t with det H > 0, then F = (FH™1)H with the property that det (FH™1)
> 0. Hence, F can always be decomposed—with evident nonunique-
ness-—as a product in which both factors have positive determinants.
Such a decomposition. namely,

F = F.Fp, (3]

with det F, > 0, det F, > 0 is used in plasticity theory. However, the
use of (1) in plasticity is supplemented with further restrictions which
reduce the extent of nonuniqueness but result in possible nonexistence
of the decomposition. To elaborate, let dX be an arbitrary material
line element of B in the neighborhood of the particle X and let dX and
dx = F dX be the corresponding line elements in the configurations
xp and «, respectively. Put dy = F, dX. Then, dx = F, dy by (1). Con-
sidering all material line elements dX at X in B, we can form a local
configuration from the elements dy; the collection of such local con-
figurations (for all X in B) is usually referred to in the literature on
plasticity as an intermediate stress-free configuration; in the special
case of homogeneous deformations for which F, and Fp, are indepen-
dent of X, k will be a global configuration of B. We observe that as part
of the definition of &, it must be required that

(a) For each x, the portion of B that occupies an arbitrarily small
neighborhood of x be reduced to a state of zero stress;* and

(b) The quantity

1
Ep, = 5 (Fo TR, — 1), )

called plastic strain, has the same value® at the particle X ink and .

The deformation of dX into dy is then interpreted as plastic and that
of dy into dx as elastic. Let e; and e4 be fixed orthonormal bases as-
sociated with the configurations k and ko, respectively. Then, the
components F;4 of F referred to these bases satisfy the compatibility
conditions OF;4/0Xp = 0F;5/0X 4 with respect to reference position
X = X sega, whilé the tensors F. and Fp, in general do not satisfy any
compatibility conditions; and, consequently, the configuration k
cannot be mapped smoothly into &g or k.

Issues Involved in the Use of (1)

Three main issues are involved in the use of the multiplicative de-
composition (1). These are: (i) existence of a configuration such ask,
(if) uniqueness of k or equivalently of the factors F., Fp, and (iii) the
invariance requirements under superposed rigid body motions to be
satisfied by F., F, and their consequent effects on the constitutive
equations. We discuss these issues separately.

(i) Existence. Aswas pointed out in [4], it is possible to reduce
the stresses in a material element to zero without changing E,, if and
only if the origin @ in stress space lies in the region & bounded by the
yield surface d8. It is not always the case that O belongs to & and

therefore if (1) is assumed, it will involve a restriction on possible-

constitutive equations and/or possible deformations. On the other
hand, if such restrictions are not.imposed, then the decomposition
(1) will not always exist.

(ii) Uniqueness. It follows from the requirement (b) that in any
two intermediate stress-free configurations corresponding to the same
current configuration k, E, has the same value at the particle X.

4The reduction to a state of zero stress is in the context of the purely me-
chanical theory only. The corresponding reduction in the thermodynamical
theory can be discussed similarly.

5 This requirement, as already noted by Green and Naghdi [4], is implied by
the usual statement that the total strain associated with the element dy is a
“plastic strain” and is equal to the plastic strain associated with the element
dx.
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Hence, in view of (1) and (2), F, and F, are not unique to the extent
that they are determined only to within a proper orthogonal tensor
function® Z of X, ¢ so that F,z7, zF, also satisfy (1) and leave the
left-hand side of (2) unchanged. It then follows that the configuration
K is locally determined at time ¢ only to within a rigid displace-
ment.”

(iii) Invariance Requirements. First, we recall that in response
to certain remarks made by Lee [3], Green and Naghdi [4] studied the
possibility of accommeodating the decomposition (1) within the
framework of their general thermodynamical theory [1, 2] in which,
in addition to temperature # and work-hardening parameter «, the
kinematical variables were the total strain € = 2 (FTF — 1) and the
plastic strain E, introduced as a primitive variable. In [1, 2] E, and
k were assumed to be unaltered under superposed rigid body motions.
It was established in [4] that by assuming the decomposition (1) and
making the identification between the primitive quantity E, in [1,
2] and the defined quantity €, in (2), that a theory utilizing the
variables F, and F,, could be derived from that of Green and Naghdi
{1, 2].

With reference to the invariance requirements, we recail that
physical considerations demand that certain fields and functions
entering the theory be indifferent® to any transformation which takes
the present configuration k of a body rigidly into a configuration x*.
Sincex is locally just another configuration, then by the same physical
reasoning, it was assumed in [4] that these fields and functions are
also indifferent to a transformation that independently replaces the
intermediate configuration k by a configurationk* related tox through
a superposed rigid body motion. Let k — x* andk — k* by indepen-
dent superposed rigid body motions. Then, we have the transforma-
tions F — F*, F, — F,* and F, — F,* with

Ft=Q(t)F =F.tF,*, F.t=Q(t)F.Q7(t), Fp*=Q()F, (3)

where Q(t) and Q(t) are proper orthogonal tensor-valued functions
of time only corresponding, respectively, to the arbitrary rigid body
rotations in the motions through which k — k¥ and k — k*. Clearly,
Ep in (2) and E will remain unaltered under the foregoing transfor-
mations and the work-hardening parameter « is assumed to also re-
main unaltered. Furthermore we assume that the stress tensor which
appears in the constitutive discussion, namely, the symmetric
Piola-Kirchhoff stress § for both configurations ¥ and k, remains
unaltered under the transformations k — k*,k — k*. It is then clear
that k satisfies requirements (a) and (b) if and only if x* does,
i.e., Kt is an intermediate stress-free configuration if and only ifk is.
In particular, since we can now conclude that S = 0ink™ if $ = 0 in«,
it follows that requirement (a) does not further reduce the lack of
uniqueness mentioned under (i1 }. :

The invariance requirements, (3) were observed by Green and
Naghdi [4]? and were later used by Naghdi and Trapp [9] in effecting
an essential reduction in the form of the strain-energy response
function. In contrast to the full invariance requirements, those
adopted by many authors correspond to (3) but with Q(¢) = I. In some
cases, for example [3], erroneous results were avoided because the
analysis was restricted to isotropic materials. However, Mandel [5]
introduces the idea of anl® “isoclinic” stress-free intermediate con-
figuration &, i.e., one that has a fixed orientation relative to a set of
axes in space, and adopts invariance requirements corresponding to

6 There is a dependency on X since the stress-free configuration is local.

7 At this stage of our discussion, it cannot be said whether the requirement
(a) can reduce this lack of uniqueness. We return to this later; see the end of
the paragraph containing (3).

8 We use the term indifferent for brevity to mean unaltered or unaltered
apart from orientation as defined in [7]. The notations F+, E¥, etc., here are
in line with those in [7] and correspond to F*, E*, etc., in [4].

9 Invariance requirements of the form (3) were also adopted independently
by Sidoroff [8], although he appeals to the principle of material frame-indif-
ference.

10 Actually, Mandel [5, p. 728] employs the terminology “configurations
isoclines.”
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(3) with @(¢) = I. The notion of a fixed orientation used in [5] is itself
not an invariant one. For Mandel’s scheme to have any physical rel-
evance, his results must be indifferent to the choice of fixed orienta-
tion. This leads one to demand that the full invariance requirements!®
(3) be satisfied. We discuss this further in the following, but note here
that Mandel’s scheme is adopted by Lubliner [6] who repeats the
criticisms of [1, 4] stated in [5].

We have already indicated that the definition of a stress-free con-
figuration (involving the requirements (a) and (b) noted earlier) de-
termines k only to within a rigid displacement at time ¢. In this con-
nection, it is perhaps natural to ask if by introducing a further as-
sumption one could choose a uniquek from among all possible inter-
mediate stress-free configurations and thereby obtain a unique choice
for Fp. In examining this possibility, one is immediately led to con-
clude that unless a nonuniqueness of rotation @ remains ink, the full
invariance requirements (3) will not be satisfied. To elaborate, con-
sider for example a possible additional assumption that F, be sym-
metric positive-definite. Then, application of (8)s shows that F,* is
not symmetric positive-definite unless Q(t) is set equal to Q(£) in (3).
But, such a stipulation on the invariance requirements (although it
may be specified mathematically) is unduly restrictive on physical
grounds. Similarly, an assumption that F, be symmetric positive-
definite is not an invariant idea since Fp* will not be symmetric
positive-definite. It should be kept in mind that the invariance re-
quirements (3) embody the idea that at time ¢ all intermediate
stress-free configurations differing from one another by a rigid dis-
placement are physically indistinguishable and there are no physical
grounds for choosing one of them rather than another. However, while
 and hence F,, cannot be chosen uniquely, it is important to note that
E, can be chosen uniquely, for example through the definition (2).

Implication of Invariance Requirements Stated
Under (iii)

In what follows we shall need to have available some results from
{1, 2, 4]. Interpreting the isothermal case of the theory in {1, 2] as
corresponding to the purely mechanical theory we obtain
S = po %

OE’ @

¥ = YE Ep, k),
as properly invariant constitutive equations for the strain energy per
unit mass and the symmetric Piola-Kirchhoff stress tensor S, where
po is the mass density in the configuration ko. It is understood that the
response function \f{/ in (4) is expressed as a symmetric function of E.
In addition, for fixed values of E, and k, the yield surface 08 in stress
space Is given in invariant form by

¢(8, Ep, k) = 0. (8)

In the theory of Green and Naghdi (1, 2], E,, is a primitive kinematical
quantity and no kinematical relation between E and Ej, is assumed.
The limitations concerning existence discussed under () do not arise
in this general framework; and, if only for this reason, it seems to be
preferable in a general theory of plasticity to employ E and E, rather
than F, and F,. Again for the same reason, it seems preferable when
using E and E,, not to introduce stress-free configurations as part of
the general theory.}? As soon as the identification between the
primitive E, of [1, 2] and the defined quantity Ej, in (2) is made, the
theory of [1, 2] loses some of its generality and the discussion (i) of
existence becomes relevant. In the remainder of this Note we assume
that this identification has been made.

1 Tt is clear that any chosen isoclinic configuration & at time ¢ may be regarded
as corresponding to @(t) = 1. A different choice of orientation will then result
in a different Q(¢). If this choice is to be arbitrary, then Q(¢) must be arbitrary
also.

12 In special cases, of course, it may be desirable for purposes of interpretation
or experimental identification to make use of such stress-free configurations
in order to identify E;, by the form (2). Another way of identifying plastic strain
is through the use of an assumption which would require that E, reduce to E
when 8 = 0 (see property 3 on p. 122 of {2]).
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We now recall polar decompositions of the invertible tensors F, F,,
and Fj, and define deformation tensors C, C, and €, as follows:

F=RM, C=FTF=m? (6)
Fe = RoM., C, = M,2
and
Fp = RpMp, Cp = Mp?= 2E, + |, (7

where R, R, Rp are proper orthogonal tensors and M, M., M, are
symmetric positive-definite_ tensors. We note that in view of (1), (6),
and (7), C may be expressed as

(8)-

When « — %,k — &+, then R — RT, M — M™, etc., and it can be de-
duced from (3), (6), and (7) that

C =MpR, TC.RpM,.

Rt =Q(t)R, M*=M, Ct=¢, E'=E,
€.t = a(t)c.a’ (),
9)

Once the decomposition (1) is admitted, the strain energy ¥ may
be expressed in the equivalent forms

\l/ = \pl(Fe, Fp; K) = \pZ(F: pr K)-

Since Y must remain unaltered under the transformations x — k+,k
— kt, then considering first the function Yy in (10); we obtain

Y=yt = iR, Bt k1) = a@()F.aT(t), @t)Fp, ) (11)

for arbitrary propér orthogonal Q(t), Q(t), where (3)2,3 have been used.
Recalling (6)3 and (7); we choose @(t) = R, T and @(t) = R, TR, T in
(11) so that

R.* = Q(t)R.QT(t), M.*=aQ(t)MQT(t),

Rpt = Q(i)Ry, Myt =M, Cp*=Cpy Ep*=Ep,

(10)

¥ = Y1(R, MRy, My, «) (12)

and we note the presence of Ry, in the arguments of (12). We have
shown that a necessary condition for the satisfaction of invariance
requirements is that ; in (10); depend on Fe, Fp, k only through the
arguments appearing in (12). It is readily seen, with the help of (9),
that taking ¢1 in the form (12) is also sufficient for the satisfaction
of invariance requirements. Observing the relations R, TM,R, =
(Rp TC.Rp)2 and My, = €, /2, we can express i as a properly invariant
function of R, TC.Rp, Cp, k. This was the form used in Section 4 of [4].
Considering now the function 5 in (10)g, it can be shown by a similar
argument that a necessary and sufficient condition for the satisfaction
of invariance requirements is that ¥ can depend on F, Fp,, « only in
the forms

¥ = YoM, Mp, ) = P3(C, Cp, k) = Y(E, Ep, k), (13)

the last of which is that employed in {1, 2, 4, 9]. Indeed, in view of (8),
the reduced forms (12) and (13) are equivalent.

We now return to Mandel’s development [5] and introduce the
notations £, R, M, for the values of F,, Ry, M, associated with his
“isoclinic” stress-free configuration &, as well as # = £, 8F, T/ det E,,.
A typical result in Mandel’s development is an equation of the
form13

) =0 (14)
for a yield surface in stress space. Applying the invariance require-
ments (3) and assuming é to be invariant, we obtain

18 The notation ¢ in (14) corresponds to f in (8.4) of [5] and we have sup-
pressed Mandel’s variables T, &; since they do not affect the present discussion.
Tt is important to note that we would still employ the full invariance require-
ments (3) even if these variables were included. Our Fp, Rp, Mp, S correspond,
respectively, to P, Q, L, wo of [5] and the work-hardening parameter « is not ex-
plicitly exhibited in (14).
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B() = (&%) = p(@(t)E,SF,TQT/ det B,) (15)
for arbitrary proper orthogonal Q(t). With the help of (15), the polar
decomposition F, = RpMp, the fact that M, = M, by virtue of re-
quirement (b) and choosing Q(¢) = R, 7, (14) reduces to

d(M,SM,/det M,) = 0. (16)

Thus ¢ can depend on the argument # only through $ and M,. Clearly,
the left-hand side of (16) can be written as a different function ¢(s,
Ep). Hence, apart from the work-hardening parameter « not included
in (14), the form (16) of the yield surface is equivalent to (5) which is
that used by Green and Naghdi [1, 2|. Parallel arguments apply to
other relevant equations in [5] and it should now be clear that the
criticism of [1, 4] by Mandel and others who have adopted his scheme
is unjustified.

It should be emphasized that in deducing (12), (13), and (16) no
assumptions were made concerning material symmetry and conse-
quently these equations are valid for a material which is anisotropic
in its reference configuration. Some authors, for example Mandel [5],
regard equations such as (5) and (13) to be valid only for special ma-
terials which are “isotropic in the intermediate configuration.”
However, we have just seen that the invariance requirements (3) imply
that constitutive equations such as (10)g always satisfy an equation
of the form (13).

Finally a comment must be made about a paper by Silhavy {10]. In
the context of a functional-type theory, he has attempted to prove that
the appropriate transformation law for F, is F, — Fp, {(or p — p in the
notation of {10]), i.e., @(t) = lin (3). However, his main proposition
(Proposition 4 in [10]) states that a certain set Pqf(mo, N) is equal to
aset P f(ﬂ'(); N). As Silhavy himself points out, there may be more than
one element in the set P4 (7g, N). Therefore, it cannot be deduced
from Silhavy’s Proposition 4 that F, — F, under superposed rigid
body motions.14
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Large Amplitude Vibration of
Skew Orthotropic Plates

M. Sathyamoorthy

Introduction

Large amplitude flexural vibrations of plates of various geometries
have been reported by several investigators [1]. The studies carried
out so far, in many cases, do not incorporate the effects of transverse
shear and rotatory inertia in the analysis. Although several theories
[1] have been proposed to account for these effects, numerical appli-
cations are not available. Wu and Vinson {2} have studied the effects
of transverse shear deformation and rotatory inertia on the large
amplitude vibration of rectangular orthotropic plates based on as-
sumed expressions for transverse displacement w as well as the slope
functions & and 8. Furthermore, the formulation is based on the
Berger approximation. Recently, the author [3} has studied the
nonlinear vibration behavior of isotropic skew plates with the aid of
a system of two equations in terms of the stress function, F, and the
lateral displacement, w. The approach presented in reference [3]
eliminates o and 3 from the governing equations. Therefore, it is not
necessary to assume functional forms for these slopes in the solution.
It has been shown in reference [4] that a system of governing equations
whose solutions do not require the assumptions of a and £3 gives better
numerical results.

In this Note, the nonlinear governing equations applicable for the
large amplitude flexural vibrations of moderately thick orthotropic
skew plates are given in terms of F and w following the procedure in
[3]. These equations are then solved using the Galerkin method on
the basis of an assumed lateral mode. The assumed mode shape is
restricted to one term in order to keep the algebraic and numerical
work involved within reasonable limits. Numerical results indicate
that the transverse shear and rotatory inertia effects are important
for moderately thick orthotropic skew plates.

Analysis

The governing dynamic equations for an orthotropic skew plate in
oblique coordinate system (see Fig. 1 in [3]) which account for
transverse shear deformation and rotatory inertia can be derived
following the procedure in reference [3]. The final form of these
equations in terms of the stress function F and transverse displace-
ment w are )

F,:cxxx + le;yyyy + k2F1xxyy + kSF;xxxy + kA-F;xyyy
= CE,, (w,xy2 - w;xxwxyy)

N{I)+Rw) =0

(1)
2)
where

B1 = CHt,2(m2 + ) + kY, ky = 62+ m2C?,
ky = —25(2524+ m2C?), k2=E,/E,
m?2=(k%2—q*-2p%q?)/p?% t;=8/C, S=sinf, C=cosfl

k3 = —48

q*=vg, D2=Gey'/Eg

(3)

In equations (3), E¢E,, vey, 146, Gy, G £2,G e are the elastic orthotropic
constants of the material of the plate. x and y are the oblique coor-
dinates, £,1 are the rectangular Cartesian coordinates, and § is the
‘skew angle. The differential operators NV and R in equation (2), and
the quantity I in equations (3) are the same as those in [3]. The various
coefficients which are required to fully define N and R are given in

I =1+ 2D17w;xy - D18w,yy — Digw,xx = Cphw,y.
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B() = (&%) = p(@(t)E,SF,TQT/ det B,) (15)
for arbitrary proper orthogonal Q(t). With the help of (15), the polar
decomposition F, = RpMp, the fact that M, = M, by virtue of re-
quirement (b) and choosing Q(¢) = R, 7, (14) reduces to

d(M,SM,/det M,) = 0. (16)

Thus ¢ can depend on the argument # only through $ and M,. Clearly,
the left-hand side of (16) can be written as a different function ¢(s,
Ep). Hence, apart from the work-hardening parameter « not included
in (14), the form (16) of the yield surface is equivalent to (5) which is
that used by Green and Naghdi [1, 2|. Parallel arguments apply to
other relevant equations in [5] and it should now be clear that the
criticism of [1, 4] by Mandel and others who have adopted his scheme
is unjustified.

It should be emphasized that in deducing (12), (13), and (16) no
assumptions were made concerning material symmetry and conse-
quently these equations are valid for a material which is anisotropic
in its reference configuration. Some authors, for example Mandel [5],
regard equations such as (5) and (13) to be valid only for special ma-
terials which are “isotropic in the intermediate configuration.”
However, we have just seen that the invariance requirements (3) imply
that constitutive equations such as (10)g always satisfy an equation
of the form (13).

Finally a comment must be made about a paper by Silhavy {10]. In
the context of a functional-type theory, he has attempted to prove that
the appropriate transformation law for F, is F, — Fp, {(or p — p in the
notation of {10]), i.e., @(t) = lin (3). However, his main proposition
(Proposition 4 in [10]) states that a certain set Pqf(mo, N) is equal to
aset P f(ﬂ'(); N). As Silhavy himself points out, there may be more than
one element in the set P4 (7g, N). Therefore, it cannot be deduced
from Silhavy’s Proposition 4 that F, — F, under superposed rigid
body motions.14
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Large Amplitude Vibration of
Skew Orthotropic Plates

M. Sathyamoorthy

Introduction

Large amplitude flexural vibrations of plates of various geometries
have been reported by several investigators [1]. The studies carried
out so far, in many cases, do not incorporate the effects of transverse
shear and rotatory inertia in the analysis. Although several theories
[1] have been proposed to account for these effects, numerical appli-
cations are not available. Wu and Vinson {2} have studied the effects
of transverse shear deformation and rotatory inertia on the large
amplitude vibration of rectangular orthotropic plates based on as-
sumed expressions for transverse displacement w as well as the slope
functions & and 8. Furthermore, the formulation is based on the
Berger approximation. Recently, the author [3} has studied the
nonlinear vibration behavior of isotropic skew plates with the aid of
a system of two equations in terms of the stress function, F, and the
lateral displacement, w. The approach presented in reference [3]
eliminates o and 3 from the governing equations. Therefore, it is not
necessary to assume functional forms for these slopes in the solution.
It has been shown in reference [4] that a system of governing equations
whose solutions do not require the assumptions of a and £3 gives better
numerical results.

In this Note, the nonlinear governing equations applicable for the
large amplitude flexural vibrations of moderately thick orthotropic
skew plates are given in terms of F and w following the procedure in
[3]. These equations are then solved using the Galerkin method on
the basis of an assumed lateral mode. The assumed mode shape is
restricted to one term in order to keep the algebraic and numerical
work involved within reasonable limits. Numerical results indicate
that the transverse shear and rotatory inertia effects are important
for moderately thick orthotropic skew plates.

Analysis

The governing dynamic equations for an orthotropic skew plate in
oblique coordinate system (see Fig. 1 in [3]) which account for
transverse shear deformation and rotatory inertia can be derived
following the procedure in reference [3]. The final form of these
equations in terms of the stress function F and transverse displace-
ment w are )

F,:cxxx + le;yyyy + k2F1xxyy + kSF;xxxy + kA-F;xyyy
= CE,, (w,xy2 - w;xxwxyy)

N{I)+Rw) =0

(1)
2)
where

B1 = CHt,2(m2 + ) + kY, ky = 62+ m2C?,
ky = —25(2524+ m2C?), k2=E,/E,
m?2=(k%2—q*-2p%q?)/p?% t;=8/C, S=sinf, C=cosfl

k3 = —48

q*=vg, D2=Gey'/Eg

(3)

In equations (3), E¢E,, vey, 146, Gy, G £2,G e are the elastic orthotropic
constants of the material of the plate. x and y are the oblique coor-
dinates, £,1 are the rectangular Cartesian coordinates, and § is the
‘skew angle. The differential operators NV and R in equation (2), and
the quantity I in equations (3) are the same as those in [3]. The various
coefficients which are required to fully define N and R are given in

I =1+ 2D17w;xy - D18w,yy — Digw,xx = Cphw,y.
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Table 1 Values of (T/Ty)104 for a rectangular plate

Table 2 Values of ( 7/ Ty)104 for a 15° skew plate

h h
2a r=05 r=10 %a r=05 r=10
wo/h\ | 1/10 1720 T 1/10 1720 * wo/h\ | 1710 1/20 * 1/10 1720 *
0 101822 | 10044 | 10000 | 10337 | 10081 | 10000 0 10183e | 10043 | 10000 | 10328 | 10078 | 10000
12935 | 10776 | 10000 | 12847 | 10757 | 10000 13167° | 10839 | 10000 | 13114 | 10832 | 10000
05 | 9931 9829 9795 | 10075 9860 | 9793 05 | 9977 9845 9822 | 10079 9883 | 9817
12077 | 10388 9761 | 12019 | 10374 | 9761 12947 | 10751 9948 | 12884 | 10729 | 9940
1.0 | 9323 9262 9245 9429 9286 | 9239 1.0 | 9424 9358 9338 9532 9376 | 9322
10325 9470 9133 | 10286 9464 | 9134 12395 | 10498 9796 | 12286 | 10455 | 9766
15 | 8544 8519 8501 8605 8533 | 8491 1.5 | 8714 8687 8666 8751 8672 | 8837
8614 8372 8309 8597 8378 | 8310 11618 | 10130 9558 | 11489 | 10043 | 9494

* = transverse shear and rotatory inertia effects excluded
@ = jsotropic
b = orthotropic

Appendix of reference [3]. However, the coefficients a;;, E1 — E3 are
1o be changed as given later to take into account the orthotropy of the

plate material.
an = El/Ca, Qg = C{EQ + E1t14 + 2t12(E3 + 2GE11)}
agq = (Gg, + Et12)/C

a1z = (E3 + E1t4%)/C

age = —t1(2Gg, + E111?2 + E3),
ass = —£1Gg

ass = GEZ/C, Qg = CGnZ + Sthfzx

a1y = —E;t1/C?,
4)

where

E1=Eiv', Ey=E,/v, Ez=Ew./v'=Ewu/V,

i R L

when the normal stress o, is assumed to be zero [3].

Equations (1) and (2) represent a system of two equations governing
the large amplitude flexural vibrations of orthotropic skew plates. The
effects of transverse shear deformation and rotatory inertia are in-
cluded in these equations. By taking k1 — k4 and a;; suitably, as in-
dicated in Appendix of [3], these two equations can be readily reduced
to the corresponding equations applicable for isotropic skew plates
[3]. Equations (1).and (2) are nonlinear and coupled and hence exact
solutions to these are very difficult to obtain.

Example
Approximate solutions are given here for the large amplitude free
flexural vibrations of an orthotropic skew plate of dimensions 2a and
2b. A gingle-mode expression for w is chosen to satisfy the boundary
conditions along the clamped edges as well as the appropriate geo-
metrical requirements [3] as’
w=£@h(1+cosﬁ)(1+cosﬂ) (5)
4 a b
Substituting equation (5) in equation (1) and assuming that the edges
of the plate are movable [3], a solution for F is determined. The ex-
pression for F as well as the coefficient a; — a9 in F are the same as
in [3] except that in this case the quantity E in the coefficient d is to
be replaced by E,. The expression for F thus obtained and the lateral
displacement w in equation (5) are now substituted in equation (2)
and is satisfied approximately by integrating the error function over
the area of the plate. This procedure leads to a time-differential
equation in F' as follows:
asf difs d2fs

bt 4 by L b ST 4 bsfr = 0
1e bt b af + bsf

where the nondimensional time 7 = ¢tq'/2, ¢ = E¢/(pa?),

(6)

b1 =c4, by = c3 by =cg, by = cy, bs = c5,
be = cg/(24c3),

fa = ba(f + baf3) |

b7 = ce/(3cq)

f1 = ba(f + bef®), (7)

The coefficients ¢1 — ¢g in equation (7) are defined in the Appendix -

of reference [3].
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* = transverse shear and rotatory inertia effects excluded
o = jsotropic
b = prthotropic

Table 3 Values of (T/ T,)104 for a 30° skew plate

3
2a r=10.,5 r=1.0
wolh 1/10 1/20 * 1/10 1/20 *
0 101882 | 10042 10000 10313 10069 10000
14013% | 11070 10000 14246 11149 10000
0.5 10028 9910 9885 10141 9913 9870
13943 11032 9988 14123 11094 9978
1.0 9659 9575 9561 9735 9558 9509
13764 10972 9950 13872 10986 9911
1.5 9122 9089 9084 9127 9000 8983
13495 10868 9889 13477 10825 9803

* = transverse shear and rotatory inertia effects excluded
@ = jsotropic '
b = orthotropic

Equation (6) is the modal equation applicable for the large ampli-
tude-free, flexural vibration of a clamped orthotropic skew plate with
movable edges. Solutions to this nonlinear equation have heen ob-
tained using the numerical Runge-Kutta method. The ratio of the
nonlinear period of vibration T, including the effects of the transverse
shear deformation and rotatory inertia, to the corresponding linear
period Ty of a classical plate, not including these effects, has been
computed for different nondimensional amplitudes (wo/h), plate
aspect ratios (r), skew angles (#), and thickness-to-length ratios (h/2a)
of isotropic and orthotropic plates. For the sake of easy comparison

results where these effects are not considered are also presented. .

These are shown in Tables 1, 2, and 3. The material constants of the
orthotropic plate are taken to be k2 = 0.057, g2 = 0.256, G¢,/E; =
G/Ey = 0.02, G,./Er = 0.011 as in reference [2]. In the case of iso-
tropic plates k2 = 1, ¢2 = 0.3, and G/E = 0.385.

Conclusions

The effects of transverse shear deformation and rotatory inertia
on the large amplitude vibration of rectangular and skew plates are
shown by an increase in the period ratio although the increase is less
at moderately large amplitudes. The relationship between the period
and amplitude in all the cases investigated here is seen to exhibit the
hardening type of nonlinearity, i.e., period decreases with increasing
amplitude. The effect of the particular type of orthotropy that is
considered here is to produce a significant increase in the nonlinear
period, the increase being more at high aspect ratios. It can be ob-
served that orthotropic plates, whether rectangular or skew, are more
sensitive to the influences of transverse shear deformation and rota-
tory inertia than isotropic plates. Also, the influences of these effects
on the nonlinear dynamic behavior of orthotropic skew plates is seen
to increase with the skew angle. The transverse shear and rotatory
inertia effects play a very important role particularly for moderately
thick orthotropic plates whereas for all practical purposes these effects
have no influence on thin plates with thickness-to-length ratio less
than 0.025.
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Solution of Poisson’s Equation in
a Semicircular Region With a
Hole!

A. K. Naghdi?

Introduction

Solutions of Poisson’s and Laplace’s equations in a multiply con-
nected circular region have been derived by a few authors in recent
years. Among these authors are Redberger and Charles [1], Snyder
and Goldstein [2], Gaydon and Nuttall [3], El-Saden [4], Rowley and
Payne [5], and Ling [6] who investigated the problems of fully de-
veloped laminar flow, two-dimensional heat conduction and torsion
of prismatic bars. However, the solutions of the aforementioned
equations have not been completely investigated for the case of a
semicircular region with a circular cutout. In this investigation, first,
a closed-form solution for the Green’s function satisfying a homoge-
neous outer boundary condition is derived. Next, this function is
utilized to generate certain eigenfunctions of Laplace’s equation.
Finally, these eigenfunctions are combined with an appropriate
closed-form particular integral of the governing equation to form the
desired solution. Numerical results for the cases of two-dimensional
heat conduction and viscous fluid flow are presented.

Analysis

Consider a semicircular region containing a circular cutout as shown
in Fig. 1. Choose a set of dimensionless polar coordinates p = r/R, 0
with the origin at point 0, and let ¢ be the angle measured from a ra-
dial line at the center of the c1rcular hole. The solution of Poisson’s
equation

o 1
op? pap p? 062

lﬂ=§ (1)

in which § = constant, satisfying the conditions
\/_/ =0 on the outer boundary @
Y = h{¢) on theinner boundary

is sought in the following form:

¢=¢+Ao$()*+A1$1*+...+Aj\/_/j*+

+B® + Byl + ... +Bgi0+... (3

in which Jx is a particular solution of the governing equation, Jj,* J,-O

are certain eigenfunctions of Laplace’s equation and A;, B; are certain
unknown constants to be determined. Each individual function ¢;*

1The author wishes to thank the Department of Computer Services of ITUPUI
for providing CDC 6600 computer time for this investigation.

2Professor of Aeronautical-Astronautical Engineering and Mathematical
Sciences, Purdue School of Engineering and Technology at Indianapolis, Ind.
46205.

Manuscript received by ASME Applied Mechanics Division, November, 1979;
final revision, March, 1980.

Journal of Applied Mechanics

BRIEF NOTES

or Jj” as well as ¢ is required to satisfy the homogeneous outer
boundary condition

p=1
Ui =y°=y=0 at 6=0, @)
=

These functions are now derived.

Derivation of ; * and ¢;°
In order to derive these eigenfunctions, the following technique is
followed. First, the solution of Poisson’s equation

v2 P = il sx* 8 (p = po) sin nd), ®)

in which s, * are constants and § is the unit impulse functlon is sought
in the form

¥* = 3 fal(p)sinnd. 6)
n=1
The substitution of relation (8) into equation (5) gives
d? n ( ) 1d n ( ) n
e N RTALICET DG
dp? p dp

The complementary solution f,. of the differential equation (7) is
obtained in the usual way, and its particular integral f,, is found with
the known method of variation of parameters [7]. In the derivation
of fnp it is considered that the function must be continuous at p = po.
Thus, employing the condition £, (p) 0at p = 1, the following results
are obtained:

. @ g %
Yr= 3 — po"*t (o — p~™ sinnb
n=12 for p = po,

8
p<po ®

P* = Z — (,00"+1 — po~"*1) p" sin nf
n=1 2
The Green’s function is now obtained from (8) by substituting the
appropriate Fourier coefficients for a concentrated source in place
of s,*. The final résults are as follows:

- P [ = po” )
Dot = 2__{ 5 2% (on = 57) |cos n (6o + 0)
wR2 h=1 n
- cosn (00 - 0)” = ‘;I (P: 61 0, 00) for p = Po,
> (9)
- 2P | = pn _
Ve = -———{ > = (po” — po™) [cos n (6o +6)
7I"R2 n=1n
—cosn (fg— 9)” =y (p, 6, po,80) for p< PO:J

in which P is the magnitude of the concentrated source. Note that in
relations (9)

i1 (p, 8, po, o) =1 (po, 0, p, Bo).

It has been shown previously [8-10] that series similar to those
involved in (9) have closed-form sums:

o« -e—nE
2 —cosna = Fi(£, ),
n=1 N
1 héE-1
Pt p) =i —2E"L g s,
cosh £ —cos &
© "nE
> —sinna = Fo(¢, o), (10)
n=1 N
(1+ cosh §) tan%
@
Fa(t, a? =— E + arctan Snh £
Foll, ) = —FolE,2m—a)] £>0,2r>a>m.
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Introduction

Solutions of Poisson’s and Laplace’s equations in a multiply con-
nected circular region have been derived by a few authors in recent
years. Among these authors are Redberger and Charles [1], Snyder
and Goldstein [2], Gaydon and Nuttall [3], El-Saden [4], Rowley and
Payne [5], and Ling [6] who investigated the problems of fully de-
veloped laminar flow, two-dimensional heat conduction and torsion
of prismatic bars. However, the solutions of the aforementioned
equations have not been completely investigated for the case of a
semicircular region with a circular cutout. In this investigation, first,
a closed-form solution for the Green’s function satisfying a homoge-
neous outer boundary condition is derived. Next, this function is
utilized to generate certain eigenfunctions of Laplace’s equation.
Finally, these eigenfunctions are combined with an appropriate
closed-form particular integral of the governing equation to form the
desired solution. Numerical results for the cases of two-dimensional
heat conduction and viscous fluid flow are presented.

Analysis

Consider a semicircular region containing a circular cutout as shown
in Fig. 1. Choose a set of dimensionless polar coordinates p = r/R, 0
with the origin at point 0, and let ¢ be the angle measured from a ra-
dial line at the center of the c1rcular hole. The solution of Poisson’s
equation

o 1
op? pap p? 062

lﬂ=§ (1)

in which § = constant, satisfying the conditions
\/_/ =0 on the outer boundary @
Y = h{¢) on theinner boundary

is sought in the following form:

¢=¢+Ao$()*+A1$1*+...+Aj\/_/j*+

+B® + Byl + ... +Bgi0+... (3

in which Jx is a particular solution of the governing equation, Jj,* J,-O

are certain eigenfunctions of Laplace’s equation and A;, B; are certain
unknown constants to be determined. Each individual function ¢;*

1The author wishes to thank the Department of Computer Services of ITUPUI
for providing CDC 6600 computer time for this investigation.

2Professor of Aeronautical-Astronautical Engineering and Mathematical
Sciences, Purdue School of Engineering and Technology at Indianapolis, Ind.
46205.

Manuscript received by ASME Applied Mechanics Division, November, 1979;
final revision, March, 1980.

Journal of Applied Mechanics

Downloaded Ol May 2010 to 171.66.16.243. Redlstrlbutlon subject to%él\/lg_nlcen se

BRIEF NOTES

or Jj” as well as ¢ is required to satisfy the homogeneous outer
boundary condition

p=1
Ui =y°=y=0 at 6=0, @)
=

These functions are now derived.

Derivation of ; * and ¢;°
In order to derive these eigenfunctions, the following technique is
followed. First, the solution of Poisson’s equation

v2 P = il sx* 8 (p = po) sin nd), ®)

in which s, * are constants and § is the unit impulse functlon is sought
in the form

¥* = 3 fal(p)sinnd. 6)
n=1
The substitution of relation (8) into equation (5) gives
d? n ( ) 1d n ( ) n
e N RTALICET DG
dp? p dp

The complementary solution f,. of the differential equation (7) is
obtained in the usual way, and its particular integral f,, is found with
the known method of variation of parameters [7]. In the derivation
of fnp it is considered that the function must be continuous at p = po.
Thus, employing the condition £, (p) 0at p = 1, the following results
are obtained:

. @ g %
Yr= 3 — po"*t (o — p~™ sinnb
n=12 for p = po,

8
p<po ®

P* = Z — (,00"+1 — po~"*1) p" sin nf
n=1 2
The Green’s function is now obtained from (8) by substituting the
appropriate Fourier coefficients for a concentrated source in place
of s,*. The final résults are as follows:

- P [ = po” )
Dot = 2__{ 5 2% (on = 57) |cos n (6o + 0)
wR2 h=1 n
- cosn (00 - 0)” = ‘;I (P: 61 0, 00) for p = Po,
> (9)
- 2P | = pn _
Ve = -———{ > = (po” — po™) [cos n (6o +6)
7I"R2 n=1n
—cosn (fg— 9)” =y (p, 6, po,80) for p< PO:J

in which P is the magnitude of the concentrated source. Note that in
relations (9)

i1 (p, 8, po, o) =1 (po, 0, p, Bo).

It has been shown previously [8-10] that series similar to those
involved in (9) have closed-form sums:

o« -e—nE
2 —cosna = Fi(£, ),
n=1 N
1 héE-1
Pt p) =i —2E"L g s,
cosh £ —cos &
© "nE
> —sinna = Fo(¢, o), (10)
n=1 N
(1+ cosh §) tan%
@
Fa(t, a? =— E + arctan Snh £
Foll, ) = —FolE,2m—a)] £>0,2r>a>m.
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Inner Circular Boundary

Region

Semicircular reglon with a circular cutout.

Fig. 1

Since po < 1 it is evident that ;//_1 and \[_/11 can be written in closed forms.
For example one writes

Y1 (0, 8, po, 80) = F1(~In p po, ) — F1(~In ppo, ctz)
-Fy (—ln o , al) + Fi(~In £o y az)r
p p

=(90+0, a2=00—0, for p>p0. (11)

Excluding the point of application of the concentrated source, it is
not too difficult to show that the Green’s function ¥ is harmonic in
both regions p > po and p < po and that is possesses continuous de-
rivatives of any order as p approaches po.

Consider now a small circular path with radius ¢ at the center of the
circular inner boundary (see Fig. 1). Multiplying {c* by cos j ¢q,
sin j ¢o and integrating the results on this path, the linearly inde-
pendent eigenfunctions 1//,* and \[/, are derived in the form of inte-
grals

— 2r .,
V= j; Ye* (p, 8, po, B0) cos jpoed o,

— 27
0= j; Je* (0, 6, o, B0) sin jdocddo. (12)

Determination of

The right-hand side of equation (1) is expanded in Fourier series,
and the ordinary technique of solving partial differential equations
is applied to yield the following solution:

\7/ =5 |- i S A— sin nd
n=1357(2+n)(2 —n)n
had 1
+4p? sinnf|, (13)

n=§3,5 T2+ n)2—n)n

which satisfies a homogeneous outer boundary condition. Employing
partial fraction technique, and utilizing relations (10), the first series
in the right-hand side of (13) is written in closed form. The second
series is also summed with a similar technique, however for the sake
of brevity the intermediate steps are avoided. The final result is

- 1
V=—-— { Fy(— lnp,ﬂ)——[psmﬁ
4 8p?
+ Fg (—Inp, 6) cos 2 6 — Fy(—1n p, 6) sin 26]

2
- 98_ [—p sin 8 + Fy(—In p, ) cos 20

2
+ F; (—In p, #) sin 20]] + 5% (1—cos20) p<1. (14)

Applications in Steady-State Two-Dimensional Heat
Conduction and Laminar Fluid Flow

For the case of two-dimensional steady-state heat conductlon in
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Table 1 The values of the nondimensional temperature
T versus p and 0 for the case in which T'= 0, T = 1, re-
spectively, on the outer and inner boundarles, and for Qg
=.a9/R=03,0 =7/2,andp = 0.1

N =320/x
# in rad p=02 p=04 p=06 p=08
4 0.206763 0.183056 0.111839 0.049988
8 0.446777 0.405957 0.237204 0.103775
12 0.754586 0.717176 0.369337 0.1565086
14 0.918345 0.900144 0.418825 0.172355
16 0.999999 0.999996 0.437899 0.178692

Table 2 The values of the nondimensional v’elocity w
for various p and 8 for the case of @y = ao/R=10.5,0=1
rad, and p = 0.15

R?0p/oz _

§=2"0P/0Z _ 40 749459
uWy
N = 320/

finrad  p=02 p=04 p=06 p=08
1 0.134031 0.250670 0.403591 0.432428

7 0.583469 0.161994 0.314148 0.469944

13 0.830446 0.091766 0.119459 0.132802

19 1.087369 1.270978 1.000000 0.465454

25 0.975399 1.498714 1.478780 0.933460

an infinitely long semicircular cylinder with a circular cylindrical
cavity and without a heat source the particular solution \Z is set equal
to zero. It is assumed that the nondimensional temperature T is zero
on the outer boundary and has a constant value of 1 on the inner
boundary. Since the homogeneous outer boundary condition is au-
tomatically satisfied by the eigenfunctions \Zj* and y;9, it remains only
to satisfy the inner boundary condition. T'o achieve this goal, 2i + 2
terms in series (3) are selected and the condition T= 1latm > 2i +
2 points of the inner boundary is satisfied. This procedure gives a set
of m by 2i + 2 linear algebraic equations, which are normalized and
solved approximately by the method of least square error [11]. The
dimensionless temperature distribution for a symmetrical configu-
ration is presented in Table 1. For the case of fully developed laminar
viscous flow in a semicircular channel with a circular cylindrical inner
core the particular solution Y is not zero as (1/4)(dp/dz) = const
0. Here dp/0z is the rate of change of pressure along the length of the
channel, and y is the absolute viscosity. The axial velocity in this case
is zero at both inner and outer boundaries. The procedure of numerical
‘solution is identical to that of the case of heat conduction. Denoting
by Wy the axial velocity at p = 0.6 and 6 = 197/32 the values of di-
mensionless velocity W = W/W, for a nonsymmetrical configuration
are given in Table 2.

The solution obtained in this investigation are very accurate. For
example, employing 32 equations with 24 unknowns the inner
boundary condition is satisfied with relative error of the order 105,
Tt is interesting to note that the solution ¢ given by relation (3) can
also be employed for the cases in which the inner cutout is noncir-
cular.
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Homogenization and Smoothing:
A Unified View of Two
Derivations of Effective
Property Theories and
Extensions

L. Fishman® and J. J. McCoy?

The response of a continuum characterized by two widely differing
length scales, parameterized by the dimensionless ratio ¢, is con-
sidered in the context of the composite materials problem. The de-
velopment of a bulk property theory appropriate in the ¢ — 0 limit
is examined, both from the perspective of the deterministic ho-
mogenization literaure and the smoothing method associated with
statistical continuum theory, and a unified framework is established.
The extension of bulk property theories through the development
of ordered expansions in powers of ¢ is discussed and specifically
related to analogous treatments in linear-gas relaxation theory.

Introduction

The purpose of this Note is to emphasize a structural unity of two
procedures, one termed a smoothing and one termeéd an homogeni-
zation, which have received attention for deriving macroscale equa-
tions for continua that exhibit heterogeneity on a microscale. The task
of deriving such equations can be said to comprise the composite
materials problem.

While intended to address the same problems, the two procedures
have been historically associated with different modelings of the
microscale heterogeneity and further, from a formal mathematical
viewpoint, with different limiting processes. Smoothing [1] has been
associated with a statistical description of the microscale variability,
formally, in a weak fluctuation strength limit; homogenization, as
presented in recent studies [2-7], has been associated with a periodic
modeling, formally, in the limit of small-scale variations. Although
the periodic modeling problems considered possess a fundamental
underlying stochastic interpretation [8], the inherent structural unity
encompassing both smoothing and homogenization is emphasized in
a most transparent manner through the introduction into the mi-
croscale description in homogenization of the novel concept of a
movable origin [5, 6]. Averaging over the location of the movable origin
can then be used to identify and to separate micro and macroresponse
measures in homogenization, in the same manner as ensemble aver-
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- aging is used in smoothing; indeed, the averaging operation can be

viewed in the context of an ensemble average.

The existence of a common framework does not preclude differ-
ences in the calculational details of the two procedures, as they are
usually presented. Further, these calculational details lead quite
naturally to a duality in the interpretations made at the macroscale
level, a fact which we would emphasize.

It is to be noted that the large amount of research on these proce-
dures notwithstanding, their specific applications to physical prob-
lems are often formal. Hence, the validity of such application is often
somewhat uncertain, Particular examples in smoothing, for instance,
include the assumed convergence properties of the effective index
operator and the subsequent heuristic two-scale analysis of the
macroscale equation [9]. Likewise, homogenization in the strict con-
text of the composite materials problem, that is the direct derivation
of macroscale response equations from the microscale equations, in-
volves a formal perturbational ansatz, termed a two-scale smoothing
by Keller [7], which can be related to a proper two-scale asymptotic
treatment [7, 8]. Further, the replacement of a nonlocal, integral op-
erator by a infinite-order differential operator, as is implicitly ac-
complished in homogenization, is known, from experience, to be
fraught with danger. Questions of the mathematical rigor of homog-
enization, of smoothing, and of the replacement previously mentioned
have been raised in a rather extensive and diverse literature. A dis-
cussion of these questions within the context of the composite ma-
terials problem is available [10].

Derivation of Macroscale Equations
The equations governing the state of stress in a heterogeneous
linearly elastic solid are written

0iTij = fj, (1a)
7ij = Cyjri(x)er;, xinD (1b)
6ikmaﬂﬂalakemn =0, (1c)

along with boundary conditions, taken here to be traction conditions;
ie.,

niTij =t;, xindD (1d)
The response field variables are the symmetric stress 7j, and strain,
e;j, tensors; f; is a body force term taken to vary on the macroscale;
Cijriis the microscale varying elastic moduli tensor. The alternating
tensor is denoted by d;jx. Further, the prescribed surface normal, n,
and surface traction, ¢;, are also taken to vary on the macroscale.
Equation (1a) is a statement of momentum balance; equation (1b)
is Hooke’s law; and equation (1c) is a compatibility requirement that
the strain tensor is derivable from a displacement vector according
to
1
e = E (9u; + O;u5) (le)

The microscale heterogeneity is modeled in two ways:

1 Cijri(x) is a statistically homogeneous, random field

2 Cijri(x) is described by a periodic function of unit period, de-
noted by Ci;i(§) where £ = (x ~ b)/e.

In the second modeling, b locates the origin of a material property grid
and ¢ is a small dimensionless number that relates the length scale
natural for describing the heterogeneity, the £ scale, to that natural
for describing the specimen geometry. This length scale ratio, ap-
pearing explicitly in the periodic modeling, is implicitly understood
as a correlation range measure in the stochastic modeling [8]. We note
that there is no need to explicitly introduce it in the stochastic mod-
eling at this point.

We now introduce a projection operator, P, which effects an aver-
aging. For the stochastic modeling the average is an ensemble average,
over an random function space; for the periodic modeling the average
is also an ensemble average, over the continuous parameter, b, taken
now to be a random variable that can range over the unit cell with
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The response of a continuum characterized by two widely differing
length scales, parameterized by the dimensionless ratio ¢, is con-
sidered in the context of the composite materials problem. The de-
velopment of a bulk property theory appropriate in the ¢ — 0 limit
is examined, both from the perspective of the deterministic ho-
mogenization literaure and the smoothing method associated with
statistical continuum theory, and a unified framework is established.
The extension of bulk property theories through the development
of ordered expansions in powers of ¢ is discussed and specifically
related to analogous treatments in linear-gas relaxation theory.

Introduction

The purpose of this Note is to emphasize a structural unity of two
procedures, one termed a smoothing and one termeéd an homogeni-
zation, which have received attention for deriving macroscale equa-
tions for continua that exhibit heterogeneity on a microscale. The task
of deriving such equations can be said to comprise the composite
materials problem.

While intended to address the same problems, the two procedures
have been historically associated with different modelings of the
microscale heterogeneity and further, from a formal mathematical
viewpoint, with different limiting processes. Smoothing [1] has been
associated with a statistical description of the microscale variability,
formally, in a weak fluctuation strength limit; homogenization, as
presented in recent studies [2-7], has been associated with a periodic
modeling, formally, in the limit of small-scale variations. Although
the periodic modeling problems considered possess a fundamental
underlying stochastic interpretation [8], the inherent structural unity
encompassing both smoothing and homogenization is emphasized in
a most transparent manner through the introduction into the mi-
croscale description in homogenization of the novel concept of a
movable origin [5, 6]. Averaging over the location of the movable origin
can then be used to identify and to separate micro and macroresponse
measures in homogenization, in the same manner as ensemble aver-
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- aging is used in smoothing; indeed, the averaging operation can be

viewed in the context of an ensemble average.

The existence of a common framework does not preclude differ-
ences in the calculational details of the two procedures, as they are
usually presented. Further, these calculational details lead quite
naturally to a duality in the interpretations made at the macroscale
level, a fact which we would emphasize.

It is to be noted that the large amount of research on these proce-
dures notwithstanding, their specific applications to physical prob-
lems are often formal. Hence, the validity of such application is often
somewhat uncertain, Particular examples in smoothing, for instance,
include the assumed convergence properties of the effective index
operator and the subsequent heuristic two-scale analysis of the
macroscale equation [9]. Likewise, homogenization in the strict con-
text of the composite materials problem, that is the direct derivation
of macroscale response equations from the microscale equations, in-
volves a formal perturbational ansatz, termed a two-scale smoothing
by Keller [7], which can be related to a proper two-scale asymptotic
treatment [7, 8]. Further, the replacement of a nonlocal, integral op-
erator by a infinite-order differential operator, as is implicitly ac-
complished in homogenization, is known, from experience, to be
fraught with danger. Questions of the mathematical rigor of homog-
enization, of smoothing, and of the replacement previously mentioned
have been raised in a rather extensive and diverse literature. A dis-
cussion of these questions within the context of the composite ma-
terials problem is available [10].

Derivation of Macroscale Equations
The equations governing the state of stress in a heterogeneous
linearly elastic solid are written

0iTij = fj, (1a)
7ij = Cyjri(x)er;, xinD (1b)
6ikmaﬂﬂalakemn =0, (1c)

along with boundary conditions, taken here to be traction conditions;
ie.,

niTij =t;, xindD (1d)
The response field variables are the symmetric stress 7j, and strain,
e;j, tensors; f; is a body force term taken to vary on the macroscale;
Cijriis the microscale varying elastic moduli tensor. The alternating
tensor is denoted by d;jx. Further, the prescribed surface normal, n,
and surface traction, ¢;, are also taken to vary on the macroscale.
Equation (1a) is a statement of momentum balance; equation (1b)
is Hooke’s law; and equation (1c) is a compatibility requirement that
the strain tensor is derivable from a displacement vector according
to
1
e = E (9u; + O;u5) (le)

The microscale heterogeneity is modeled in two ways:

1 Cijri(x) is a statistically homogeneous, random field

2 Cijri(x) is described by a periodic function of unit period, de-
noted by Ci;i(§) where £ = (x ~ b)/e.

In the second modeling, b locates the origin of a material property grid
and ¢ is a small dimensionless number that relates the length scale
natural for describing the heterogeneity, the £ scale, to that natural
for describing the specimen geometry. This length scale ratio, ap-
pearing explicitly in the periodic modeling, is implicitly understood
as a correlation range measure in the stochastic modeling [8]. We note
that there is no need to explicitly introduce it in the stochastic mod-
eling at this point.

We now introduce a projection operator, P, which effects an aver-
aging. For the stochastic modeling the average is an ensemble average,
over an random function space; for the periodic modeling the average
is also an ensemble average, over the continuous parameter, b, taken
now to be a random variable that can range over the unit cell with
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uniform distribution. Ultimately the projection operator is to be in-
terpreted for both models in terms of a spatial average taken over the
microscale. Thus a projected quantity is to vary only on the macro-
scale. With P, all the field variables can be resolved into a projected
component, say (C) = PC and a fluctuating component, say C’ = (I
— P)C according to the identity

Cijni = (Cijrt) + Cliju 2)

We note that (Cyjx;) is a constant, in the specific application, by viture
of the statistical homogeneity of Cijp(x).

Coupled boundary-value problems can be written on the separate
components of the response fields by first projecting equation (1) and
by subsequently subtracting the projected equation from the original.
These problems are

o {ri) =fj, (3a)
(737 = (Cyjra) (ep) + (Cijme’ri), xinD (3b)
Oikm 0jin Or O1{emn) = 0, (3¢)
and
ni{ri;) =¢t;, xindD (3d)
together with
o1 = 0, (4a)
7= (CyjriYe' + I~ P)C'pe’ s + Clijrilent), xinD (4b)
Oikem 0j1n 01 1€ mn = 0, (4c¢)
and .
n;7;=0, xindD (4d)

Equations (4), which can be written as a single field equation on
the fluctuating displacement field, u’;(x); i.e.,

(Cijrr) Oj0pu/s + (I — P)Qj(C’ijklaku’z) = —;(C'ijri{ers)) (5)

along with the homogeneous boundary condition, equation (4d), are
to be solved and the result substituted into equation (3b). This
equation then provides an effective, nonlocal, constitutive relationship
between the projected stress tensor, (7;;), and the projected strain
tensor, (e;;). Notice that since the boundary condition, equation (4d),
enters the problem that determines u’;, the effective constitutive
equation is, in the strictest sense, specimen-dependent.

Except for the insignificant difference in the interpretation to be
given to the projection, the procedure as outlined is the same for the
two modelings. A difference is now introduced, in the manner of ef-
fecting a solution of equation (5). The literature treating the stochastic

modeling identifies a measure of the strength of the heterogeneity, -

[C’ijei| /] (Cijri) |, and constructs a perturbation series solution of
equation (5) in powers of this strength parameter. The result is termed
a smoothing in that the formal method is the linear counterpart of the
Bogoliubov-Krylov-Mitropolski method of averaging for nonlinear
differential equations [11, 12]. The literature treating the periodic
modeling exploits the two-length scale nature of the problem and
constructs a series solution of equation (5) in powers of €. The result
of the second is termed an homogenization in that in the broadest
sense homogenization derives from consideration of the question of
replacing a heterogeneous material by an “equivalent” homogeneous
one in the appropriate e — 0 limit [2].

Since the detailed calculations of smoothing are available [13-16]
for both the mechanics and similar problems, they will not be repro-
duced. The effective, nonlocal, constitutive equation is written

(13;00) = C¥ijri{eri(x)) + f Cijni(x, x' ) en (x’))dx’ (6)

where C*;j1 has been chosen so as to incorporate all singular behavior
of the two-point dyadic field, @;jx;(x, x’), which has been constructed
such that

S Cijn(x, x")dx' =0 (7)
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Tt is to be noted that the derivation provides infinite series prescrip-
tions, the terms of which are given by well-described quadratures of
multipoint correlation functions of Cijr;(x). It is also to be noted that
the validity of equation (6) is not limited by the magnitude of any
length-scale ratio. The specimen dependence of the constitutive
equation appears in the prescriptions for C*;j5; and @i (x, x’). It has
been argued [13, 14] that this dependence is limited to layers of
boundary surfaces of a thickness that is measured on the microscale.
Neglecting these layers, then, C#;;, is a constant that is properly
termed an effective, elastic moduli tensor; @;jxi(x, x’) is a function of
difference coordinates alone; and, the integral is a convolution.

An iteration solution of equation (5) in terms of the length-scale
ratio, €, assumes, a priori, existence of two separable scales related
by the small parameter ¢ in a manner reflecting the detailed nature
of the microscopic process and the appropriate limit under consid-
eration. That is, that the solution field u’;(x) can be written as u’; (x,
y), where y is to be treated as an independent variable in the analysis,
and to be equated to x/e once the analysis is complete. The intro-
duction of a single correlation range parameter in this manner, while
appropriate for the assumed form of the periodic modeling, must be
assumed to provide a consistent and sufficient description of the
stochastic modeling as would be the case, for example, of the randomly
modulated oscillator characterized by an Uhlenbeck-Ornstein process
[1]. Explicitly introducing the two-scale concept into equation (5),
the equation on u’;(x, y) is written,

<Cijkl)aj(y)ak(y)u/l + (I - P)bjU)(C'ijk[bk(y)u’l) + €[2(Cijni) On o)
+ (I = P)Cijradp @ + (I = P)(2p 9C )]0, W’y
+ e2[(Cijr) + (I — P)C'3jra] 0,90, Wuy
= —e(d;C 1) (err) — €2C7 110 W (ens)  (8)

where the superscripts x and y denote derivatives with respect to the
macro and microcoordinates, respectively. We note, with reference
to equation (8), that (Cyr;) is a constant; C’;ji(x) is a function of
microcoordinates alone; and (e;j(x)) is assumed to be a function of
macrocoordinates alone.

A solution of equation (8) is next constructed by the following an-
satz. We formally express the fluctuating displacement field as

u’j = ZO fnuj(n); (9)
n=

we substitute this in equation (8); and we equate terms in like powers
of €. The result is a sequence of equations

La®u,® =g
LW = —(@;0C 1) (epr) — My 0;90u,©
La®ui® = —C110;, 9 epy)

— Mij®0; @0 — Nijpy 10,0, 6y, @
Ly®uy® = =M 0); (g (=)

= Nyjpi @0, @0, Wy =2, n> 2 (10)
where L; 0, M;;®), and Nyjp, @ are differential operators defined

over the microscale according to

LDy = (Cijnt) 0,00, Ny + (I — P); O(C 3101 V),
Mg = [2(Cijn1) 21D + (I ~ PYC3j10,

+ (= PYRrC )i, (11)
and

NijetPjrt = [{Ciji) + (I = PYCipt bja (12)

Having previously argued that the averaging process in the e — 0
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limit represents the appropriate macroscale rvesponse function, the
solutions of equation (10) are constructed as

24 (0)(X, V) =0,

w0, y) = Xijp Oy (e (),

ui(z).(", ) = XijuPly) 9j (x)(e:kl(X», 13)

etc., with auxiliary functions {X )(y)} defined through the equa-
tions,

Ly (y)Xjkl(l) = —(0m W)Climnp)aknalm:

LijD X jpim P = = (Clirst + Mirp P X pst )01 615 O1me, (14)

etc., where 8;; is the Kronecker delta. Determination of the auxiliary
functions {X "*)(y)} requires the specification of boundary conditions.
The homogeneous conditions expressed by equation (4d) are not
appropriate in this regard since they apply to a boundary surface that
is defined on the x scale; whereas the differential operators in equation
(14) refer to the y scale. In homogenization with a periodic microscale,
it is usual to require that the auxiliary functions {X *)(y)} also be pe-
riodic; for a stochastic microstructure a more appropriate choice would
be a prescribed asymptotic behavior for |y| large [7, 8].

Equations (9) and (13) formally provide the solution of equation
(5); and the result is now to be substituted into equation (3b) to obtain
the effective constitutive equation. In particular we require

(Cijme’ ) = % (C i D) + (Clijpidn Wu’y) (15)
which upon substitution gives an infinite series in powers of ¢. We
write, for the effective constitutive equation, '

(150 = [(Cijrt) + {Cijmndpn DXt ) [ (ept) + e[ C 30X 1mn D)
+ (C/ijlpal(y)kamn(2))]ak (x)(emn) + (9(62) (16)

Discussion

Two comments with regard to equation (16) appear to be warranted
at this point. One is that the procedure does not provide a prescription
for the elastic moduli parameters in terms of quadratures. That is,
one still is required to invert equation (14) in order to determine the
coefficients of equation (16). Of course the problem expressed by
equation (14) is, in a sense, canonical requiring that it be solved only
once. Then, equation (16) is defined for all problems. The second
comment is that the derivation procedure clearly does not account
for the enforcement of the boundry condition given by equation (4d).
Previous boundary-effect analysis [13] indicates, however, that such
effects should be confined to a microscale layer, thus suggesting that
the derived constitutive relation will serve in some sense as an
outer-layer approximation to the correct bulk behavior.

We can compare the prescriptions for the effective constitutive
relation as given by smoothing, equation (6), and by homogenization,
equation (16). A formal relationship can be established by applying
the Kramers-Moyal expansion [17, 18] to equation (6), thereby for-
mally replacing the integral operator by an infinite-order partial
differential operator parameterized in terms of the transfer moments
of the kernel and subsequently ordering the expansion by expanding
the transfer moments in terms of the presumably identifiable small
parameter ¢, What emerges is a dual interpretation of the relationship
between the macroscale behavior and its microscale foundations in
terms of (1) averages over a sequence of well-defined microscale
problems, and (2) an infinite set of correlation functions reflecting
the statistical description of the medium.

Finally, we can discuss the set of equations one must solve in order
to obtain the projected response field in a particular application.
Equations (3a), (3¢), (3d), and (6) can be shown to define a well-posed
boundary-value problem so long as the constitutive equation gives
rise to a nonlocal strain energy measure that is positive-definite, which
has also been demonstrated to be the case [15]. Replacing equation
(6) with equation (16), followed by a truncation suggests a sequence
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of approximate theories, expressible by differential equations on the
projected displacement field, {x;(x)), of increasingly higher order.
Several comments regarding this procedure are to be made. First, the
construction procedure of Bablska {2-4] demonstrates that the
lowest-order approximation, a bulk property theory, does give solu-
tions with an error of ©(e). Second, retention of higher-order deriv-
atives in equation (16), in order to obtain extensions of the bulk
property theory, introduces a need to supplement the boundary
conditions given by equation (3d). Finally, it is known from experience
that replacing a nonlocal integral operator by an infinite-order dif-
ferential operator to obtain a sequence of approximations commonly
leads to unphysical results. Beran and McCoy [19] established, for
example, that explicit expressions for the material parameters for the
first-order correction to a bulk property theory, which can be iden-
tified with a strain gradient theory, violate the positive-definite re-
quirement for the strain-energy density of that theory. Examples of
similar difficulties abound in the literature of mathematically similar
problems. In particular, we cite the literature relating to linear-gas
relaxation theories [18].

As noted in the Introduction, the calculations presented in this Note
and in much of the literature treating homogenization and smoothing
are formal. Questions remain concerning, for example, the mathe-
matical rigor of the procedures and the detailed underlying rela-
tionship between stochastic processes and their appropriate scalings
and the assumption of a single-parameter correlation description.

A literature does exist, however, which attempts to address these
questions; and a discussion of some of this literature in the context
of the composite materials problem is available [10].
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Steady-State Solution of
Navier’s Equation in
Cylindrical Curvilinear
Coordinates

B. S. Berger! and B. Alabi?

Steady-state problems in plane elasticity for the half space have
received considerable attention [1]. The radiation condition at infinity
has been approximately satisfied by the introduction of a viscous
boundary, a semianalytic energy transmitting boundary, {1, 3} and
a method based on the properties of the transmission of D’Alembert
forces, [4]. In the following the solution of Navier’s equation given in
[5] for the static and transient cases is modified for the steady-state
case. The radiation condition at infinity is satisfied through a change
of the dependent variable.

A complete solution of the reduced elastodynamic equations is given
in terms of the Lamé potentials by

V2 + B¢ + (F/é12) = 0 1
V2V + B2 + (Fles®) = 0 (2)

where B1 = wley, Ba = w/ea, c1 = VOX+2ulp,ca=~ulp, U=Y¢
¢ F=9VF+V.F ¥V.F =0and satisfies the gauge con-
dltlon, ¥ - = 0. The displacement, Uy, body force, F, and stress
tensor, Tq, are expressed, respectively, as products of functions, U,
F, and T, of the spatial coordinates and w with exp (—iwt); see [6].
Denote the coordinates of a point in a rectangular Cartesian coordi-
nate system by X;, { = 1,3. Define the orthogonal cylindrical curvi-
linear coordinate system x;, i = 1,3 by x; = x1(X1, X9), x2 = x2(X1,
Xy)and x3 = X3 Then g1y = g11(%1, X2), §22 = gaa(x1, ¥2), 33 = 1 and
gij = 0 for i # j, where g;; are the components of the metric tensor
associated with the coordinate system, x;. Assume that the scalar ¢
and the component of ¥ with respect to the x3-axis, Y3, are even
functions while Y4 and ¥/ are odd functions of x3. The axial variable,
x3, may be suppressed in (1), (2) through separation of variables,
differencing for bodies of finite extent in x3 or application of the
Fourier transform for the infinite case; see [5]. For notational economy
&, Y1, U3, Y3 will subsequently denote both tensor components of ¢
and ¥ as well as their Fourier transforms with respect to x3. Taking
the Fourier transform of (1) and (2) and expanding gives '

(1/v/g11822) (V822/811 6,01 + (Vg11/822 ¢,2).2)

+ B2 —atg+ (Flei?) =0 (3)
Bi+iays: — (Veulgz (UvVE) 2 (Pe1— Y1)
+ (1/892) (Y100 — Yo,12) + (B2 — oD + (F1/es?) = 0 (4)
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B +iayss+ (Velen Vg1 (a1 — i)
+ (g11) (o1 — Yi,10) + (B2 — aDe + (Fafca®) =0 (5)

—ian/g B+ V/gi1/gas (Waon + lafan) + (Vgii/gm),2 (Paa + iads)
+Vgoelg1 Wau + i) + (Wgae/g), 1 (Wa1 +iady)
+ Vg Boa+ (Ve Falea®) =0 (8)

where

B = (1/Vg11822) (Vgaa/g11 1)1 + (Vgu/gaz ¥2),2) — i

and ( ), i denotes the partial derivative with respect to x;. The guage
condition becomes

(VEa/su ¥+ Veulgn o) e —iavgugaeys=0  (7)
while the components of the displacement vector are given by

uy = ¢1+ Venlges Waz + i),

us = d2 =~ Vgaslg11 (a1 +iays),
uz = —iad + (1/vVg11822) (21 — ¥1,2).

In two dimensions, orthogonal coordinates with specific coordinate
lines may be found through a variety of means, including numerical
conformal mapping, see [5]. Define the X; rectangular Cartesian
coordinates such that X3 is along the axis of a cylinder while X1 and
X are in a plane perpendicular to X3. In the case of the grooved
semi-infinite plane Xy and X3 are in the plane of the surface, X =
0, X3 is parallel to the axis of the groove and X points into the interior
of the half space. A conformal mapping of the grooved half plane into
the rectangle 0 < x1 < 1, — /2 < xo < w/2 is given by

Z= f) a,z@n=3) (8)
n=1

where Z = X + iXy, 2 = x1 exp (ix2), the boundary at infinity is
mapped onto the line x; = 0, — 7/2 < x2 < #/2 and the cross section
of the groove is assumed to be symmetric with respect to the Xo-axis.
Effective numerical methods for the computation of the coefficients
an are givéen in [5]. Equation (8) may be used to compute the compo-
nents of the metric, gj, appearing in (3)-(7), [5]. Through conformal
mapping or other means, [7], coordinate transformations may be
found such that the transformed reduced equations may be solved
over the finite rectangle, 0 < x; < 1, — 7/2 < xy < 7/2.

To insure only outgoing waves, the difference solution for the
semi-infinite elastic medium must satisfy the Sommerfeld radiation
condition at infinity. [6]. Thus the radiation condition must be sat-
istied on x; = 0 in the x4, x2 coordinates. To assure an outgoing wave
consider the change of dependent variables

= f exp (0y/x1) )]
Vi = h; exp (ag/x1) (10)

where a1 = lajw/c1, az = lajw/cs, f(x1, X9, @), and h;(xq, 29, @) =0
for x; = 0 and a; is the coefficient of z in the first term of (8). It is seen
that (9) and (10) approach the form required for outward going waves
as x1 — 0. It should be noted that the change of variable, (9) and (10),
is not necessary for finite elastic bodies. Substituting (9) into (3)
gives

GTfuu+QTf1+Q8f+Q2f2+ G8f a0
+ (F/c12) exp (—ar/x) =0 (11)

where G7 = 1/g11, G8 = 1/g92, Q7 = @1 — 2.GT-a1/x1%, @8 = G7(2
ar/x® + a1?/x1*) — QLar/x:% + B12 — o2, Q1 = (G7-G8gan,1 ~ GY-
£11,1)/2, and Q2 = (G7-G8-g11,2 ~ G10-gs2,2)/2. Substituting (10) into
(4) gives equations, omitted for brevity, which determine h;, i = 1,3.
Equation (11) and the equations for h; were expressed in finite-dif-
ference from and solved over a rectangle in the x{, xg coordinates.
Stress and displacement boundary conditions are developed in [5].

In order to establish the computational utility of the foregoing,
numerical studies were made for comparison with analytic solutions.
The values of material constants used in all calculations are as follows:
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v = 0.3, E = 207.-10%, G = 79.615.10%, p = 7850 for steel in mks
units.

Consider an ungrooved plane, X5 = 0. For this geometry the coef-
ficients in (8) are ay = 1/2, a3 = 1/2,and ap, = 0 forn > 0.
Let
¢ =A1HW B1vX 2+ (X2 +a)d),
¥v=0, F=0, £=0.

‘Then (1) and (2) are satisfied and the displacements on the boundary,
X9 = 0, and throughout the half space may be found from U = V.
The amplitude of the displacement and the phase angle, for the exact
solution and the numerical approximation are shown in Figs. 1 and
2, respectively, for xg = 7/2. In the computation Al = 0.1, A2 = #/10,
w =500, « = 1, A; = 1 and the boundary displacements utilized in the
computation were found from ¢ and ¢ defined previously. Numerical
solutions for the infinite medium containing a circular hole and the
semi-infinite plane containing a semicircular groove have been found
to be in agreement with exact solutions.

Conclusions

The method given here effectively extends the coordinate trans-
formation techniques of [5] to the steady-state solution without re-
course to artifically imposed boundaries. Numerical solutions are in
good agreement with known analytic solutions.
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On the Computation of the
Confluent Hypergeometric
Function at Densely Spaced
Points

P-T. D. Spanos’

An algorithm is described for computing the values of the confluent
hypergeometric function at several points spaced densely along an
interval of real numbers. Numerical data obtained by using this al-
gorithm and pertaining to a commonly made approximation for the
first-passage problem of the response amplitude of a lightly damped
and randomly excited linear oscillator are presented.

Introduction

In engineering and scientific applications, it is often necessary to
compute the values of the confluent hypergeometric function M(a,
b, z) [1] for given values of the independent variable 2, and the pa-
rameters a and b. The function M(q, b, z) is defined as the nontrivial
solution of the ordinary differential equation

dzM
dz?

which is finite at z = 0. This solution can be represented by the fol-
lowing series [1, 2}:

dM
z +(b=2)—=—aM =0 (1)
dz

Ag 22 A, 2"
M(a,b,2)=1+ﬁ—z- 422 4eZ (2)
Bll! B22' ’ Bnn’

where

An=a(@+1)... (a+n—1), Ap=1,
B,=bb+1)...(b+n—1), By=1 (3)

Equation (2) can be used, without concern about efficiency, to
compute the value of M(a, b, z) at a single or a few points z. However,
this approach may require excessive computational time if for a
particular problem it is desired to compute the values of M(a, b, 2)
at a large number of points z. This will be the case, for example, if it
is required to plot the values of M(a, b, z) versus 2, or to compute
numerically integrals, the integrands of which involve M(a, b, 2).
Numerical computations of this nature would require the values of
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Consider an ungrooved plane, X5 = 0. For this geometry the coef-
ficients in (8) are ay = 1/2, a3 = 1/2,and ap, = 0 forn > 0.
Let
¢ =A1HW B1vX 2+ (X2 +a)d),
¥v=0, F=0, £=0.

‘Then (1) and (2) are satisfied and the displacements on the boundary,
X9 = 0, and throughout the half space may be found from U = V.
The amplitude of the displacement and the phase angle, for the exact
solution and the numerical approximation are shown in Figs. 1 and
2, respectively, for xg = 7/2. In the computation Al = 0.1, A2 = #/10,
w =500, « = 1, A; = 1 and the boundary displacements utilized in the
computation were found from ¢ and ¢ defined previously. Numerical
solutions for the infinite medium containing a circular hole and the
semi-infinite plane containing a semicircular groove have been found
to be in agreement with exact solutions.

Conclusions

The method given here effectively extends the coordinate trans-
formation techniques of [5] to the steady-state solution without re-
course to artifically imposed boundaries. Numerical solutions are in
good agreement with known analytic solutions.
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On the Computation of the
Confluent Hypergeometric
Function at Densely Spaced
Points

P-T. D. Spanos’

An algorithm is described for computing the values of the confluent
hypergeometric function at several points spaced densely along an
interval of real numbers. Numerical data obtained by using this al-
gorithm and pertaining to a commonly made approximation for the
first-passage problem of the response amplitude of a lightly damped
and randomly excited linear oscillator are presented.

Introduction

In engineering and scientific applications, it is often necessary to
compute the values of the confluent hypergeometric function M(a,
b, z) [1] for given values of the independent variable 2, and the pa-
rameters a and b. The function M(q, b, z) is defined as the nontrivial
solution of the ordinary differential equation

d M

e
which is finite at z = 0. This solution can be represented by the fol-
lowing series [1, 2}:

—z)-—-aM 0 (1)

Ma b2y =1+312  A2®  An2t 2)
Bll! B22' B n!
where
n=ala+1)... (@a+n—-1), Ag=1,
L, =bb+1)...(b+n—1), By=1 (3)

Equation (2) can be used, without concern about efficiency, to
compute the value of M(a, b, z) at a single or a few points z. However,
this approach may require excessive computational time if for a
particular problem it is desired to compute the values of M(a, b, 2)
at a large number of points z. This will be the case, for example, if it
is required to plot the values of M(a, b, z) versus 2, or to compute
numerically integrals, the integrands of which involve M(a, b, 2).
Numerical computations of this nature would require the values of
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M(a, b, z) at a set of densely spaced points. For this purpose it is logical
to attempt to develop a numerical scheme which leads from the value
of M(a, b, 2) to the value of M(a, b, z + Az), where Az is a small in-
crement. This idea is the basis of an alternative computational algo-
rithm for M(q, b, z) presented in this Note. Numerical data obtained
by applying this algorithm for b = 1 are presented. The data pertain
to a first-passage problem formulated in connection with a Markovian
approximation of the amplitude of the response of a lightly damped
linear structure to a white random excitation.

Formulation .

The objective of relating the value of M(a, b, z) to M(a, b, 2 + Az)
leads to a Taylor expansion of M(a, b, z + Az) in the neighborhood
of z. The specific expansion can be expressed as

Ma, b,z + Az) = M(a, b, 2) + 3 %Z—M(Az)i +R, (@)
=11 dzt

where the derivatives diM/dz® are evaluated at z, R is the remainder
of the Taylor expansion, and n is an integer representing the highest
order of the derivatives used in the expansion. The derivatives ap-
pearing in equation (4) can be expressed as

AM@b2) A gt ibeie), @
dz? B;

where

azM(a+1,b+1,2) = b(1 — b+ 2)M(a, b, 2)
+bh(b—1)M@-1b—12) (6)

Substituting equation (5) into equation {(4) yields
M(a, b,z + Az) = M(a, b, 2)

N 1A . . .
+ X i—'—M(a +i,b+i, Az)(Az)+R. (7)
i=1 1! B;
Clearly, the value of R will be negligible for Az <1 andn = N, an
appropriately large number. In this case, the value of M(a, b, z + Az)
can be computed in terms of the values of M(a — 1, b — 1, 2), M{q, b,
z),...,M@+N,b+N,2).

Mechanization

Assume that it is desired to compute the values of M(G, b, z) at
equally spaced points z = 0, Az, 2Az, . ., along the real axis. For this
purpose, first the equation

M(a, b, 0) = 1 ‘_ )

is used to determine the values of M(a, b, 0) for (o, b) = {(@— 1,5 —
1); (@, b);...; (@ + N, b + N)}. Then, the equation

Ma, b,z + Az) ~M(a, b,z + Az) = M(a, b, 2)

+ gj ,lﬁM(a +i, b+, z)(Az)E (9)

i=11! B;

is used for z = 0, and (g, b) = {(@ — 1, b — 1); (@, b)} to compute the

valuesof M(@— 1,56 — 1,2+ Az) and M(&, b, 2 + Az). Upon deter-
mining the values of M(&@, b, Az) and M(& — 1,5 — 1, Az), the values
of M@+1,b+1,A2), M@+ 2,b+2,Az),...and M@+ N,b+N,
Az) are computed by using equation (6) for (a, b) = {(@, b); @+ 1,b
+1);...(@+ N — 1,5 + N — 1)}. This numerical scheme is repeated
to compute the value of M(a, b, 2Az) by setting z = Az into equation
(9). Obviously, the values of M(g, b, 3Az), M(@, b, 4Az) and so forth
can be computed by substituting corresponding values of z into
equation (9) and repeating the same numerical scheme. -

Note for Special Values of 7 and b

Itis noted that forb = —m(m =0, 1,2,... ), the function M(qa, b,
z) is indeterminate unless a = —r(0,1,...,),wherem =n,n+ 1, n
+ 2,...,. Seemingly this fact would imply that equation (6) for b =
0 or b = 1 cannot be applied for all values of a. However, a careful

684 / VOL. 47, SEPTEMBER 1980

examination of equation (6) reveals that it is only necessary to assure
that

lim b M(a, b, z) = finite
b—0

(10)

for this equation to be meaningful. Equation (10) can be readily ver-
ified by considering equation (2). It must be noted, as well, that for
a=-nn=0,1,...,) and forvaluesof b = —m(m=n+1,n+ 2,
...,) the function M(a, b, z) terminates and becomes a polynomial
of z. In this case, already existing efficient algorithms for the com-
putation of polynomials can be used for the computation of M(a, b,
2).

Accuracy

Clearly, the accuracy of the presented numerical scheme depends
on the step Az and the number N of terms used in equation (9). Its
computational advantages, in comparison with the traditional method
which uses equation (2), are based on the fact that if equation (2) is
truncated at n = L and equation (4) is truncated at n = N, the values
of the remainders will be O(zL) and O(Az¥), respectively. Therefore,
for large values of z, for example z = 100Az, the same accuracy for
M(@, b, z) would be yielded by equation (2) and equation (9) for N «
L.

An Application
Consider the equation of motion of a lightly damped linear struc-
ture excited by a broad-band process w(t) of spectral density S{w)

i+ 20wk + wir = w(t); (K1 (11)

Assume that the problem has been normalized so that the expression
S (wa)/2{w] for the stationary variance of the response is equal to
unity. Furthermore, consider the probability Pg(r) of the response

envelope
a?(t) = x2(t) + 2%(t)/wl a(0)=A4A (12)

not exceeding the barrier B > 0 during the interval (0, 7]. Then, Pg(r)

_can be approximated by the expression [4, 5]

Py(A, 7) = . C;pe~2e0ns™ M=\ 5, 1,34). (13)

i=1
The symbol \; g represents the eigenvalues of a boundary-value
problem formulated by application of the separation of variables
technique on the backward Kolmogorov equation associated with an
approximation of a(t) by a Markov process [3-5]. The symbol C; g
represents constant coefficients given by the equation

1/2B2
Cip= f M(~N\p, 1, s)e‘sds/
0

1/2B2
fo M%*(—N\;p, 1,8)e~ds. (14)

Repeated citations have been made in the literature, for example, in
reference [4], of the fact that no convenient tables of M are available
for numerical computation based on equation (13). It is noted that
for an initially quiescent structure, A = 0, equation (13) becomes

Pp(0,7) = ¥ C;pe=2ehiar,

=1

(15)

Thus, for a quiescent structure, it is only necessary to compute C; g
for the determination of Pg(0,7). This fact has motivated the com-
putation of C; p by applying the presented algorithm for b = 1. Three
values of the barrier have been considered {B = 1, 2, 8. The corre-
sponding values of \; 5.1 = 1,.. ., 9 given in Table 1 have been taken
from reference [4]. The computed values of C; p are shown in Table
2. These values have been obtained by using Az = 0.05and N =6 in
the present algorithm, and they have been validated by using the
series representation of M(a, b, z), equation (2), with n = 30. Also
shown in Table 2 is the sum Sy -
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Table 1 Eigenvalues X;p; i = 1, ..., 9; barrier Table 2 Coefficients C;p; i = 1, ..., 9; barrier
B=11,2,3| ‘ B=1{1,2,3] '
™3 10 2.0 3.0 e 10 2.0 3.0
1 2.418811 (.329478 0.040987 1 1.48815 1.24559 1.06187
2 14.774574 3.465318 1.548872 2 -0.85412 -0.42215 —0.10970
3 36.984065 9.023553 4030491 3 0.67095 0.32214 0.08837
4 69.061214 17.044586 7.597266 4 —0.57185 —0.27241 —0.07626
5 111.007448 27.5631894 12.258870 5 0.50706 0.24076 0.06800
6 162.823090 40.486194 18.016587 6 —0.46037 —0.21822 —0.06191
7 224.508247 55.907712 24.870726 7 0.42463 0.20109 0.05721
8 296.062962 73.796536 32.821393 8 —0.39613 -0.18747 —0.05349
9 377.487360 94152710 41.868630 9 0.37270 0.17631 0.06030
Sum 1.18102 1.08564 1.02439
S 9
o El Cip. (16) Numerical data obtained by application of this algorithm for a special

Clearly, the theoretical value S., is

Sa= Z Ci,B = lim 2 ci,B e ~2w0M.BT = |im Pg(r) =1. 17)
i=1 = 70

70

Examining Table 2, it is seen that the truncation of S.. to Sp generates
a considerable error for Pg(0, 7) as 7 — 0. For example, for B = 1 the
error is close to 20 percent. The value of Sg has been used in reference
{4] to plot Pg(0, 7) versus 7 for B = {1, 2, 3}. Interestingly, the trun-
cation error neither has been reported nor has it been shown in ref-
erence [4].

Summary

An algorithm has been presented for the computation of the con-
fluent hypergeometric function M(a, b, 2) at a set of densely spaced
real points. The basis of the algorithm is the Taylor representation
at M(a, b, z + Az) in terms of M(q, b, z), and utilization of a recursive
formula for the derivatives of the confluent hypergeometric function.

Journal of Applied Mechanics

class of confluent hypergeometric functions are presented. The data
pertain to the first-passage problem of a commonly used Markovian
approximation for the amplitude of the response of a lightly damped
linear structure to white random excitation.
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Computation of Rigid-Body
Rotation in Three-Dimensional
Space From Body-Fixed Linear
Acceleration Measurements!

L. E. Goodman? and A. R. Robinson.? The subject paper by
Mital and King represents a valuable contribution to the practical
problem of determining rotation histories from dynamical measure-
ments. The main algorithm, the experimental validation of the
computation and the discussion of error minimization are all inter-
esting and useful. In describing the basis of the computation proce-
dure, however, the authors are guilty of a slight verbal infelicity that
may mislead readers unfamiliar with the literature of the subject. The
statements in question occur in the first paragraph of the section
entitled “Computation of Rotation From Accelerometer Data.” The
following discussion is offered in an effort to clarify matters.

The computational method presented in the subject paper is based
on what the authors term the “Goodman-Robinson” theorem (au-
thors’ reference [8]). The correct bibliographic reference to this the-
orem is given below [8].¢ Briefly, the theorem concerns a rigid body
constrained to turn about a fixed point, 0, which is also the origin of
a set of body-fixed axes, x, ¥, 2 (not necessarily orthogonal). Consider
a fixed sphere of unit radius centered on 0. As the body moves, the
intersection with the sphere of any one of the body-fixed axes, say x,
describes a curve on the sphere. From any starting point at t = 0 the
body will, at time ¢, have reached a new position that could have been
reached by a single rotation ®. The Goodman-Robinson theorem
asserts that the component of ® about the x-axis, ¢y, is given by the
expression {(equation (4) in [8]):

t
¢x=‘£) wedt+ Ay, £ 2mmw

Here w, (t) is the x-component of the angular velocity; A, is the area
on the unit sphere bounded by the curve traced by the intersection
of the x-axis with the sphere plus a closure arc corresponding to the
negative of ®; and m is an integer or zero. Similar expressions hold
for ¢y and ¢,. The theorem is exact. No “correction term” has been
omitted. In fact, no additional term is possible.

In technological applications of the Goodman-Robinson theorem
it is often desirable to express A4, in terms of other geometric pa-
rameters that are of interest. After it is proven in [8], the theorem is

1By N. K. Mital and A. I. King and published in the December, 1979, issue
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, No. 4, pp. 925~
930.

2 University of Minnesota, Department of Civil and Mineral Engineering,
Minneapolis, Minn. 55455.

3 University of Illinois, Department of Civil Engineering, Urbana, IIL
61801.

4{8] Goodman, L.E,, and Robinson, A.R., “Effect of Finite Rotations on
Gyroscopic Sensing Devices,” ASME JOURNAL OF APPLIED MECHANICS, Vol.
25, 1958, pp. 210-213.
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first illustrated by a simple example in which the area A, is computed
exactly. Then the theorem is applied to solve what Dr. Bortz in the
authors’ reference [6] terms “the famous coning problem.” In this
application the area A, is small compared with 4. In this circum-
stance it is permissible to replace A, by the corresponding area on the
tangent plane—what cartographers would call the central or gnomonic
projection of A,. In the technological problem to which Dr. Bortz
applies the Goodman-Robinson theorem, on the other hand, A, is not
necessarily small and he, quite correctly, employs an exact expression
for A,. So also in the authors’ paper under discussion. This expression -
for A, entails adding a term to the area of the central projection and
it is this addition that the authors appear to have in mind when they
write of a correction term. This term, however, has nothing to do with
the theorem itself. That theorem is completely and correctly stated
and proved in [8].

Authors’ Closure

The authors appreciate the comments made by Professors Good-
man and Robinson relative to the usefulness of the method proposed
in the paper. We agree that the Goodman-Robinson theorem does
contain a correction term Ax and that the word “omit” in our paper
was a poor choice. What we meant to say was that we needed an exact
expression which was not available in reference [8]. It should be noted
that Bortz [6] derived the expression for the orientation vector in-
dependently of the Goodman-Robinson theorem and that his ex-
pression was more suitable and accurate for the computation of
rigid-body rotation from linear accelerometer measurements. We
apologize for the error in reference [8] which was rectified by the
discussants.

Stability of a Rotor Partially
Filled With a Viscous
Incompressible Fluid!

F. G. Kollmann.2 This discusser would like to congratulate the
authors on their very valuable contribution to this interesting field
and also would like to draw their attention to the following:

1 The first comprehensive analytical solution for the inviscid case

1By S. L. Hendricks and J. B, Morton, and published in the December, 1979,
issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 913-
918.

2 Professor, Technische Universitat Braunschweig, Institut fiir Maschine-

" nelemente und Férdertechnik, Langer Kamp 19B, 3300 Braunschweig, Ger-

many.
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was given by Kuipers [1] where he compared his theoretically pre-
dicted stability charts [2] with the discusser’s experimental results
and excellent agreement was found.

2 The authors’ remark, that the discusser attempted no analysis
is a little bit misleading. The discusser used a lumped mass model for
the trapped liquid and could predict the independence of the critical
spin frequency from the mass of the contained fluid but by the dis-
cusser’s model, he was not able to analyze the interaction of the mo-
tions of the rotor and the fluid waves.

3 The discusser is interested to learn, whether the authors have
performed experimental investigations to confirm their theoretical
predictions.

References
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Authors’ Closure

The author is indebted to Dr. Kollmann for bringing the two ref-
erences to his and the reader’s attention. The article by Kuipers
supports the author’s assertion that both external rotor damping
and damping due to the viscosity of the entrapped fluid must be
considered in order to have a consistent theory.

The author apologizes for any misconceptions that may have arisen
concerning Dr. Kollmann’s article.

The authors have not performed any comprehensive experiments
to date. A few unreported experiments have been conducted using
a rotor which was clamped at one end and free at the other. The ex-
periments confirmed the dramatic rise in'the upper stability boundary
when rotor damping was increased (Fig. 6). Since the experimental
rotor allowed the cup to tilt (creating gyroscopic stiffening effects in
the rotor and exciting axial dependence in the fluid waves), a direct
comparison with the current theory was not attempted. A more
comprehensive theory incorporating axial dependence in the fluid
motion has now been completed and will be reported in another paper.
In the meantime the author would encourage Dr. Kollmann or anyone
else to undertake a comprehensive experimental investigation.

Dynamic Response of a
Cylindrical Shell in a
Potential Fluid!

R. L. Citerley.? The authors have touched upon several prob-
lem areas that can be encountered in the analysis of fluid-structure
systems. Three points in particular should be addressed.

1 Insolving a transient response problem for an incompressible
fluid, the authors attributed the observed numerical instability to the
addition of the fluid, arguing that the Houbolt difference operator
is unconditionally stable. The proof of stability for this operator has
been given only for symmetric systems [1]. Using a finite-difference

1 By G. E. Cummings, and H. Brandt, and published in the December, 1979,
issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 772-
718. ’

2 Anamet Laboratories, Inc., P.O. Box 831, San Carlos, Calif. 94070.
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DISCUSSIONS

formulation of the Sander’s shell equations, with displacements and
moment resultants as fundamental variables, results in system
equations which are nonsymmetric. Thus a formal proof of uncon-
ditional stability is lacking for the problem under consideration. The
same basic shell equations, coupled with a compressible fluid, pro-
duced a similar instability phenomenon in a recent study [2]. The
instability was removed by using a spatial Euler difference operator
rather than central difference at the fluid-shell interface. It can be
shown that the eigenvalues, v, of the system [K]{d} = v[M]{d} will
provide the insight with respect to numerical stability. Using an in-
compressible fluid, either the “stiffness” matrix, K, or the “mass”
matrix, M, can be modified to account for the fluid. These matrices
are generally full and nonsymmetric for the particular geometries
encountered in the nuclear energy field [3]. Further, the eigenvalues
may even be complex, but will appear as conjugate pairs. Using a di-
agonal mass matrix to represent the fluid for all harmonic responses,
although attractive for its economy, is only correct for rigid body
motions and must be applied only to the mass terms corresponding
to the normal displacement,

2 'When representing a fully coupled fluid-structure system with
an incompressible fluid, responses are instantaneously felt throughout
the domain, and are solely determined by the accelerations of the
wetted interface and imposed pressures. Therefore, when performing
an eigenvalue analysis, the fundamental variables are those of the
shell. With a compressible fluid, the pressures at points within the
fluid must be added as fundamental variables in the vector {d}, in the
foregoing. Again, an eigenvalue analysis can be performed, but the
physical interpretation of results becomes a little more involved. In
either case, for containment shells some eigenvalues will have the
same, or nearly the same values as predicted for the empty shell, but
the corresponding eigenvectors will be considerably different.
Whether or not these modes should still be classified as shell modes
is simply a matter of semantics. As the fluid height approaches the
shell height, the magnitude of the eigenvalues associated with shell
responses will dramatically change under the incompressible as-
sumption. Little reduction in the “shell natural frequency” is observed
by the introduction of compressibility, but additional “acoustic
modes” will now be present. The eigenvalues corresponding to these
acoustic modes can greatly differ from the rigid wall modes. Of course,

" the acoustic modes are, by definition, affected by compressibility. For

a narrow annular fluid configuration with a 12.91 m fluid height,
several acoustic modes would exist within the frequency range of in-
terest (<500 Hz); whereas, for a 0.7 m fluid height, the first acoustic
mode is at 525 Hz. . _

Generally, when a fluid-structure system is excited by an imposed
pressure or volume source within the fluid, and one is concerned with
fluid responses (i.e., the acoustic modes), the dynamic characteristics
of the fluid take on a greater importance than do the structure modes.
Conversely, when the structure is excited by an externally applied
surface or body force, and one is concerned about containment re-
sponses only, the dynamic characteristics of the structure begin to
take precedence. If one can perform an eigenvalue analysis for a rea-
sonable frequency bandwidth, then periodic, random or transient
analyses become straightforward tasks. Wave propagation problems
are more readily solved by direct time integration since they are
equivalent to a modal response involving a very large number of
contributing modes.

3 Experimental verification of a numerical procedure for fluid-
structure analysis is not a trivial task. As noted by the authors, specific
boundary conditions may be difficult to achieve. Numerical proce-
dures are available for combining structural modes of a dry structure
with either incompressible or compressible fluids [4]. In this way,
measured data of nonideal boundary conditions of the dry structure
can be directly coupled with a fluid. However, it has been this writer’s
experience that minute volumes of air, either entrapped in pockets
or in the form of bubbles at the fluid-structure interface, have a far
greater effect on acoustic modes than does structural compliance [5].
Only after careful treatment of the water, such as raising the fluid
temperature to near boiling and the addition of wetting agents, can
consistent results over a wide frequency band be obtained. Further,
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the local sonic speed or celerity of the fluid is only very weakly sen-
sitive to pressure over the range cited.
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The Nonlinear Behavior of
Elastic Slender Straight
Beams Undergoing Small
Strains and Moderate
Rotations!

Dewey H. Hodges.2 The subject paper deals with mathematical
modeling of the nonlinear hehavior of beams. A set of equations is
derived and used to investigate the static behavior of a slender can-
tilever beam loaded transversely at the free end. Since the loading is
not necessarily along the principal axes, the principal bending de-
flections and torsion are coupled elastically. In a strictly linear theory
there would be no torsion; thus the presence of torsion is, itself, a
manifestation of nonlinear behavior. The agreement obtained with
experimental data achieved in the subject paper is excellent and
confirms that one may apply the geometric nonlinear theory of elas-
ticity to beams with confidence provided an adequate degree of
nonlinearity is retained in the mathematical model to account for large
deflections.

The same problem was treated by Dowell, et al., in [1]. The ana-
lytical results of [1] and those of the subject paper agree quite well as
long as w, the bending deflection in the plane of greatest flexural
flexibility, remains relatively small compared to the beam length. In
fact, analytical results of [1] depart from those of the subject paper
only when w ceases to be a small fraction of the beam length. An ex-
amination of the w equation (33b) in the subject paper reveals that
in addition to linear and second-degree terms, several terms of third
degree in the deflections appear. These terms are retained in the au-
thors’ original derivation of these equations [2] for the special case
when I99/I33 is large compared to unity. Although not stated in the
subject paper, these third-degree terms constitute the only difference
between the equations of [1] and the subject paper. Thus the im-
proved agreement reported in the subject paper must be due to the
presence of these third-degree terms and not to the reasons indicated
in the paper. The two main reasons given for the improved agreement
shown in the subject paper are now examined.

The first reason is mentioned on Page 162, Column 1, where the
authors attribute the aceuracy of their results to “a more careful and
consistent”” derivation than in [1]. The original derivation of the au-
thors’ equations [2] concludes with a set of nonlinear equations of
second degree in bending and torsion deflections. These equations
are intended for applications to rotating blades and are based on the

1By A. Rosen and P. Friedmann, and published in the March, 1979, issue
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 46, pp. 161-168.

2 Research Scientist, Rotorcraft Dynamics Division, Aeromechanics Labo-
ratory, U.S. Army Research and Technology Laboratories, Ames Research
Center, Moffett Field, Calif. 94035.
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assumption that bending and torsion rigidities are of the same order
of magnitude. For the special case where I90/I33 and El90/GeJ are large
compared to unity, the authors endeavored to retain third-degree
terms whenever they are multiplied by a large coefficient in the
equations. It is not clear that appropriate measures were taken,
however, to ensure that all third-degree terms multiplying the large
coefficients were retained. In fact, only terms through second degree
were retained in the bending curvature expressions, and it was never
demonstrated that third-degree terms from these expressions would
not appear in the final equations. Moreover, the final equations in the
subject paper, because of the particular third-degree terms retained,
do not have a self-adjoint structural operator. While it is acknowl-
edged that the authors deserve credit for adding appropriate
higher-degree terms to the equations to improve the correlation with
experimental data, this, in itself, does not necessarily imply a higher
degree of care or consistency.

The second reason given by the authors appears in the Concluding
Remarks section: “The superior agreement obtained with the present
equations is due to differences between the final equations of equi-
librium used here and those given in [3]. These differences have been
discussed with considerable detail in [2].” (Reference numbers refer
to those of this discussion). The first sentence, by itself, appears to
be referring to the third-degree terms retained in equation (335) be-
cause the ratio Io9/Ia3 is large compared to unity for th)e particular
beam considered. This is not the intended meaning according to the
second sentence, however, because differences related to these third
degree terms are not discussed in [2]. The differences between the
equations of [2, 3] that are discussed in [2] relate to the second-degree
equations only and have been recently clarified in [4, 5]. The final
second-degree nonlinear equations of [2, 3], while dfffering slightly
for pretwisted beams [4], are actually equivalent for the present case
of a nonrotating beam without pretwist [5]. Therefore, the improved
agreement reported in the subject paper does not prove that the
equations for rotating blade applications derived in [2] are more
“reliable” nor that they “can be used with confidence” any more than
those of [3]. The results simply prove that the equations of the subject
paper are more accurate than those of [1] when applied to problems
in which the bending deflection w may exceed a small fraction of the
blade length and the ratio [92/I33 is large compared to unity. These
cases are not treated in [1] in which the squares of bending slopes were
assumed to be negligible with respect to unity and the equations were
taken directly from [3] where 25 and 33 were assumed to be the same
order of magnitude [3, pp. 8, 9].
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the local sonic speed or celerity of the fluid is only very weakly sen-
sitive to pressure over the range cited.
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Dewey H. Hodges.2 The subject paper deals with mathematical
modeling of the nonlinear hehavior of beams. A set of equations is
derived and used to investigate the static behavior of a slender can-
tilever beam loaded transversely at the free end. Since the loading is
not necessarily along the principal axes, the principal bending de-
flections and torsion are coupled elastically. In a strictly linear theory
there would be no torsion; thus the presence of torsion is, itself, a
manifestation of nonlinear behavior. The agreement obtained with
experimental data achieved in the subject paper is excellent and
confirms that one may apply the geometric nonlinear theory of elas-
ticity to beams with confidence provided an adequate degree of
nonlinearity is retained in the mathematical model to account for large
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amination of the w equation (33b) in the subject paper reveals that
in addition to linear and second-degree terms, several terms of third
degree in the deflections appear. These terms are retained in the au-
thors’ original derivation of these equations [2] for the special case
when I99/I33 is large compared to unity. Although not stated in the
subject paper, these third-degree terms constitute the only difference
between the equations of [1] and the subject paper. Thus the im-
proved agreement reported in the subject paper must be due to the
presence of these third-degree terms and not to the reasons indicated
in the paper. The two main reasons given for the improved agreement
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The first reason is mentioned on Page 162, Column 1, where the
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assumption that bending and torsion rigidities are of the same order
of magnitude. For the special case where I90/I33 and El90/GeJ are large
compared to unity, the authors endeavored to retain third-degree
terms whenever they are multiplied by a large coefficient in the
equations. It is not clear that appropriate measures were taken,
however, to ensure that all third-degree terms multiplying the large
coefficients were retained. In fact, only terms through second degree
were retained in the bending curvature expressions, and it was never
demonstrated that third-degree terms from these expressions would
not appear in the final equations. Moreover, the final equations in the
subject paper, because of the particular third-degree terms retained,
do not have a self-adjoint structural operator. While it is acknowl-
edged that the authors deserve credit for adding appropriate
higher-degree terms to the equations to improve the correlation with
experimental data, this, in itself, does not necessarily imply a higher
degree of care or consistency.

The second reason given by the authors appears in the Concluding
Remarks section: “The superior agreement obtained with the present
equations is due to differences between the final equations of equi-
librium used here and those given in [3]. These differences have been
discussed with considerable detail in [2].” (Reference numbers refer
to those of this discussion). The first sentence, by itself, appears to
be referring to the third-degree terms retained in equation (335) be-
cause the ratio Io9/Ia3 is large compared to unity for th)e particular
beam considered. This is not the intended meaning according to the
second sentence, however, because differences related to these third
degree terms are not discussed in [2]. The differences between the
equations of [2, 3] that are discussed in [2] relate to the second-degree
equations only and have been recently clarified in [4, 5]. The final
second-degree nonlinear equations of [2, 3], while dfffering slightly
for pretwisted beams [4], are actually equivalent for the present case
of a nonrotating beam without pretwist [5]. Therefore, the improved
agreement reported in the subject paper does not prove that the
equations for rotating blade applications derived in [2] are more
“reliable” nor that they “can be used with confidence” any more than
those of [3]. The results simply prove that the equations of the subject
paper are more accurate than those of [1] when applied to problems
in which the bending deflection w may exceed a small fraction of the
blade length and the ratio [92/I33 is large compared to unity. These
cases are not treated in [1] in which the squares of bending slopes were
assumed to be negligible with respect to unity and the equations were
taken directly from [3] where 25 and 33 were assumed to be the same
order of magnitude [3, pp. 8, 9].
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under static loading. The development is set forth as a basis for de-
riving general nonlinear aeroelastic equations of motion for helicopter
and wind-turbine rotor blades. This Discussion clarifies the recent
background of the derivation of nonlinear equations of motion of rotor
bladeés, and points out some apparent errors and inconsistencies in
the derivations in the subject paper as well as in [1-2], where the de-
tails of the derivation are given.

The literature already contains several treatments of nonlinear
aeroelastic rotor equations, including development of beam equations
as a special case. A starting point for deriving nonlinear equations has
been the linear equations derived in [3] for a rotating twisted blade.
Several investigators extended [3] to include the nonlinear effects of
finite displacements (see, e.g., [4-9]). There are some controversies
about the basic ingredients needed to derive the nonlinear equations.
These basic ingredients are:

1 Nonlinear expressions for the bending curvatures and twist.

2 A nonlinear expression for the rotational transformation matrix
between the coordinates of the deformed and undeformed blade.

3 Nonlinear strain-displacement relations.
In [6-9], the authors of this Discussion addressed several fundamental
aspects of the derivation of the second-degree nonlinear aeroelastic
equations for rotor blades in forward flight in an attempt to place the
derivation on a firm foundation, and set forth certain principles and
guidelines to be followed both in establishing the basic ingredients
and in deriving the nonlinear equations. The subject paper and [1-2],
in emphasizing the same principles and gu1de11nes add little to the
contributions of [6-9].

With regard to the errors, the x-component of the virtual rotation
is given as n, = 8¢ in [1-2].4 This is incorrect. The correct expression
is

Ny = 8¢+ w00, (1)

The expression for the variation of the twist, 67, given in equation
D-36¢ of (2) is thus also incorrect. The correct expression is

07 = 0 + w00 5 + U 22 OW 5 (2)

These errors lead to missing and erroneous terms in the final equa-
tions obtained from the principle of virtual work.

The expressions for the virtual rotation components n, and n, and
for the variation of the bending curvatures 6«, and d«, are inconsis-
tent with the basic assumptions of small strains and “moderate”
rotations, whereby u ., v2,, w?,, and ¢2 are neglected compared to
unity. The consistent expressions for n, and n, are

ny = _6w,x + ¢6U,x (3)
n,=0v,+ ¢pow, (4)

Similarly, one can show that the consistent expressions for the
variation of the bending curvatures are

0Ky = 0Uxy + GOW 4z + W O (5)
d)év,xx - U,xx6¢ 6)

which are not in agreement with the expressions given in [2]. These
inconsistencies lead to inconsistent third-degree terms in the final
equations.

Oddly, a parallel Newtonlan development in the papers yields
identical final equations even though no error is made corresponding
to the missing term w 60, in the expression for n,. This occurred
because the assumptions of small strains and moderate rotations were
inconsistently applied in the development of the Newtonian equa-

“tions.

More fundamentally, the assumption of moderate rotations is an

inappropriate foundation for a rigorous derivation of the nonlinear

Ok, = 0w 1y ~

% The Nomenclature of the subject paper and [1-2] is used.
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aeroelastic equations of motion of helicopter and wind-turbine blades.
The implications of discarding v2,, w2,, and ¢? compared to unity
in the rotational transformation matrix were examined in [6-8]. Two
consequences are:

1 If ¢? is neglected compared to unity for a rotating blade, a
well-known linear inertia term is lost in the torsion equation. Many
other investigators have included this term but have introduced it
nonrigorously as an applied load.

2 If the terms v2, and w2, are neglected compared to unity, some
second-degree nonlinear aerodynamic terms are lost which are of the
same order as other terms which are retained. Also, some spurious
second-degree terms appear in the shear strains if the strains are
obtained by using this transformation matrix (although correct shear
strain expressions follow directly from the correct curvature expres-
sions).

Finally, three tension-torsion coupling terms given in [3] are missing
from the torsion equation, namely, (Tk%¢ ), (Tk30:.) ., and
((EB16% . ¢,2) x. In [1], the authors of the subject paper took issue with
[3], stating that these three terms were incorrect. Subsequently, they
conceded ([2] and subject paper) that the first term does exist but
discarded it as negligible for closed and solid cross sections. They have
apparently held to the position that the other two terms are incorrect.
But a wide body of literature (see, e.g., {10-13]) clearly establishes the
validity of all three terms for small strains.
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“Authors’ Closure

Closure to the Comments of Dewey A. Hodges. The authors
would like to thank Dr. Hodges for complimenting them on the ex-
cellent agreement between the theoretical results obtained in the
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subject paper and the experimental results obtained in reference [1}.
However, they would also like to identify a few inaccurate statements
and errors which unfortunately are present in Dr. Hodges com-
ment.

In his comment Dr. Hodges makes frequent use of concepts such
as “linear terms,” “second-order terms,” and “third-order terms.”
An attempt to use such concepts in an accurate and consistent theory
is a priori doomed to fail as it happened to Dr. Hodges when he at-
tempted to compare the results of his calculations to his own experi-
mental results [1]. The theory derived in reference [2] is based on the
assumption of “small strains and moderate rotations.”

According to this theory both elastic strains and terms involving
products of elastic rotations (or slopes) are negligible when compared
to unity. At the same time these quantities are not negligible com-
pared to unity when they are multiplied by quantities much larger
than one. The theory developed by Hodges, et al., failed to reproduce
the test results because it violated this rule. Therefore in the con-
cluding remarks of reference [1] dealing with the discrepancies be-
tween theory and experimental results, Hodges, et al., suggest that
these differences are “. . . consistent with the basic assumption of the
Hodges-Dowell theory in which squares of bending slopes are ne-
glected compared to one.” This remark is incorrect. The discrepancy
between theory and experiment was due to the authors’ failure to
apply the rule governing the neglect of strains and terms involving
products of the elastic rotations, compared to unity, in a consistent
manner.

Since the theory described in the paper which is the subject matter
of this discussion also utilizes the approach whereby, “squares of
bending slopes are neglected compared to one” and nevertheless
achieves excellent agreement with the experimental results, it is clear
that the superior agreement is due to the consistency of the theory.
This statement is clarified further below. In references [1, 3] the source
of the inconsistency was due to the artificial classification of terms
as linear terms, second-order terms, and third-order terms. Fur-
thermore, use of this classification as a basis for neglecting terms,
instead of neglecting terms by applying the rule of “small strains and
moderate rotations,” was the source of the inaccuracies introduced
in the theory derived in reference [3]. In reference [2] the systematic
application of this rule was followed and various sets of equilibrium
equations were obtained.

As pointed out by Hodges reference [2] contains various sets of
equilibrium equations which correspond to various stiffness ratios
of the rod. Each of these sets of equilibrium equations is consistent
within the framework of the assumption of “small strains and mod-
erate rotations.” The experiments described in [1] which were the
basis of the comparison between theory and experiment in the subject
paper were performed on rods for which (Els2/GJ) and (I29/I33) were
much larger than one. Therefore in order to compare with the ex-
perimental results the equilibrium equations corresponding to this
situation have to be used. This situation could not be simulated by
the equations in reference [3] because “third-order terms” were ne-
glected in violation of the “small strains and moderate rotations
rule.”

Regarding the comment on “the nonself adjoint structural opera-
tor” it is not clear why Dr. Hodges expects to encounter such an op-

- erator in such a nonlinear problem [2].

In his comment Hodges states that “An examination of the w
equation (33b) in the subject paper reveals that in addition to linear
and second-degree terms, several terms of third degree in deflections
appear. . .. Although not stated in the subject paper, these third-
degree terms constitute the only difference between the equations
of [1] and the subject paper. Thus the improved agreement reported
in the subject paper must be due to the presence of those third degree
terms and not to the reasons indicated in the paper.”

This statement is difficult to undérstand in view of the fact that
a comparison of equations (33a—c) of the subject paper and equations
(1) of [1], which takes only a few minutes, clearly shows additional
differences for the equation for v and ¢. As a matter of fact Hodges
makes a serious oversight by attributing the good agreement between
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theory and test to these terms in equations (33b). Even if these terms
are neglected the agreement between theory and experiment would
still be very good. As a matter of fact the terms which have escaped
Hodges attention and which appear in equation (33¢) for ¢, such as
the term containing ¢w?, are the important reason for obtaining good
agreement between theory and test. '

Hodges comment, in his last paragraph is even more difficult to
comprehend. If according to his statement the theory which he has
derived is applicable to cases where “Iog and I33 are assumed to be of
the same order of magnitude” why did he perform the experiments
on beams where these conditions were violated, i.e., Isa/I33 = 16?7 Is
it reasonable to compare experimental results with a theory a priori
known to be in violation of the conditions of the experiment, and
what could be the potential value of such a comparison?

Finally, it should be noted, that the versions of the equations of
equilibrium derived in both references [2, 3] which have been used
in rotodynamics applications, are very similar, and therefore they have
produced almost identical results.
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Closure to the Discussion by Kaza and Kvaternik. The dis-
cussion by Drs. Kaza and Kvaternik is quite strange mainly because,
as will be shown below, it really has very little to do with the subject
paper itself. Each of their comments are rebutted below.

1 In equations (1)-(6) of their comment, Kaza and Kvaternik,
present what they believe to be the “correct” expressions which in
their view replace the “incorrect” expressions in reference [1]. First "
of all it should be noted that the subject paper, which is based on
reference [1] does not use at all the chapter dealing with, derivation
of the equations of equilibrium by the use of the principle of virtual
work, which is the chapter of reference [1] in which Kaza and Kva-
ternik have identified what they believe to be “errors.” Therefore, in
essence it is completely immaterial whether that particular chapter
of reference [1] is correct or not because the subject paper does not
utilize it. However as far as Kaza and Kvaternik’s comment goes, it
should be pointed out that the derivations presented in reference [1],
were carried out in detail using vector algebra. Therefore one would
expect the incorrect expressions and the errors to be identified in a
specific manner instead of presenting six equations which are true,
simply because they say so! Similar arguments were employed in the
middle ages to prove that the earth is flat.

2 Since Kaza and Kvaternik have decided that derivation of the
equations based on the principle of virtual work is incorrect they
encounter a severe problem in attempting to explain how reference
[1] shows complete agreement between the equations of equilibrium
obtained by using the principle of virtual work and those obtained
by using the Newtonian approach which was presented in the subject
paper. So they state “The assumptions of small strains and moderate
rotations were inconsistently applied in the development of the
Newtonian equations,” again this statement is made without any
proof or explanation, and rests on the same nonexistent logical
foundation as their previous statement.

3 Kaza and Kvaternik continue their discussion by stating “More
fundamentally, the assumption of moderate rotations is an inappro-
priate foundation for a rigorous derivation of the nonlinear aeroelastic
equations of motien of helicopter and wind turbine blades,” they base
this opinion on the need to retain some inertia terms together with
some second-order aerodynamic terms. Again consistent with their
somewhat confused state of mind these terms are never explicitely
identified. At this point the authors would like to note that the subject
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paper deals exclusively with the structural aspects of a beam
undergoing moderate deflections, and therefore their comments have
no relevance to the subject under discussion, since aerodynamic and
inertia terms are not involved in the derivation of a structural
theory. '

4 Next Kaza and Kvaternik make a number of comments per-

taining to pretwist. First, it should be emphasized that the subject -

paper deals with a beam which had no pretwist, therefore again their
discussion is somewhat irrelevant. However, we would like to refer
them to a number of recent studies [2-4] and hope that these refer-
ences will clarify this item.

Within the framework of their discussion Kaza and Kvaternik state,
“The subject paper and [1], in emphasizing the same principles and
guidelines, adds little to the contributions present in the reports and
papers by Kaza and Kvaternik.” While Kaza and Kvaternik are en-
titled to this, somewhat modest opinion, the consistency of their
derivation are contested in reference [5]. Unfortunately, Kaza and
Kvaternik have never used their equations to solve a structural
problem for which experimental results are available. In view of the
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DISCUSSIONS

excellent agreement between theory and experiment exhibited in
the subject paper, which is never mentioned by Kaza and Kvaternik
in their discussion, it appears that they prefer to make unfounded
claims, instead of applying the scientific method to a typical test
case.
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Nonlinear Oscillations. By Ali Hasan Nayfeh and Dean T. Mook.
Wiley-Interscience. 1979. Pages 704. Price $35.

REVIEWED BY P. HOLMES!

I shall survey the contents of this book before making some general
comments. I close with a few specific comments on the organization,
clarity, and viewpoint of the book, and on some of the topics
omitted.

Chapter 1 constitutes an extended abstract of the entire work. The
next four chapters cover conservative, nonconservative, externally,
and parametrically excited single-degree-of-freedom oscillators. The
authors then go on to treat n-degree-of-freedom systems, continuous
systems, and traveling waves. Each chapter ends with a set of exer-
cises, many of which represent nontrivial pieces of research, and the
70-page bibilography contains over 1500 references. The book
therefore provides a comprehensive sampler of the nonlinear vibration
problems which occur in engineering.

This text lies firmly within the classical engineering tradition of
nonlinear oscillations; the first half of the book is essentially a new
version of such texts as those by Minorsky, Hayashi, or Stoker.
However, this serves as an introduction to the authors’ main aim of
covering recent work on multidegree of freedom and continuous
systems, which they do in Chapters 5-8. Topics such as the forced
oscillations of n-degree-of-freedom systems with quadratic and cubic
nonlinearities and of finite strings, beams, and plates are covered, as
well as longitudinal and transverse traveling waves in bars. In con-
nection with traveling waves, a nice presentation of the method of
characteristics is given and shock fitting is discussed. The authors’
recent work on modal saturation in coupled quadratic systems is also
covered.

The analytical methods described include phase plane analysis, and
the Poincaré-Lindstedt and multiple time-scale perturbation meth-
ods. The averaging technique is mentioned several times but dis-
missed somewhat cursorily. In the section on parametric oscillations,
Hill’s infinite determinant and the method of strained parameters
are discussed. Numerical integration is not covered, but is appealed
too frequently for comparison and “checking” perturbation solu-
tions;

It is perhaps easiest to characterize the book by noting that the
topics omitted include bifurcation theory and all the recent (past
1960) developments in the qualitative theory of many dimensional
dynamical systems due to Arnold, Moser, Smale, et al. In fact early
developments in the theory of two-dimensional (free oscillator) sys-
tems were already well covered in the “Theory of Oscillators” by
Andronov, Vitt, and Khaiken (1966) (now unfortunately out of print)
and in the two books by Andronov, Leontovich, Gordon and Maier
(1971, 1973). These omissions are therefore not to be criticized, but
do serve neatly to delineate the authors’ viewpoint (although refer-
ences to Arnold’s and Moser’s work on Hamiltonian systems are in-
cluded and even recent work on inverse scattering and exact solutions

! Department of Theoretical and Applied Mechanics, Cornell University, [thaca;
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of integrable infinite dimensional systems, such as the Korteweg-
deVries equation, is mentioned).

Each chapter begins with a brief literature survey and the text
contains many physical examples; these and the frequent references
to the figures enhance its clarity. The introductory chapter, since it
abstracts from later material, is occasionally confusing and the figures
are not always fully explained, but this is a small price to pay for an
extended guide to the wholé book. I have a few other minor com-
plaints: The passing reference to catastrophe theory (pp. 170-171)
is merely confusing, since it does not even supply a useful reference
to the application to Duffing’s equation. The list of references, which
pretends to completeness, is patchy—for instance much of the sig-
nificant recent work on galloping oscillations is omitted. But in spite
of these and other minor carps, the book is generally very good and
can be recommended to all engineers and applied mathematicians
wishing for a comprehensive treatment of nonlinear vibrations from
the viewpoint of perturbation theory.

I wish to close with some more general comments on nonlinear os-
cillations, and in particular to point out some important features of
nonlinear oscillations which are not amenable to straightforward
analysis by perturbation methods. Following the work of Poincaré
and Birkhoff, neither of whom are referenced in this book, Smale
showed in the early 60’s that the two-dimensional (Poincaré) map
associated with a forced oscillator might be expected to contain infi-
nite sets of recurrent periodic and nonperiodic motions. Cartwright,
Littlewood, and Levinson [1] had already found such motions in the
forced van der Pol equation, but Smale provided the first coherent
geometrical description [2]. Recently Levi [3] has extended this in
detailed studies of forced van der Pol type relaxation oscillations, and
the forced Duffing equation:

% —x+x3=¢e(fcoswt — 6%), €K1,

has also been studied [4]. In both cases, and in the weakly nonlinear
Duffing equation:

I3

&+ wox = e(—ax3+ v cos Ut), O~ wgeKl,

it can be shown that infinitely many bounded nonperiodic orbits and
periodic orbits of arbitrarily high period exist. These orbits are densely
intertwined in such a way that the system can exhibit extremely
sensitive dependence on initial conditions and can also exhibit sus-
tained, nonperiodic or chaotic oscillations. Ueda and Hayashi had
produced dramatic analog computer maps of such motions as early
as 1973 [5].

These chaotic motions are unobtainable directly by perturbation
or averaging analyses, although their presence can be inferred by
careful use of those techniques. Any future text on nonlinear oscil-
lations which hopes to provide a comprehensive coverage should not
ignore such deterministic chaos.
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Vibrations of Elastie Structural Members. By Edward B. Magrab.
Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands.
1979. Pages 400. Price $60.

REVIEWED BY A. LEISSA?

The book is of broader scope than the title implies, for considerable
attention is also devoted to general, dynamic response, as well as vi-
bratory response, and to wave propagation. The work is divided into
chapters as follows:

I Some Mathematical Preliminaries; 45 pages.

I Vibrations of Strings; 27 pages.

111 Vibration of Membranes; 20 pages.

v Flexural Vibrations of Beams—Part I: Bernoulli-
Euler Theory; 78 pages.

v Flexural Vibrations of Beams—Part II: Timoshenko
Theory; 44 pages.

VI Vibrations of Plates—Part I: Thin Plate Theory; 58
pages.

VII Vibrations of Plates—Part II. Mindlin—Timoshenko
Theory; 36 pages.

VIII  Vibrations of Shells: General Theory for Shells of
Revolution; 17 pages. .

IX Vibrations of Cylindrical Shells; 29 pages.

X Vibrations of Spherical Shells; 19 pages.

The first chapter presents an excellent discussion of orthogonal
functions, a summary of their orthogonality properties and how they
may be determined and utilized, as well as other mathematical topics
frequently referred to later in the book. Subsequent chapters are
typically each further divided into sections dealing with (and in this
order): derivation of the governing differential equation and boundary
conditions (from Hamilton’s principle); interpretation of the
boundary conditions; boundary conditions and generation of normal
modes; wave propagation and dispersion; free vibrations for certain
classical problems; and forced and aperiodic motion.

Although no homework problems are given, the reviewer would
definitely recommend the book for a first, graduate level course in
dynamices of continuous, elastic systems, as well as to the reader de-
siring otherwise to broaden the scope of his/her understanding of the
subject. The work is carefully done, and adequate reference to the
voluminous literature of the field is given.

Numerical Methods in Fluid Dynamics. Edited by H. J. Wirz and
J. J. Smolderen. McGraw-Hill Book Co., Hightstown, N. J. 1979.
Pages xiii-399. Price $35.

REVIEWED BY E. M. MURMAN?

This book is a publication of six lectures presented at the von
Karman Institute. Each lecture was given by a noted authority in the
field and represents an up-to-date description of the topic. The editing
and printing of the book is of high quality.

2 Professor of Engineering Mechanics, Ohio State University, Columbus, Ohio
43210. ‘

3 Vice President, General Manager, Flow Research Company, 21414 68th
Avenue South, Kent, Wash. 98031.
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Three of the chapters are on various aspects of transonic flow
computations. A chapter by Jameson presents an excellent article on
the computation of steady transonic flow problems. Starting from the
small disturbance equation, the numerical methods are developed
for the exact potential equation. Results for two and three-dimen- .
sional flows are presented. The chapter by Ballhaus summarizes re-
cent progress in the computation of transonic flow for three-dimen-
sional shapes using the small disturbance theory and for unsteady
transonic flow. Several design applications using numerical optimi-
zation are also presented. The chapter by Schmidt focuses on various
approaches for computing wing body problems of interest to the
aerodynamic designer.

A chapter by Kraus discusses panel methods and illustrates the
degree of complexity in the geometrical problems which can now be
computed. A section is included on nonlinear vortex wake
methods.

Two chapters deal with computing viscous flows. At one end of the
spectrum, incompressible laminar flows occurring in physiological
problems are discussed by Mueller. The complicated geometries which
must be treated are of primary concern in this work. Mueller notes
that for this speed regime, numerical computations are perhaps easier
than experiments. The other chapter by Belotserkovskii summarizes
several areas of high speed viscous flow.

In summary the book appears to be a valuable addition to the ar-
chival literature in this area.

High Velocity Deformation of Solids. Edited by K. Kawata and
J. Shioiri. Springer-Verlag, Berlin, Heidelberg, New York. 1978,
Pages xviii-452. Price $42.90.

REVIEWED BY T. NICHOLAS!

The high velocity deformation of solids has been the subject of
periodic national and international conferences and symposia over
the past several decades. The most recent symposium in this spe-
cialized technical area was held in Tokyo, Japan, in Aug. 1977. The
papers presented at this [UTAM sponsored symposium are presented
in a single volume and cover the subjects of theory and experiment,
micro, and macromechanisms, and applications to a variety of ma-
terials. The emphasis, throughout, is on material behavior rather than
on structural response. Works from a number of different countries
are represented and provide a global view of the state-of-the-art in
this subject area. As such, the subject book is one of the premiere
references in the field of impact mechanics. For the U.S.A. audience,
it is one of the rare opportunities to learn of the extent and nature of
work being carried out in the host country, Japan, as well as Great
Britain, France, USSR, Poland, and other countries. These works are
normally not readily available to the English speaking audience.

The book consists of 39 papers ranging in size from 4 one page
summaries to a comprehensive treatment of ricochet of spherical
ended projectiles by Johnson and Daneshi. Drucker presents a clever
approximate solution to spall and cratering problems that are oth-
erwise mathematically intractable. There is a detailed study of friction
and inertia in the Hopkinson bar by Klepaczko and Malinowski.
Hayashi and Tanimoto present some interesting dynamic biaxial data
on aluminum. And Lindholm discusses deformation maps at high
dislocation velocity. In total, 24 of the papers represent invited pre-
sentations by experts from around the world. Space limitations pre-
clude extensive detail in most papers and necessitate very small fig-
ures in some instances. However, this collection of papers is extremely
comprehensive in scope and represents the works of the top people
both here and abroad as a scan of the table of contents will quickly
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BOOK REVIEWS/ERRATUM

ERRATUM

Erratum on “Amplitude-Frequency Characteristics of Large-
Amplitude Vibrations of Sandwich Plates,” B. M. Karmakar, pub-
lished in the March, 1979, issue of the ASME JOURNAL OF APPLIED
MECHANICS, Vol. 46, pp. 230-231.

The first line in the Introduction of the foregoing Note should
read:

Yu [1] has treated nonlinear vibrations of sandwich plates and the
equations derived by him include the transverse shear effect.

The next to the last line in the section, “Results and Discussion,”
should read:

The present study shows that Berger’s approximate method can
be applied to dynamic cases of sandwich plates.
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